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Introduction

Welcome to the fourth edition of Professional JSP, designed to help new and experienced
Java developers alike discover the power (and even the joy) of creating Java-based server-side
solutions for the Web by using JavaServer Pages, or JSP for short. If you’ve programmed with
JSP before, you’ll find that the new features in JSP 2.1 make developing JSP pages easier than
ever before. If you only know a little Java, this is your chance to add JSP to your toolbox skills.

JSP is a server-side technology that takes the Java language, with its inherent simplicity 
and elegance, and uses it to create highly interactive and flexible web applications. In today’s
unsure economic climate, having the Java language as the cornerstone of JSP makes JSP partic-
ularly compelling for business: Because Java is an open language (meaning it doesn’t require
expensive licenses), JSP solutions can be highly cost-effective. 

The founding premise of JSP is that HTML can be used to create the basic structure of a
web page, and Java code can be mixed in with the HTML to provide the dynamic components
of the page that modern web users expect. If you understand the concepts of HTML and web
pages, JSP provides an unbeatable way to learn about creating innovative, interactive content
as well as coming to grips with the popular language of Java. This book will be your guide as
you step into this exciting new world.

Who Is This Book For?
This book is aimed at anyone who knows the Java language and core APIs and wants to learn
about web programming with the latest versions of the JSP and Servlet APIs.

Familiarity with HTML is required; however, no prior knowledge of server-side Java pro-
gramming is necessary. Having said that, this book does not claim to be exhaustive in all areas,
particularly in relation to other Java Enterprise Edition APIs such as Enterprise JavaBeans. 

What’s Covered in This Book
This book covers the latest versions of the JSP and Servlet specifications—versions 2.1 and 2.5
respectively, both of which are new specifications developed through the Java Community
Process (http://www.jcp.org/).

■Note At the time this book was being published, the JSP specification was in Proposed Final Draft stage.
It’s possible that some small changes might be made before the specification reaches final release; how-
ever, any modifications are likely to be minor and the new specifications are already being implemented by 
a number of products such as Tomcat 5.5.

xxvii
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Those who have read previous editions of this book will notice that this edition is a revision
of Professional JSP, 3rd Edition. Because the third edition covered JSP 2.0, most of the informa-
tion was still current for this book, which covers JSP 2.1. However, we’ve gone through the
entire book and ensured that the material is still correct for JSP 2.1. We’ve gone through every
chapter and updated the text to make it clearer and more concise. Finally, we’ve added an
entire new chapter on JavaServer Faces, one of the newest Java web-application technologies.

If you already have some exposure to server Java web development, you should pay atten-
tion to any changes in the technologies that are indicated throughout the book, or skip ahead
to the sections that interest you the most. On the other hand, if you’re new to JSP, servlets, and
JSTL, and this is somewhat confusing, you’ve come to the right place; the early chapters in this
book, especially, were written with you in mind.

Here is what you can expect to find in each chapter:

Chapter 1, The Anatomy of a JavaServer Page, looks at the JSP life cycle, JSP application
architecture, and the fundamentals of JSP pages, and provides a feel for where JSP tech-
nology fits within the Java EE 5 and other web components such as servlets, tag libraries,
and JavaBeans, which exist in the Java EE 5 web tier for providing dynamic web-based
content.

Chapter 2, Servlets and Deployment, delves into what Java servlets are, and looks at the
development and deployment of Java servlets. The Servlet and JSP specifications are
developed in parallel, and this chapter is up to date for the latest release of JSP 2.1 and
Servlets 2.5 (as is the rest of the book).

We discuss one of the new features of the JSP 2.1 specification in Chapter 3, The
JavaServer Pages Expression Language. The JSP expression language is what you’ll be
using most often in JSP pages, an intentionally simple language that is, to a large extent,
independent of JSP.

Chapter 4, JavaServer Pages Standard Tag Library, looks at the reasons for the creation of
the JSTL, its details (it is in fact four different tag libraries), and how to install the JSTL.

Chapter 5, JavaServer Faces, is an introduction to JavaServer Faces (JSF), a framework for
creating component-based user interfaces. You’ll learn how to use JSF with JSP pages to
create feature-rich user interfaces.

Tag Files and Simple Tags is the title of Chapter 6. Tags contained within JSTL are
extremely valuable for improving the readability and maintainability of a JSP page. You
can also build custom tags to enable your own functionality to be reusable and easily
maintained. Tag files and simple tags are both new mechanisms for writing custom tags
introduced as a part of the JSP 2.1 specification.

Chapter 7, Classic Tags, takes a look at the facilities provided by former versions of the JSP
specification for writing custom tags. As you’ll see throughout the chapter, these previous
methods, now called classic tags, provide a great deal more flexibility and therefore are
still useful in some scenarios.

After you learn the basics of building custom tags, Chapter 8, Custom Tag Advanced Fea-
tures and Best Practices, wraps up your understanding by looking at some more advanced
features and the best way to use custom tags.

■INTRODUCTIONxxviii
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Chapter 9, Data Access Options for Web Applications, discusses how best to access your
back-end data from your JSPs and servlets. No matter what type of JSP application you’re
writing, you’ll need to either store the data that is created by your application, or use data
from an external source, and this chapter looks at examples using a MySQL database.

In Chapter 10, Introduction to Filtering, you’ll look at filtering, a standard feature of all
Servlet 2.5–compliant containers. You’ll explore the life cycle of a filter as managed by the
container, discuss the very important concept of filter chaining, and then create and
deploy two simple filters.

Chapter 11, Advanced Filtering Techniques, is a cookbook for the application of filters, as
you turn your attention to the more advanced techniques involved in applied filter pro-
gramming by looking at five examples that can be used as the basis for your own filter
implementation.

Chapter 12, Security in Web Applications, looks at making your web applications secure
and explores different methods of authentication and authorization.

Chapter 13, Improving Web-Application Performance and Scalability, is your guide to a
number of well-known tools and techniques such as page caching and database connec-
tion pooling that you can use to improve performance and stability, even after you’ve
designed and coded your application. 

Chapter 14, Web-Application Design and Best Practices, brings together the techniques
covered in the earlier chapters and shows how to build maintainable, extensible Java-
based web applications. It looks at the importance of good design and how it can help you
build high-quality web applications that are easier to maintain and extend in the future.

In Chapter 15, Using Struts, XDoclet, and Other Tools, you’ll develop a résumé building
and viewing web application called struts-resume, by using a variety of third-party prod-
ucts. All of the products used in struts-resume are open source and help to facilitate and
speed up various stages of the development process. 

What You Need to Use This Book
The first thing you’ll need to use this book is a computer that supports the Java programming
language. This includes computers that run Microsoft Windows, Sun Solaris, or Linux.

We don’t use any proprietary software, and all code runs on open-source products, avail-
able free of charge over the Internet. Consequently, an Internet connection is pretty much
essential in order to get hold of this software. 

The primary piece of software you’ll need is a web container that supports the JSP 2.1 
and Servlet 2.5 specifications. Although there are a number of options to choose from, we’ve
elected to use the Jakarta Tomcat web container throughout the whole book because it’s the
officially designated reference implementation. Version 5.5 is the latest and greatest, which
supports the specs we require. You can get the latest release information about Tomcat 5.5
from http://jakarta.apache.org/tomcat/index.html.

As you need further software components during the course of the book, we’ll indicate
clearly where to download them from.
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Conventions
We’ve used several styles of text and layout in this book to differentiate between different kinds
of information. Here are examples of the styles used and an explanation of what they mean.

Code has several fonts. If we’re talking about code in the text, we use a nonproportional
font like this: for...next. If it’s a complete code listing that can be entered and used as part of
an application, then it will appear in a nonproportional font with a caption like this:

Listing 1-2. date.jsp

<html>
<body>
<h2>Greetings!</h2>
<p>The current time is <%=new java.util.Date()%> precisely</p>

</body>
</html>

Code that is an extract or snippet from a larger listing will appear without a caption, like
this:

import javax.servlet.http.*;

public class SessionTracker2 extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)

Sometimes you will need to type in commands on the command line, which we display
using the following style:

> set classpath=.;%Java EE_HOME%\lib\j2ee.jar
\projsp> javac -d . client\*.java

We show the prompt using a > symbol or \dirname> (where dirname is a directory name)
and then the commands you need to type. As you can see, we tend to use the Windows direc-
tory separator character when showing directory paths. We do this because we expect that a lot
of readers will be using a Windows platform when they try out the code. But we also develop on
Linux or Solaris platforms, and if you do too, then you should use the directory separator that is
correct for your platform.

■Note Advice, hints, and background information come in this type of font offset by borders. Important
pieces of information also come in this format. Depending on the type of information, we preface the text with
the word Note, Tip, or Caution. Notes consist of incidental information of one type or another that defines,
explains, or elaborates on the main discussion. Tips will make your programming easier. For instance, a Tip
might point out another way to use a certain feature that’s not obvious from the main discussion. Cautions
indicate a potential hazard. For example, a Caution might be a method that if misused could crash your appli-
cation server.
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Bullets appear indented, with each new bullet marked as follows:

• Important Words are in a bold type font.

• Words that appear on the screen or in menus, such as File or Window, are in a mono-
spaced font.

Numbered lists are similar to bulleted lists:

1. Do this action first.

2. Do this action next.

What to Do If You Encounter Problems
Despite all our best efforts, and despite this book’s numerous sharp-eyed editors, there is a
possibility that errors managed to sneak through. It has been known to happen. If you are hav-
ing problems with any of the text or code examples, the first place to go for corrections is the
web page for the book (http://www.apress.com/book/bookDisplay.html?bID=464). If any errata
have been identified, you will find a link for Corrections on the book’s web page. If you click
this link, you will find a page that lists known errors with the code or book text, and correc-
tions for those problems.

If you can’t find your problem listed on the Corrections page, you will find a link to Submit
Errata on the main book page. If you’ve double-checked and triple-checked your problem and
still can’t get the code to work or the text to make sense, use the Submit Errata link to send us a
description of the problem. We can’t promise a speedy response, but we do see all submissions
and post responses to the Corrections page after we’ve had a chance to check out the problem.
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The Anatomy of a 
JavaServer Page

The Java Platform, Enterprise Edition 5 (Java EE 5) has two different but complementary
technologies for producing dynamic web content in the presentation tier—namely Java
Servlet and JavaServer Pages (JSP).

Java Servlet, the first of these technologies to appear, was initially described as extensions
to a web server for producing dynamic web content. JSP, on the other hand, is a newer tech-
nology but is equally capable of generating the same dynamic content. However, the way in
which a servlet and a JSP page produce their content is fundamentally different; servlets
embed content into logic, whereas JSP pages embed logic into content.

JSP pages contain markup interlaced with special JSP elements that provide logic for con-
trolling the dynamic content. Servlets are built using Java classes that contain statements to
output markup code. Of these two paradigms, JSP pages are preferred for presenting dynamic
content in the presentation tier due to their greater readability, maintainability, and simplicity.
Further increasing the simplicity and ease of use of JSP pages was one of the main objectives
of the JSP 2.0 specification, which included several new features to make it easier than ever to
embrace JSP technology, especially for developers who aren’t fluent in the Java syntax.

The inclusion of a new expression language (EL) enables JavaScript-style JSP code to be
embedded within pages, which makes it much easier for web developers not familiar with the
Java syntax to understand the JSP logic. A library of standard actions known as the JavaServer
Pages Standard Tag Library (JSTL) is also included to provide a host of useful, reusable actions
such as conditional statements, iteration, and XML integration to name a few. These actions
are applicable in some shape or form to most JSP web applications, and their use will greatly
improve the reliability and ease of development for JSP page authors. Custom actions (also
known as custom tags) also benefit from changes in the JSP specification, and it’s now possi-
ble to write a custom action entirely in JSP syntax instead of Java syntax!

JSP 2.1 further eases the development of JSP pages by unifying the JSP expression lan-
guage with the JavaServer Faces (JSF) expression language. These new features will help make
JSP pages easier to write and maintain and are discussed in detail in the following chapters:

• The JSP 2.1 expression language (EL) (see Chapter 3) 

• The JavaServer Pages Standard Tag Library (JSTL) (see Chapter 4)

• The JavaServer Faces custom tags (see Chapter 5)

• JSP custom tags (see Chapters 6, 7, and 8)
1
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In this chapter, you’ll take a look at some of the fundamental concepts based around JSP
technology, such as the following:

• The mechanics of a JSP page

• Typical JSP architectures

• Core JSP syntax

• Tag libraries

The aim of this chapter is to help you gain a grounding in the basics of JSP technology 
so you can make full use of the rest of the chapters in this book that build on these basic
principles.

Before You Begin
To begin examining the basics of JSP technology, it’s essential that you have a cursory familiar-
ity with the alternative and complementary presentation-tier web component, Java servlets.
The next chapter will discuss servlets in more detail. 

Java Servlets
As mentioned earlier, servlets can most simply be described as custom web-server extensions,
whose jobs are to process requests and dynamically construct appropriate responses. In prac-
tice, such responses are usually returned in the form of HTML or XML and are the result of a
user making an HTTP request via a web browser. Servlet technology has been an extremely
popular choice for building dynamic web applications such as e-commerce sites, online bank-
ing, and news portals, for reasons of simplicity, extensibility, efficiency, and performance over
alternative technologies such as Common Gateway Interface (CGI) scripts.

Some of the most basic advantages of servlet technology are as follows:

• Simplicity: Servlets are easy to write, and all the complicated threading and request
delegating is managed by the servlet container.

• Extensibility: The Servlet API is completely protocol independent.

• Efficiency: Unlike CGI scripts, the execution of a servlet doesn’t require a separate
process to be spawned by the web server each time.

• Performance: Servlets are persistent, and their life cycle extends beyond that of each
HTTP request.

Servlets are simply Java classes that inherit from the javax.servlet.Servlet interface.
These servlets are compiled and deployed inside a servlet container, which is a Java environ-
ment that manages the life cycle of the servlet and deals with the lower-level socket-based
communication. The servlet container may be part of an existing Java-enabled web server
itself or may be used as a stand-alone product that is integrated with a third-party web server.
The servlet Reference Implementation container, Apache Jakarta Tomcat for example, may be
used as a stand-alone web server or as a separate servlet container inside a larger commercial
web server such as the Apache web server.
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Servlets are typically used for returning text-based content such as HTML, XML, WML,
and so on. However, they are equally at home returning binary data such as images or serial-
ized Java objects, which are often used by further servlets to generate some appropriate
dynamic response.

JSP Under the Hood
A JSP page is simply a regular text file that contains markup (usually HTML) suitable for
display inside a browser. Within this markup are special JSP elements that you’ll learn more
about later. These are used to provide processing logic that enables dynamic content to be
produced on a request-by-request basis.

In JSP terms, any markup that isn’t a JSP element is known as template text, and this really
can be any form of text-based content such as HTML, WML, XML, or even plain text! Of course
the mixture of JSP elements and template text cannot simply be sent to the browser without
any form of processing by the server. We mentioned earlier how JSP technology is an exten-
sion of servlet technology, and so you probably won’t be surprised to learn that each JSP page
is, in fact, converted into a servlet in order to provide this processing logic. Figure 1-1 shows a
JSP page being translated and compiled into a servlet in response to a request. This servlet is
known as the JSP implementation servlet. 

Figure 1-1. The JSP container translates and compiles the JSP source into an implementation
class, which is used to process all requests.

JSP Page Request

<%@ taglib uri=”http://java.sun.com/jstl/core” prefix=”C”%>

<HTML>
<HEAD>

<TITLE>A Very Simple Page!</TITLE>
<HEAD>
<BODY>

Welcome: <c:out value=”$(param.userName)”  />
<BODY>

</HTML>

JSP Transformation
and Compilation

JSP Implementation Servlet

Servlet/JSP Container

JSP Page Response
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A request for a JSP page is handled initially by the web server, which then delegates the
request to the JSP container. The JSP engine will translate the contents of the JSP into its
implementation servlet, which the container then uses to service the request. Usually a JSP
container will check whether the contents of a JSP page have changed before deciding if it
needs to retranslate the page in response to a request. This feature can make on-the-spot
changes to JSP pages easy because the next request will automatically cause a retranslation
and the most up-to-date content will be returned. Compare this with a purely servlet-based
approach, which would require the servlet container to be shut down in order to have the nec-
essary changes made, such as recompilation, testing, and finally, a restart!

Let’s take a closer look at the process of taking a plain JSP text file and turning it into a
dynamic web component; this process is also known as the JSP life cycle.

The JSP Life Cycle
As you’ve just seen, JSP pages don’t directly return content to the client browser themselves.
Instead, they rely on some initial server-side processing that converts the JSP page into the JSP
page implementation class (see Figure 1-2), which handles all requests made of the JSP.

Figure 1-2. Before processing a request, the container determines whether the JSP source is new 
or has changed. If so, the container translates and compiles the JSP page into a servlet class, or
page implementation class, before passing the request to the servlet for processing.

New or
Changed

HTTP Request

JSP

Servlet (Source)

Servlet (Class)Servlet Instance
HTTP Response

No

Yes—locate JSP

JSP translation

JSP compilation

Servlet loaded and initialized

Web Container

CHAPTER 1 ■ THE ANATOMY OF A JAVASERVER PAGE4

513-0 ch01.qxd  9/30/05  4:08 PM  Page 4



As you can see in Figure 1-2, the JSP servlet container decides whether the JSP page has
been translated before. If not, the JSP container starts the translation phase to generate the
JSP page implementation servlet, which is then compiled, loaded and initialized, and used to
service the request. If the JSP container detects that a JSP page has already been translated
and hasn’t subsequently changed, the request is simply serviced by the implementation
servlet that already exists inside the container.

The life cycle of a JSP page can be split into four phases: translation, initialization,
execution, and finalization.

Translation
The first stage in the life cycle of a JSP page is known as the translation phase.

When a request is first made for a JSP page (assuming it hasn’t been precompiled), the 
JSP engine will examine the JSP file to check that it’s correctly formed and that the JSP syntax
is correct. If the syntax check is successful, the JSP engine will translate the JSP page into its
page implementation class, which takes the form of a standard Java servlet. After the page’s
implementation servlet has been created, it will be compiled into a class file by the JSP engine
and will be ready for use.

Each time a container receives a request, it first checks whether the JSP file has changed
since it was last translated. If it has, it’s retranslated so that the response is always generated
by the most up-to-date implementation of the JSP file.

Initialization
After the translation phase has been completed, the JSP engine will need to load the generated
class file and create an instance of the servlet in order to continue processing the initial request.
Therefore, the JSP engine works very closely with the servlet container and the JSP page
implementation servlet and will typically load a single instance of the servlet into memory.
This single instance will be used to service all requests for the JSP page. In a real-world web
application, those requests will most likely happen concurrently, so your JSP page must be
multithreaded.

Prior to the Servlet 2.5 specification, the Java Servlet specification provided two separate
threading models that could be used for a servlet. The models determine whether single or
multiple instances of a servlet can exist. The default threading model for any servlet is the
multithreaded one that requires no additional work for the developer. In this model, the con-
tainer creates only a single instance of the servlet class and sends multiple requests to the
instance concurrently.

To select the single-threaded model for your JSP, you must set an attribute of the page
directive called isThreadSafe to false to serialize all requests to the implementation servlet
behind the JSP:

<%@ page isThreadSafe="false" %>

In the past, containers would support this feature by creating an implementation page
that implements the SingleThreadModel interface. When the implementation page imple-
ments this interface, the JSP container creates multiple instances of the implementation class;
each instance handles a single request at any given time. However, note that the JSP 2.1 speci-
fication advises developers against using isThreadSafe="false" because the Servlet 2.5
specification has deprecated SingleThreadModel.

CHAPTER 1 ■ THE ANATOMY OF A JAVASERVER PAGE 5

513-0 ch01.qxd  9/30/05  4:08 PM  Page 5



■Caution A JSP page that sets the page attribute isThreadSafe to false may contain deprecated 
code in the implementation class. In addition, it does not guarantee thread safety in all cases. Do not rely 
on isThreadSafe="false" to protect your JSP page from concurrency problems.

After the servlet class is loaded, the container initializes the servlet instance with a call 
to an initialization method. For a JSP implementation servlet, that method is the jspInit()
method. As the name suggests, this method is used for initializing the implementation servlet
in an identical manner to the standard servlet init() method, which is used to initialize a
servlet. The behavior of both methods can be regarded as identical, and each is called exactly
once. Although jspInit() is automatically generated during the translation phase, it’s possible
to override this method in the JSP page by using a declaration. The method can be used for
initializing application-level variables or resources, for example:

<%! AppVar appvar = null; %>
<%! 
public void jspInit() {

try {
appvar = initAppVar(...);

} catch (Exception e){
//handle exception

}
} 

%>

Execution
After the web container has loaded and initialized the implementation servlet, the initial
request can be serviced. To service the request, the web container calls the _jspService()
method of the implementation servlet. As we mentioned, each request to the JSP page results
in a separately threaded call to the _jspService() method.

The _jspService() method provides all the functionality for handling a request and
returning a response to the client. All the scriptlets and expressions end up inside this method,
in the order in which they were declared inside the JSP page. Notice that JSP declarations and
directives aren’t included inside this method because they apply to the entire page, not just to a
single request, and therefore exist outside the method. The _jspService() method may not be
overridden in the JSP page.

Finalization
The last phase in the life cycle is the finalization phase. As with the previous two phases, there
is a corresponding method in the implementation servlet for this phase. The method is named
jspDestroy(). Like the destroy() method found in a standard servlet, this method is called by
the servlet container when the page implementation servlet is about to be destroyed. This
destruction could be for various reasons, such as the server being low on memory and want-
ing to free up some resources, but the most common reason is that the servlet container is
shutting down or being restarted.
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After this method has been called, the servlet can no longer serve any requests. Like the
destroy() method, jspDestroy() is an excellent place to release or close application-level
resources when the servlet is shutting down. To do this, simply provide an implementation 
of this method via a JSP method declaration. For example, to release the application resource
you opened inside the jspInit() method, you would use the following:

<%! 
public void jspDestroy() {
try {
appVar.release();

} catch (Exception e){}
appVar = null;

}
%>

JavaServer Pages Best Practices
One of the design goals of this book, apart from the obvious introduction to the concepts and
mechanics of JSP technology, is to teach right from the start the best practices learned from
experience. Of all the best practices that have been established around JSP, one of the most
important suggests that there should be as little Java code as possible embedded inside a JSP
page. Experience has shown us that three key factors benefit from this practice:

• Reusability

• Readability

• Maintainability

Let’s look at each of these and see how their use can benefit your JSP applications.

Reusability
A common goal associated with using any programming language is that of reuse, whether it
involves structuring code inside modules, classes, or some other language-specific construct.
Reusing code leads to increased maintainability and productivity, and higher quality because
changes to such common functionality need to be made in only a single place. Although the
concept of building web-based applications is relatively new, this goal applies equally to
building Java-based web applications with JSP.

Web-based applications are typically built up around the pages or screens from which 
the application is comprised. For example, in an online bookstore, you might build a welcome
page first, followed by a page that shows a list of books, and then a page that displays the infor-
mation about a single book. With the ability to embed Java code inside JSP pages, there can be 
a tendency to simply reuse code on a source-code level by copying and pasting it between JSP
pages. Although this does achieve some reuse, it brings with it a dramatic decrease in the main-
tainability of such code as changes and bugs slowly creep in and around the system. Ideally,
you’re looking for reusability at the class or component level.

Throughout this book, you’ll see many techniques for aiding reusability provided by the
JSP specification—such as JavaBeans components, custom tags, and tag libraries. A tag library
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(commonly known as a taglib) is simply a collection of one or more custom tags that are gener-
ally related in some way. For example, as we said earlier, the JSP 2.0 specification introduced 
a standard tag library known as the JSTL. The JSP 2.1 specification refines the JSTL. The JSTL’s
core library contains tags that solve many of the common and recurring problems encountered
when building JSP-based web applications. After the tags are bundled into a tag library, that tag
library can be reused across the following:

• A single page

• The pages of a web application

• Different web applications

The ability to easily reuse custom tags across more than a single page illustrates the true
potential of tag libraries when building web applications. This is something that you’ll be 
seeing when you examine the best practices for designing and building custom tags in later
chapters.

Readability
Another important best practice is that of readability. Embedding too much Java code in the
page can easily lead to pages that are unreadable as content (typically HTML) is mixed with
JSP tags and Java code wrapped up as scriptlets. In addition to the confusion caused by the
various syntaxes that each of these “languages” uses, one clear problem with embedding Java
code inside JSP pages is that it’s hard to correctly indent your source code. Writing and indent-
ing code is trivial when dealing with regular class files, but trying to correctly indent Java code
that is mixed with HTML and JSP elements is a different story.

Wrapping up reusable functionality as custom tags or JavaBeans components removes this
code from the page, therefore making it cleaner, shorter, and more readable. Also, choosing
appropriate names for your custom tags can make a page more readable by page designers—
those who are responsible for the look and feel of a page rather than the mechanics of how it
works. This, as you’ll see when we talk about some of the best practices associated with custom
tags, is very important and often overlooked.

Maintainability
Having a system that promotes reusability and readability is great, but what does that mean in
the real world? The maintainability of an application is how well the system can be modified
and fixed during its lifetime, which for a given application is typically hard to measure. How-
ever, in looking at any system, several signs help us to identify whether that system will be
easy or difficult to maintain. In reality, this is dictated by reuse and the need to ensure that the
code is as readable as possible—the two goals that custom tags can help you achieve.

JavaServer Pages Application Architecture
All the factors mentioned in this chapter—reusability, readability, maintainability—are
improved by a good design or architecture; therefore, it’s worth ensuring that sufficient time is
taken early in your project life cycle to select the architecture that best suits your environment
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and technologies. Although architecture and design can seem a little daunting at first (espe-
cially when you’re new to the technology and all you really want to do is cut code), with a little
effort you’ll soon start to understand the benefits that are to be gained by using tried and
tested patterns.

As you’re no doubt aware, the Java EE 5 presentation tier consists of several components—
for example, servlets, JSP pages, tag libraries, and JavaBeans—which may be used to create a
presentation layer for a web application. All these components have their relative strengths and
weaknesses, particularly when used in different combinations. Good design, therefore, is con-
cerned not only with selecting the correct component for a task but also with ensuring that the
component is used in the correct manner.

In recent times, two popular web-application architectures have been repeatedly used for
web-application design, and there are strengths and weaknesses to consider with both. Let’s
discuss the simpler of these two architectures first.

Model 1 Architecture
The simplicity of the Model 1 architecture is that each JSP page is entrusted to deal with its
request entirely by itself, thereby generating a response and sending it back to the client, and
for this reason it’s often known as page-centric. Usually such JSP pages will use some form of
model to represent the business logic of the application. JavaBeans components are often used
to model business logic. The JavaBean neatly encapsulates the business logic for reusability
and at the same time keeps the amount of processing logic in the page to a minimum.

Figure 1-3 shows a JSP page entrusted with handling a client request and building an
appropriate response all by itself. It is also using a JavaBean to encapsulate business logic.

Figure 1-3. In a Model 1 architecture, all the application processing occurs in a single tier of the
application.

Each JSP page has the potential to contain a lot of processing logic. However, as long as
the application is relatively small with few pages, the Model 1 architecture is a good choice
because it’s quick and simple to put together. However, such a page-centric architecture can
begin to introduce problems when used with larger, more complex applications. Some of the
more common problems are outlined here.

Browser

JSP/Servlet Container

JSP Page

JavaBean

Data Tier

Data

Data

Request

Response
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Maintainability Problems
Because each JSP page is solely responsible for handling a client request, it will often have 
to directly interact with a business layer. This can result in the application structure being
embodied within the pages themselves. This obviously makes the pages more complicated
and more likely to contain lots of scriptlet code, which ultimately makes them far harder to
maintain.

Reusability Problems
When most of the processing logic is embedded into the JSP pages, it becomes much more
difficult to reuse common functionality because it’s usually implemented using scriptlets.
Often this results in a lot of cutting and pasting of code that isn’t only bad from a reusability
perspective but is also likely to introduce errors and decrease productivity.

Security Problems
Because each JSP page is responsible for handling all of its processing, it’s possible that any
actions that require a user to be logged in or that access password-protected resources such as
databases could end up exposing sensitive information by embedding it in the page. It’s there-
fore important to make sure that any such logic is encapsulated into JavaBeans components
or custom actions to prevent this possible security hole.

Of course it would make far more sense to provide such security controls via a single,
centralized access point, and you will see how the next architecture up for discussion does
exactly this.

Model 2 Architecture (Model-View-Controller)
As you might expect, the Model 2 architecture builds on the Model 1 architecture you’ve just
seen, and it overcomes many of the problems identified earlier.

The Model 2 architecture is a server-side implementation of the popular Model-View-
Controller (MVC) design pattern. This pattern enforces the separation of the way application
data is modeled (hence, the model) from the way it’s presented (the view), and it also requires
a separate component to handle the processing in between (the controller). Separating these
responsibilities into components gives the developer a good opportunity to select the right
type of component for each based on its suitability to the task.

As mentioned earlier, JSP pages are best used for presenting content and aren’t particu-
larly good for providing complex business processing because readability and maintainability
would decline. Servlets, on the other hand, are particularly good components for providing
business processing but aren’t best suited to generating content. Most applications imple-
menting the Model 2 architecture therefore utilize a controller servlet to handle all the request
processing and delegate requests to separate JSP components to provide the presentation,
thereby making the best use of both technologies. Remember that the Model 1 architecture
you saw earlier forced the controller and the view to coexist inside the same component,
which accounts for a lot of its shortcomings.

As you can see in Figure 1-4, all requests made of the web application are handled by a
single controller servlet. Depending on the type of request received, the controller servlet is
responsible for populating the model component with data that it has obtained, usually by
interacting with the business layer. The controller then forwards the request to the JSP view
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component, which constructs a suitable response to the request based on the data stored in
the model component.

Figure 1-4. In a Model 2 architecture, different components handle the application processing
and the presentation of data.

There are, as always, varying versions of this architecture, such as providing multiple con-
trollers to distribute the request-handling functionality across multiple servlets. Although not
recommended, it’s also possible to provide JSP-based controllers and servlet-based view com-
ponents; the choice is yours! Remember that the best designs select a component based on 
its suitability for its job. JSP pages make poor controllers because they’re designed to render
content, whereas servlets are best suited to request processing and computations instead of
generating content.

Whatever components you select, you cannot fail to appreciate how much cleaner this
architecture is than the Model 1 architecture; each component has a definite, well-defined role.

Let’s revisit some of the problems that the Model 1 architecture faced and see how this
new design helps solve some of them.

Maintainability
Many of the maintainability problems associated with the Model 1 architecture were a direct
result of implementing a controller and view as part of the same component: the JSP page.
Because all the business processing and content generation were forced together, the result
was messy pages that could be hard to maintain. By separating your application’s logic from
its presentation by using MVC components, it’s far easier to develop cleaner code that focuses
specifically on the job at hand, resulting ultimately in a more flexible and maintainable
application.

Security
By providing an initial single point of access for potential requests, a servlet-based controller
component is an excellent place to provide some form of authentication. If the user making
the request can pass the authentication mechanism (perhaps a username or password test),
the controller can continue with the request as usual or alternatively forward it to an appro-
priate page (perhaps a login page!) where the error can be dealt with.

Browser

JSP/Servlet Container

Servlet
(Controller)

JSP (View) JavaBean

Data Tier

Data

Data

Request

Response
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Because the controller component is responsible for handling every request, security
checks have to exist in only a single place, and of course any changes to the security mecha-
nism have to be made only once. By implementing your security constraints in a single place,
it’s far easier to take advantage of declarative security mechanisms. Recall that the Model 1
architecture required each page to provide similar security checks by itself, which provides a
significant security hole if the developer forgets to provide it!

Extensibility
One of the best points about the Model 2 architecture is that all the processing logic is central-
ized. No longer does such code have to be placed in a scriptlet located deep within a JSP page,
where it’s so much more difficult to access.

This centralization helps to provide a more component-based solution. By utilizing
JavaBeans components and custom or standard actions, and enabling software components
to be reused and extended, you greatly reduce the chance of making a change that causes a
“ripple” effect to other dependent components.

JSP Fundamentals—Hands On
Before you take an in-depth look at the individual components that compose a JSP page, you
should have a basic idea of how JSP applications are deployed and structured inside a JSP
container.

Basic Deployment
Although all JSP and servlet containers have their own specific deployment processes, gener-
ally the basic techniques are still the same: you copy your web application (JSP pages, servlets,
and static HTML) in a predefined structure into a special deployment directory specified by
the container.

The Java Servlet specification defines a special structure that all web applications must
follow so that servlet/JSP containers know exactly where to find the resources that compose
the web application. Most containers allow web applications to be deployed in one of the fol-
lowing two forms:

• Expanded directory format: The web application in its predefined structure is simply
copied into the container’s deployment directory.

• Web ARchive file (WAR): The web application in its predefined structure is archived
into a compressed WAR before being copied to the container’s deployment directory.

The web-application structure defines the exact locations inside your web applications 
to locate deployment descriptors, HTML and JSP pages, and compiled Java classes as well 
as third-party Java ARchive (JAR) files that are required by your web applications. We won’t
explain the intricacies of the web-application structure because this will be covered in far
greater detail in later chapters. For now we will explain the structure of a minimal but fully
functional web application that you can use to test the simple JSP examples you will learn
about throughout this chapter.
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Because Tomcat 5 for the Apache Jakarta project is the reference implementation of the
Servlet 2.5 and JSP 2.1 specifications and will therefore be featured heavily throughout this
book, it makes sense to base the deployment introduction around the Tomcat 5 container; but
feel free to use the container of your choice. When we refer to Tomcat 5, you can take that to
mean Tomcat 5.0 or Tomcat 5.5. Both versions support the latest servlet and JSP specifications.
However, Tomcat 5.5 has numerous improvements over 5.0; the potential obstacle you face is
that Tomcat 5.5 requires the use of J2SE 5.0 whereas Tomcat 5.0 needs only J2SE 1.4. If you can,
we recommend you use Tomcat 5.5.

If you haven’t yet done so, you should download and install Tomcat 5.0 or 5.5. Tomcat can
be downloaded from http://jakarta.apache.org. The installation is automated for simplicity,
and instructions for installing Tomcat can be found on the Tomcat home page. If you are using
some other web container, such as JBoss, BEA WebLogic, or the Sun Application Server, install
your container according to the documentation with your container.

Notice, in Figure 1-5, that Tomcat has been installed beneath the C:\Program Files\Apache
Software Foundation\Tomcat 5.5 directory, which will be referred to as the %TOMCAT_HOME%
directory from now on. If you have Tomcat installed on Mac OS X or a Unix variant, you will
have a directory structure that is similar, but appropriate for your operating system.

Figure 1-5. A typical Tomcat installation has numerous subdirectories that contain different
parts of the system.

As you can see, there are a fair number of subdirectories and each has a specific purpose.
For example, the bin directory contains all the necessary scripts required to start the con-
tainer, and the conf directory contains all the XML-based configuration files used by Tomcat.
Don’t worry about understanding all the complex configuration files and directory structures;
this exercise is designed to get a working web application for you to test the examples you’ll
see later in the chapter.
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We mentioned earlier that most servlet containers have a special deployment directory in
which developers can place web applications as either WAR files or in exploded directory for-
mat. You may have guessed by now that in Tomcat it’s the %TOMCAT_HOME%\webapps directory
where you’ll be creating the test application ready for deployment. Ignoring the subdirectories
that already exist beneath the webapps directory (yes, they too are web applications in case
you were wondering!), first create a directory to house the web application called test and
then another directory inside this one called WEB-INF. Now you have the structure shown in
Figure 1-6.

Figure 1-6. The Tomcat installation with the newly created test and WEB-INF subdirectories

This standard web-application structure is defined in the Servlet specification. This struc-
ture is also used as the format for the contents in WAR files. We refer to this structure as the
exploded directory format.

As you may be aware, all web applications must have a deployment descriptor in order to
work, and yours is no different. Copy and paste the minimal deployment descriptor in Listing
1-1 into a file called web.xml and save it beneath the WEB-INF directory you just created.

Listing 1-1. web.xml

<?xml version="1.0"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
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xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

</web-app>

A point worth remembering is that the name of the test directory that you’re using to
house the web application is known as the context of the web application; you’ll need to be
aware of this context to request the resources of your test web application. You’ll see this in
action shortly.

Now that you’ve set up the required web-application structure, let’s create a dynamic web
component (that’s a JSP page to you and me!) that will return the current time of day along
with a greeting. Copy Listing 1-2 into a file called %TOMCAT_HOME%\webapps\test\date.jsp.

Listing 1-2. date.jsp

<html>
<body>
<h2>Greetings!</h2>
<p>The current time is <%=new java.util.Date()%> precisely</p>

</body>
</html>

Again, don’t worry about understanding the syntax of this JSP; you’ll learn all about JSP
syntax later.

The next step is to start your server (if it isn’t already running). With Tomcat 5.0 and ear-
lier versions, you can start the server by using a script or a menu option. With Tomcat 5.5 for
Microsoft Windows, the startup scripts have been removed and you will start Tomcat from
the menu.

With Tomcat 5.0 and earlier, you can start Tomcat by running the %TOMCAT_HOME%\bin\
startup.bat script (or startup.sh if running Tomcat on Linux or Solaris). When Tomcat is
running, you should see a prompt with messages like those shown in Figure 1-7.

Figure 1-7. When starting Tomcat by using a script, you will see output in the console window.
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If you are starting Tomcat from the Windows Start menu, select the Monitor Tomcat
option from the Apache menu item. After the monitor has started, right-click the monitor 
icon in the system tray and select Start Service from the menu.

To test that Tomcat is running successfully, load the Tomcat welcome page by opening a
web browser and typing the following link:

http://localhost:8080

Note that this assumes you installed Tomcat on its default port 8080, so you should
change it as needed.

Figure 1-8 shows the Tomcat welcome page, which indicates that all is well.

Figure 1-8. The Tomcat welcome page

If for some reason you don’t see this welcome screen, make sure that you have Tomcat
running and are accessing the correct port. Consult the Tomcat documentation if problems
persist.

Now you’re at last ready to access the test web application. Do this by typing the follow-
ing URL:

http://localhost:8080/test/date.jsp
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Notice how you use the context of the web application (test) to inform the servlet con-
tainer that it’s your application whose date.jsp file you wish to access. You should now see
output similar (not the same though—remember it’s dynamic!) to the screen shot shown in
Figure 1-9.

Figure 1-9. The response from date.jsp

That’s it; congratulations! Creating and deploying a JSP web-based application wasn’t so
hard after all, was it? For the remainder of this chapter, you’ll see lots of JSP code examples
that you’re encouraged to copy and paste into JSP files beneath the webapps\test directory
(and change the link accordingly) to see the code in action. Note that you may need to stop
and start Tomcat to see some changes in action.

JavaServer Pages
As mentioned earlier, the sole purpose of JSP technology is to produce dynamic, web-based
content. This capability is implemented by embedding programmatic logic among template
data (usually markup such as HTML, XML, and so on) which together produces the dynamic
content on a request-by-request basis. This programmatic logic may be classified into the fol-
lowing JSP elements:

• Scripting elements

• Directives

• Action elements

In a moment you’ll look at each of the elements so you can see how they combine to
produce the dynamic content required by today’s web applications. First let’s look at the
template text.
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Template Text
As we said earlier in the chapter, any non-JSP code located inside a JSP page is known as
template text. Template text can take any form as long as it’s text based. The most common
form of template text is markup such as HTML or XML. For example, if your web design team
were to develop an HTML page that you were required to convert into a JSP page in order to
add some form of dynamic processing, then all the HTML markup would be referred to as
template text (see Listing 1-3).

Listing 1-3. template_text.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ page import="com.apress.projsp.CalendarBean"%>

<html>
<head>
<title>My JSP Example</title>
</head>
<body>
<jsp:useBean id="cal" class="com.apress.projsp.CalendarBean"/>
<c:set var="hour" value="${cal.hour}" scope="request" />

<c:choose>
<c:when test="${hour > 0 && hour <=11}">
Good Morning!

</c:when>
<c:when test="${hour >= 12 && hour <=17}">
Good Afternoon!

</c:when>
<c:otherwise>
Good Evening!

</c:otherwise>
</c:choose>

</body>
</html>

This is a JSP page that dynamically produces a greeting depending on the time of day.
(This JSP page won’t compile and run without the CalendarBean class. We will deploy this JSP
page with the CalendarBean class in Chapter 4.) For now, don’t worry about understanding the
syntax of the various JSP elements but notice that the bolded static HTML is referred to as
template text. The reason for this term is simply that a JSP page can be thought of as a “tem-
plate” for producing some output. It’s the JSP logic embedded inside this template text that is
responsible for producing the output based upon this template.

During the translation phase, all the template text found in the original JSP page is con-
verted into Java statements in the page implementation servlet. The Java statements simply
output the template text in the correct order as part of the response.
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Scripting Elements
Scripting elements are used within a JSP page to manipulate objects and perform computa-
tions that enable the generation of dynamic content. Scripting elements can be classified into
the following categories:

• Comments

• Declarations

• Scriptlets

• Expressions

• Expression language expressions

We will discuss each scripting element in turn.

Comments
JSP comments are a good way of explaining any complicated logic that may arise for whatever
reason—perhaps a comment could be used to flag a piece of scripting code to be simplified at
a later date with a custom tag. Alternately, comments provide non-Java-speaking HTML users
or web designers some clues as to what a piece of “magic” JSP code does.

JSP comments may be declared inside a JSP page as follows:

<%-- This is a JSP comment --%>

Comments in JSP pages get stripped out during the translation phase and aren’t sent to
the client as part of the response. HTML comments, on the other hand, such as the one shown
next, do get sent to a client’s browser, and any client can view the comments by using the View
Source options that most modern browsers provide:

<!-- This is an HTML comment -->

Having JSP comments stripped and not part of a client response is beneficial because it
not only keeps the size of the response as small as possible, thereby aiding performance, but
also removes clues about the technology used to implement a web-based application that a
hacker could target.

There is of course no reason why JSP expressions and HTML comments cannot work
together:

<!-- HTML comment generated <%= new java.util.Date() %> -->

You’ll learn the meaning of this JSP expression shortly, but suffice it to say the previous
comment produces the following in the content returned to a client:

<!— HTML comment generated Fri Jan 03 12:37:09 GMT 2005 -->

Declarations
JSP pages allow both methods and variables to be declared in a similar manner to the way in
which they’re declared inside standard Java classes. As with standard methods and variables,
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after they are declared inside a JSP page, they’re available to subsequent scriptlets and expres-
sions and so on for reference.

During the translation phase, any JSP declarations (methods or variables) found inside
the page are actually created outside the _jspService() method in the JSP page implementa-
tion servlet and therefore are available to any scripting elements throughout the page.

JSP declarations must be placed between <%! and %> declaration delimiters. The general
form of a declaration is shown here:

<%! declaration; [declaration;]+...%>

For example:

<%! Date now = new Date(); %>

<%! 
private int calculate(int a, int b) {
...

}
%>

The previous examples demonstrate two simple JSP declarations. The first generates 
a java.util.Date instance that is available to the rest of the JSP page (and therefore to the
servlet), whereas the second declares a stand-alone method that again is available to the rest
of the page. 

■Caution When declaring a page-level variable via a JSP declaration, you should ensure that its access is
thread-safe. Multiple threads can execute the same servlet (JSP implementation class) simultaneously, and
any page-level variables are accessible by each thread.

Scriptlets
Quite simply, scriptlets are small blocks of source code contained within the <% and %> delim-
iters that can be used to provide programming-style language functionality around a page’s
content, thus making their output dynamic.

For example:

<%   
User user = (User)request.getAttribute("User");
if (user != null) { 

%>
Welcome, you have successfully logged in!

<% 
}

%>
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You can see from the previous example how a simple piece of dynamic content can be
created with a scriptlet. If an object attribute called user exists in the request, a welcome mes-
sage is generated; otherwise, one isn’t! Admittedly, this piece of dynamic content isn’t the most
complex, but hopefully you can see how scriptlets add logic between the markup of your JSP
page to control the output.

The supported scripting languages available for use inside scriptlets are defined by the
page directive’s language attribute. In all specifications, from JSP 1.0 to the current JSP 2.1, 
the only defined value for this attribute is Java. Unlike declarations, all scriptlet code will be
inserted into the _jspService() method of the generated servlet, which is used to handle the
request and generate the response. When multiple scriptlets are included in any page, they’re
included into the compiled servlet in the order in which they appear in the JSP. Unlike JSP 
declarations, any variables declared in a scriptlet aren’t available to the rest of the JSP page
because they’re treated as local variables inside the _jspService() method.

When JSP 1.0 first arrived, scriptlets were quickly adopted as the most popular way of
adding dynamic features to JSP. Unfortunately, scriptlets became too popular and soon JSP
page authors were embedding too much business logic among their markup. This caused sev-
eral problems.

In multideveloper projects, it’s quite common for a web designer with no Java or JSP skills
to produce an HTML UI for an application that is then passed to Java developers to convert
their work into JSP by adding dynamic content and hooking together business logic along the
way. This caused delays and frustrations in the JSP 1.0 days due to the dependencies formed
between the UI and Java developer. Also problems arose because UI designers would struggle
to maintain their pages, as they would need to understand the scriptlet code surrounding
their markup properly in order to change it. On top of these difficulties, adding too many
scriptlets to a JSP file also makes it incredibly difficult to read and hence maintain. Anyone
who has had to spend hours debugging a JSP page only to find a closing brace is missing will
testify how much more difficult it is to fix a page with too many scriptlets in it.

Thankfully, the early experiences of UI and JSP developers haven’t been wasted, and other
methods are now considered better alternatives. For example, using standard JSP actions to
manipulate JavaBeans (which contain business logic) and encapsulating logic inside custom
actions (also known as custom tags) are two alternatives that solve many of the problems
mentioned earlier. Most noticeably, both solutions use XML-style tags that can be used in har-
mony with the tools of a UI designer.

JSP 2.0 introduced another two candidates that further facilitate scriptless JSP code. The
first of these new features comes in the form of the JSTL, which provides standard actions for
many of the simple tasks required of a modern dynamic web application. Second, for the first
time an expression language (EL) is available, which can be used to help reduce or even erad-
icate scriptlets.

As we mentioned at the start of this chapter, further information on JavaBeans, JSTL, and
custom actions can be found later in this book. For now you just need to understand what
scriptlets can do along with their limitations.

Expressions
Expressions are similar to scriptlets, but as their name suggests they evaluate a regular Java
expression and return a result. This result must be a string or be convertible to a string; other-
wise, an exception will be raised during the translation phase or at runtime. Expressions are
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evaluated by the JSP implementation servlet and are returned to the client as part of the
response.

As with the other tag types, expressions must be placed between <%= and %> expression
delimiters so that the JSP engine is aware of the developer’s intent to return the value of the
expression in the response. The general syntax is as follows:

<%= expression %>

Two simple JSP expressions can be seen here. They could be part of any regular JSP page
that generates nonstatic HTML.

<h1>Welcome Back : <%= user.getName() %></h1>

<b>Today's date is <%= new java.util.Date()%></b>

Apart from producing dynamic content as part of the client response, JSP expressions can
be used to pass request-time parameters and values to other JSP actions that may appear on
the page. You’ll look at an explanation of this later in this chapter, and again when we look at
JSP standard actions (Chapter 4) and custom actions (Chapters 6 and 7).

■Note Unlike declarations and scriptlets, JSP expressions don’t require a closing semicolon (in fact they
won’t compile with one) because they evaluate the result of a single expression.

Expression Language Expressions
JSP 2.0 introduced an EL that is based on ECMAScript and XML Path Language (XPath), and
that has been designed to be simple to use and more user-friendly than Java.

The new EL has built-in support for JavaBean access and manipulation, collections of
objects, and automatic type conversion, to name but a small part of its extensive feature list. 
If you’re familiar with JavaScript, you should have no problem understanding the syntax of 
the EL, which insists that all expressions must be enclosed within ${ and } delimiters.

Unfortunately, another Java technology, JavaServer Faces (JSF), was implementing an
expression language at approximately the same time as JSP 2.0, and the two versions are
incompatible in some respects. JSP 2.1 unifies the two expression languages and provides an
additional syntax for expression language statements, allowing the use of #{} to enclose
expression language statements.

EL expressions can be used in any attribute that accepts a runtime expression, usually a
standard or custom action, or even in plain template text. The addition of the EL further facili-
tates the writing of scriptless JSP pages, that is, pages that don’t contain any Java scriptlets,
expressions, or declaration elements.

Although it’s the subject of Chapter 3, here are a couple of examples to give you a flavor of
the new EL:

${anObject.aProperty}

<c:if test="${user.salary > 10000}" >
...

</c:if>
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You can see from the first example just how simple it is to access the property of any
JavaBean object, with no Java knowledge required at all! The second example demonstrates
one of the core actions from the JSTL that is used to provide conditional processing of JSP
code. Here an EL expression is used to provide the Boolean test for the action.

JSP Implicit Objects
All JSP scripting elements have access to a number of useful objects that are provided by the
JSP container and are known as implicit objects. Each of these implicit objects are classes or
interfaces as defined by either the Servlet or JSP specifications and are described in greater
detail in this section.

request
The most notable of the implicit objects is the request object, which is an instance of the
javax.servlet.http.ServletRequest interface. The request object provides access to all the
available information about the user request (such as request parameters and headers) and
may be used in exactly the same way that the HttpServletRequest parameter is used in the
service() method of a servlet.

Let’s consider an example. Imagine a simple JSP page that expects a single-request
parameter called userName and constructs a personalized response to the user:

<html>
<head><title>A Simple Example</title></head>
<body>
<h2>Hello <%=request.getParameter("userName")%>, Have a nice day!</h2>
</body>
</html>

This simple JSP page extracts a request parameter called userName from the implicit
request object and constructs an appropriate greeting. To send a request parameter to a JSP
page like the one outlined previously, either use an HTML form or add the parameter to the
query string of your request as follows: 

http://localhost:8080/test/Request.jsp?userName=Dan

response
Like the request object seen earlier, there’s also an accompanying implicit response object
that represents the current response to be returned to the user. The response object is an
instance of the javax.servlet.http.HttpServletResponse interface. Again, this object can be
used in exactly the same way as the HttpServletResponse parameter received by the service()
method of a servlet.

out
The implicit out object represents an instance of the javax.servlet.jsp.JspWriter class that
can be used to write character data to the response stream in a similar manner to that seen by
the java.io.PrintWriter class. Although methods provided by the JspWriter such as print()
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and println() can be used to write text to the body of the response, it’s usually sufficient to
rely on plain template text and JSP action elements instead of explicitly writing to the out
implicit object.

session
The implicit session object provides a reference to an implementation of the client’s individ-
ual javax.servlet.http.HttpSession object, which can be used to store and retrieve session
data. Although HttpSession can be used explicitly, it should be noted that several action ele-
ments that interact with the session are available and can be used instead.

config
The config object simply provides the JSP developer with access to the ServletConfig object
that is used by the web container to configure the JSP page. The ServletConfig interface is
most commonly used to provide access to any initialization parameters that have been config-
ured for the JSP page via the deployment descriptor of the web application.

application
The implicit application object provides a reference to the javax.servlet.ServletContext
interface of the web application. The ServletContext object is used by a web container to 
represent an entire web application, and therefore any data that is stored inside it will be
available to all resources included in the application.

As with the session object, several action elements exist that interact with the ServletContext
so it may not be necessary to interact directly with the object itself.

page
The implicit page object references an instance of the JSP’s page implementation class and is
declared of type Object. The page object is rarely used in scripting elements and simply serves
as a link between the JSP page and its implementing servlet.

pageContext
The pageContext object is slightly different in its functionality from the rest of the available
implicit objects. A pageContext instance provides the JSP developer with access to all the avail-
able JSP scopes and to several useful page attributes, such as the current request and response,
the ServletContext, HttpSession, and ServletConfig to name but a few.

Perhaps the most useful piece of functionality provided by the pageContext variable is its
ability to search for named attributes across multiple scopes. Therefore, if you were unsure in
which scope a particular attribute is located, the pageContext can be used to traverse all avail-
able scopes until the attribute is found.

The pageContext variable provides this cross-scope functionality because it exists at a
level of abstraction higher than the lower-level JSP implementation classes. The JSP container
will create a new, unique instance of this class for each request received and assign it to the
pageContext variable.
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exception
The implicit exception object is available only to those JSP pages that declare themselves as
error pages by using the following page directive. (You’ll learn more about directives shortly!)

<%@ page isErrorPage="true" %>

The exception object itself is an instance of java.lang.Throwable and will represent a run-
time error that occurred during the request process.

Any scripting elements inside a JSP page that reference the implicit exception object when
that page hasn’t been declared as an error page will cause a fatal error at translation time.

JSP Directives
Directives are used for passing important information to the JSP engine. Although directives
generate no output, they provide a powerful mechanism for providing page-level information
that is typically used during the compilation and translation phases.

JSP page authors have the following three types of directives at their disposal:

• page directives

• include directives

• taglib directives

Each type of directive provides different information to the JSP engine or signifies some
required behavior of the generated servlet. The information contained inside a directive is
totally independent of any user request and is of use only to the JSP engine. All three directive
types must be declared between <%@ and %> directive delimiters and take the following form:

<%@ directive {attribute="value"}* %>

Generally speaking, directives should be placed at the top of the JSP page; however, the
include directive, which you’ll see later, is an exception to this rule. Let’s examine each direc-
tive type in turn.

The page Directive
The first directive type is the page directive, which is used to define any page-dependent prop-
erties that a JSP page may have, such as library dependencies, buffering, or error-handling
requirements.

The syntax of a page directive is as follows:

<%@ page page_directive_attr_list %>

where the page_directive_attr_list is used to define the name of any page attribute along
with its value in the form attributeName=attributeValue.

Each page directive applies to the entire compilation unit (that is, the JSP page in which
the page directive appears, plus any included JSP pages). Although multiple page directives
may occur, it should be noted that each attribute can occur only once in the page with the
exception of the import attribute.
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Table 1-1 shows the permitted attributes and their possible values as defined by the
page_directive_attr_list.

Table 1-1. Attributes for the page Directive

Attribute Permitted Value Description

language Java The scripting language used in scriptlets,
expressions, and declarations in the JSP.
Currently, JSP 2.1 supports only a value of Java,
and any other value would cause a fatal
translation error.

extends className The name of a fully qualified Java class that 
will form the superclass of the JSP page’s
implementation servlet.
This attribute should not be used lightly because
its use prohibits the JSP container from using its
own specially optimized classes.

import importList Indicates the classes available for use within the
scripting environment. Any import values must
be fully qualified Java class names and result in 
a standard Java import statement in the page
implementation servlet.
Note that an import attribute may be a fully
qualified package name followed by a “.*” 
or a list of comma-separated classes.
The default import list is java.lang.*,
javax.servlet.*, javax.servlet.jsp.*, and
javax.servlet.http.*.

session true|false Indicates that the page requires an HttpSession
object. If a value of true is provided, an implicit
scripting variable named session, which
references the current HttpSession object, 
is available to the page.
If a value of false is used, any references to 
the implicit session variable will cause a fatal
translation error.
The default value is true.

buffer none|sizekb Specifies the buffering model for the initial
JspWriter used to handle the response generated
by the page.
A value of none indicates no buffering is required
and all output is written immediately. A value of
nkb, where n is some positive integer (e.g., 16kb),
is the size of the buffer. The size of the buffer can
be declared only in kilobytes, and the kb suffix is
required. If a buffer size is specified, all output is
buffered with a buffer not smaller than the one
specified.
The default is to buffer output with a buffer of at
least 8 KB (the actual size is container
dependent).
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Attribute Permitted Value Description

autoFlush true|false Indicates whether the output buffer should be
flushed automatically when full (specified by a
value of true) or whether an exception should be
raised indicating buffer overflow (specified by a
value of false).
Note that it’s illegal to set autoFlush=true when
buffer=none. The result is a translation-time
error.
The default value is true.

isThreadSafe true|false Indicates the threading model to be used by the
web container when dispatching requests to the
page implementation servlet.
A value of true ensures that the JSP container
may choose to dispatch multiple requests to the
page simultaneously. A value of false indicates
that the JSP container must serialize multiple
requests to the page one at a time.
Note that if a value of true is passed, the JSP page
author must ensure that access to any shared
variables is synchronized to protect thread safety.
The default value is true.

info info_text Can be used to provide any arbitrary string,
which is returned via a call to the page
implementation servlet’s getServletInfo()
method.

isErrorPage true|false Indicates whether the current page is intended 
to be an error page, which may be referenced 
by the errorPage attribute of another JSP page.
If a value of true is specified, an implicit 
scripting variable exception is made available
that references the offending Throwable from
another JSP page.
The default value is false.

errorPage error_url Defines the URL to a resource that any throwable
objects not caught by the page implementation
are forwarded to for error processing.
When an error page for a web application is
defined in its deployment descriptor (web.xml),
the JSP’s error page is tried ahead of the one
defined by the deployment descriptor.

contentType ctInfo Defines the character encoding for the JSP page
and its response as well as the Multipurpose
Internet Mail Extensions (MIME) type of the
response.
The default value for the type is text/html and for
the charset it’s ISO-8859-1.

pageEncoding peInfo Defines the character encoding for the JSP page.
The default value is ISO-8859-1.

Continued
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Table 1-1. Continued

Attribute Permitted Value Description

isELIgnored true|false Defines whether the EL expressions are
evaluated for the JSP page.
If true, any EL expressions are simply
ignored by the JSP container.
The default value is false.

DeferredSyntaxAllowedAsLiteral true|false Indicates whether the character sequence
#{ is allowed when used as a string literal
in this page and translation unit. If false
(the default value), a translation error
occurs when the character sequence is
used as a string literal.

trimDirectiveWhitespaces true|false Indicates how whitespaces in template
text should be handled. If true, template
text that contains only whitespaces is
removed from the output.
The default is not to trim whitespaces.

The following are some examples of the page directive in action:

<%@ page language="Java" %>

Here the scripting language to be used on the page is set to Java (the only permitted
value).

<%@ page import="java.util.Date, java.text.*" %>

The java.util.Date class, along with all the classes from the java.text package, are avail-
able for use on the page.

<%@ page isThreadSafe="false" buffer="20kb" %>

Notice that it’s possible to provide multiple attributes in the one page directive; here the
JSP container is advised that multiple requests may not access the page simultaneously and
that the page buffer should not be smaller than 20 KB.

The include Directive
You’ve just seen how the page directive can be used to pass information to the JSP engine
during the translation phase, to control how the page implementation class is generated. The
include directive also executes at translation time and enables the contents of a separate
resource to be statically merged inside the original page, thus radically affecting the gener-
ated servlet.

After translation, the generated JSP servlet contains the content and logic as defined by
the two separate resources, in the order that they were specified in the original JSP. This makes
it seem as though they were from a single JSP file.

The following is the syntax for the include directive:

<%@ include file="relativeURL" %>
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The directive accepts a single file attribute that is used to indicate the resource whose
content is to be included in the declaring JSP. The file attribute is interpreted as a relative
URL: if it starts with a slash, it’s interpreted as relative to the context of the web application
(namely a context-relative path); otherwise, it’s interpreted as relative to the path of the JSP
page that contains the include directive (namely a page-relative path). The included file may
contain either static content, such as HTML or XML, or another JSP page.

For example:

<%@ include file="/copyright.html"%>

As you can see from the previous example, a static HTML file located at the root of the
web-application context will be statically included in the JSP page that declares the directive.
The included file in this case contains important legal copyright information that must be
included on all pages of a web application. The include directive is an excellent mechanism for
reusing a predefined component, such as the copyright.html file, to save the duplication of
code on each page. This makes the JSP pages smaller, easier to read, and more maintainable, as
changes need to be applied in only one place but are reflected throughout the application.

■Caution When using the include directive, remember that the combined contents of the original JSP
page and all its included resources are translated into the same implementation servlet. Therefore, the origi-
nal JSP page will share its scripting variables and declarations with those inside the included resources, and
any duplication of variable or method names will result in a fatal JSP translation error, because the merged
file won’t be syntactically correct.

The include directive is slightly different from the other JSP directives, which are typically
declared only once at the top of each JSP page. A JSP page may contain any number of include
directives at any position in the page to indicate the exact positions where the content from
the included resource should be inserted. Therefore, the include directive is well suited to
implement simple template mechanisms that are so commonly used in today’s modern web
applications. This enables all the commonly used resources of a web application (such as a
header, footer, or navigation page) to be encapsulated as separate components (for example,
JSP pages or static HTML pages) included throughout the application.

Let’s consider a real-world example of such a templating mechanism that utilizes the
include directive to provide a consistent page layout for a web application.

Consider the following two JSP pages, Header.jsp (Listing 1-4) and Footer.jsp (Listing 1-5).

Listing 1-4. Header.jsp

<html>
<head><title>A Very Simple Example</title></head>
<body style="font-family:verdana,arial;font-size:10pt;">
<table width="100%" height="100%">
<tr bgcolor="#99CCCC">
<td align="right" height="15%">Welcome to this example...</td>

</tr>
<tr>
<td height="75%">
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Listing 1-5. Footer.jsp

</td>
</tr>
<tr bgcolor=" #99CC99">
<td align="center" height="10%">Copyright ACompany.com 2005</td>

</tr>
</table>

</body>
</html>

Header.jsp declares the starting elements of an HTML table that is to be 100 percent of
the page size and has two rows, whereas Footer.jsp simply declares the closing elements for
the table. Used separately, either page will result in partial HTML code that will look strange to
a user, but when they’re combined by using the include directive, it’s easy to create consistent
pages as part of a web application.

Let’s see just how simple this basic template mechanism is to use. Listing 1-6 shows a JSP
page that uses the include directive.

Listing 1-6. Content.jsp

<%@ include file='./Header.jsp'%>
<p align="center">The Content Goes Here...!!!</p>
<%@ include file='./Footer.jsp'%>

Content.jsp looks like a simple page with only three lines of code: the two include direc-
tives and the actual body of the page. Notice how the body of the page is between the two
directives. This ensures that all of this page’s body content is included inside the table declared
in Header.jsp.

To run this example, simply copy the three files Content.jsp, Header.jsp, and Footer.jsp
beneath the test web application directory you created earlier and go to the following URL:

http://localhost:8080/test/Content.jsp

You should see something like Figure 1-10.

Figure 1-10. A common header and footer can easily be included in all JSP pages.
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To demonstrate just how effective this basic template mechanism is, use Listing 1-7 to
construct another page (MoreContent.jsp) and see how easy it is to maintain the same look
and feel.

Listing 1-7. MoreContent.jsp

<%@ include file="./Header.jsp"%>
<p align="center">Here is some more content...!!!</p>
<%@ include file="./Footer.jsp"%>

To open it, do exactly the same as you did for the Content.jsp page, only this time point to
the following URL:

http://localhost:8080/test/MoreContent.jsp

You should see something like Figure 1-11.

Figure 1-11. This JSP page uses the same common header and footer. Thus, no matter how many
pages are in your application, a change to only two files will change the header and footer for all
the pages.

This example demonstrates how useful the include directive is for constructing compo-
nent-based web applications that share a consistent look and feel throughout, are extremely
maintainable, and do not suffer from problems caused by code duplication.

The taglib Directives
A tag library contains a collection of actions (also known as tags) that can be grouped together
to perform some form of logic. These actions are XML based, so their use is considerably easier
for a non-Java-speaking UI designer. Of course another major benefit is that they can encapsu-
late large amounts of programmatic logic into a single line of code, which is a much better
solution in terms of readability and maintainability and of course reuse, when compared to 
the ugly scriptlet-based approach you saw earlier.
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Tag libraries come in two flavors these days. The first is custom tag libraries, which have
generally been put together by a development team or acquired from another team or project
or even the Internet—and as of JSP 2.0, from the JSTL, which contains a set of useful actions
that are applicable in some form to almost every web application in use today.

To use a custom tag library, the web container needs to be made aware of specific informa-
tion about the library itself. A special file called a tag library descriptor (TLD) is used for this
purpose. The XML-based TLD file is used to provide general descriptive information about the
custom tag library, such as a description of its usage and the JSP version that the tag supports.
More important, the TLD file contains essential information about each of the custom actions
or tags that are included inside the tag library, such as which attributes are permitted by which
tags, whether the tags accept body content, and so on.

After the JSP container is made aware of the TLD for a particular custom tag library, the JSP
developer can use any of the tags declared inside the library. Like custom Java classes (in fact,
any class that doesn’t reside in the core java.lang package), tag libraries must be imported into
the page before they can be used. You’ve seen that Java classes are imported into a JSP page by
using a JSP page directive, and in a similar fashion, tag libraries are imported by using the
taglib directive.

The syntax for the taglib directive is as follows:

<%@ taglib {uri="/tagLibraryURI" | tagdir="/WEB-INF/tags/dirname"
prefix="tagPrefix" %>

The attributes are shown in Table 1-2.

Table 1-2. Attributes for the taglib Directive

Attribute Description

uri Can be either an absolute or a relative Uniform Resource Identifier (URI) that
identifies the TLD, and therefore, the tag library that is associated with the prefix.

tagdir Indicates this prefix is to be used to identify tag extensions installed in the 
WEB-INF\tags directory or a subdirectory. An implicit tag library descriptor is used.
A translation error must occur if the value does not start with WEB-INF\tags. A
translation error must occur if the value does not point to a directory that exists. 
A translation error must occur if used in conjunction with the uri attribute.

prefix Indicates a uniquely identifiable string, which is used in the <prefix:tagname>
declaration to identify the particular tag in use.
Note that prefixes that start with any of the following aren’t allowed because 
they’re reserved by Sun: jsp, jspx, java, javax, servlet, sun, and sunw.
All prefixes must follow the naming convention as specified in the XML
namespaces specification. 
The current version of the JSP specification doesn’t support empty prefixes.

There are, in fact, four ways that the taglib directive can be used to make a tag library
available to JSP page authors, and you’ll see each in turn.

Option 1—Absolute URI

The first option for using the taglib directive passes an absolute value in the uri attribute that
represents the location of the TLD file:

<%@ taglib uri="/WEB-INF/tlds/myTaglib.tld" prefix="myPrefix" %>
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The location of the TLD file is explicitly given by the uri attribute. In this example, the
WEB-INF\tlds\myTaglib.tld file describes the tag library, and any references to any of the tags
inside this library must be prefixed with myPrefix to distinguish the tag from any other tag
library that may be available.

For example, if a tag named displayImage were included in the library, its use would look
something like this:

<myPrefix:displayImage file="logo.jpg" />

The taglib directive is typically used in this form during development, when the loca-
tions of resources, such as images and TLDs, haven’t been finalized. Perhaps the application
hasn’t been packaged into a WAR file and still exists in exploded directory format; therefore, an
absolute value for the TLD file is usually the most convenient.

Leaving your taglib directives in this form after the development process has finished is
perhaps not the most flexible option available. Every tag library used in the application would,
therefore, have its TLD location hard-coded into the JSP source. If the location of a TLD had to
change for some reason, each JSP page would have to be altered, which could potentially be a
long-winded, error-prone exercise.

Option 2—Relative URI

The second form of the taglib directive uses a relative URI to indicate the location of the TLD
file. If a relative URI is to be used, a relative mapping must be configured in the web applica-
tion’s deployment descriptor by using the <taglib> element. So, to use a relative URI in the
taglib directive, we would provide a mapping in the deployment descriptor as shown in this
example:

<webapp>
<taglib-uri>/myTaglib</taglib-uri>
<taglib-location>/WEB-INF/tlds/myTaglib.tld</taglib-location>

</webapp>

The <taglib-uri> element provides an alias to the TLD at the location given by the
<taglib-location> element. If the deployment descriptor for a web application declared the
relative URI as shown, any JSP pages contained in the web application could import the avail-
able tag library by using the /myTaglib URI:

<%@ taglib uri="/myTaglib" prefix="myPrefix" %>

The taglib directive no longer explicitly declares the location of the TLD file, but instead
relies upon the existence of a relative URI mapping in the application’s deployment descriptor.
This form of the directive is the most popular because of the flexibility it provides. For exam-
ple, by enabling the relative URI mapping to be set in the deployment descriptor, the location
of the TLD files can effectively be set at deployment time, and any changes to the location can
be made very simply in the one place.

Option 3—Packaged JAR

The third use of the taglib directive provides an absolute path to an external JAR file. As the
name suggests, a JAR file is simply a way of packaging compiled Java classes and resources
into a compressed archive file that can be placed into your application’s class path for use.
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Often when you use a third-party software component, it will be distributed as a JAR file. JAR
files are created by using the %JAVA_HOME%\bin\jar.exe utility. Further information on its usage
may be found by simply running the jar command without any parameters.

As mentioned, the taglib directive can accept an absolute path to a JAR file as the value
of the uri attribute. This form requires that the JAR file contain all the tag handler classes as
well as the TLD file, which must be located inside the META-INF directory of the JAR file.

This particular form of packaging is most commonly used when tag libraries are being
used from external sources, perhaps when they’re purchased from a third party or from
another application. It provides a good way to encapsulate all the necessary aspects of a 
tag library into one distributable component.

Let’s look at an example:

<%@ taglib uri="/WEB-INF/lib/myTaglib.jar" prefix="myPrefix" %>

The entire tag library is stored in a single component inside the WEB-INF\lib directory,
where it will be added to the web application’s class path, from where it’s available.

The one downside to packaging your tag libraries into an external JAR file is that the TLD
file is difficult to access. Any change to the TLD elements requires the JAR to be extracted first
and then repackaged. Of course, the advantage of this method is that your tag libraries are
self-contained and easy to distribute and reuse.

Option 4—Tag Files

The final use of the taglib directive provides a path to a directory that contains tag files. Tag
files are special JSP files that end with the suffix .tag or .tagx. They can contain the same
kinds of JSP elements as in a JSP page, with some exceptions. In other words, a tag file imple-
ments a tag by using JSP code rather than Java code. The container creates an implicit TLD for
the files contained in the directory and makes the custom tags available to the JSP author. See
the “Tag Files” chapter in the JSP 2.1 specification for more details on syntax and usage of tag
files.

Action Elements
We mentioned earlier how difficult it is to read and maintain JSP pages that are full of scriptlet
code. Not only are such pages “ugly,” but they’re almost meaningless to a web developer
unless that developer also happens to be a Java developer who may have written the scriptlet
code in the first place.

A better alternative is to use existing actions (tags) provided by a tag library that encapsu-
late pieces of functional logic. These actions make JSP pages much cleaner and more readable.
Also, because they’re XML tag-based, they are usable by a non-Java UI developer. In JSP 2.1
there are three types of action elements:

• Standard actions

• Custom actions

• JSTL actions

Let’s take a brief look at each one.

CHAPTER 1 ■ THE ANATOMY OF A JAVASERVER PAGE34

513-0 ch01.qxd  9/30/05  4:08 PM  Page 34



Standard Actions
The JSP standard actions have been in existence since the first release of the JSP 1.0 specifica-
tion and provide the JSP page author with a (relatively small) selection of useful actions. The
majority of the provided functionality is based on the manipulation of JavaBeans components
as well as the dynamic inclusion of files at request time and URL forwarding.

Let’s look at some of the more popular standard actions to get a “flavor” of their functionality.

The <jsp:include> Action

You saw earlier how the include directive provides a simple mechanism for including the
contents of a separate web component into the declaring JSP page at translation time. 
The <jsp:include> action provides a similar facility but with some subtle differences. The
<jsp:include> action is actually executed at request time, thereby enabling the inclusion 
of both static and dynamic content and thus providing a more flexible approach.

Another major difference is that the <jsp:include> action doesn’t include the actual con-
tent from the included resource in the same manner as the include directive. Instead, the
<jsp:include> action will include any output generated by the included resource directly to
the JspWriter assigned to the implicit out variable. This means that you can specify any differ-
ent type of web resource, such as another JSP page or servlet, as long as it produces content of
the same type as the calling JSP page.

The syntax for using the standard include action is as follows:

<jsp:include page="relativeURL" flush="true"/>

Here you can see the action has two attributes. The page attribute is mandatory and con-
tains a relative URL to the resource to be included, in the same way that the file attribute was
interpreted by the include directive. The second attribute, flush, specifies whether the body of
the response should be “flushed,” or sent to the client browser before the page inclusion. The
flush attribute is optional and defaults to false if not specified.

Because the flush attribute can cause buffered content to be returned to a client before
the included resource is executed, any included resources may not set any response headers.

We mentioned earlier that the <jsp:include> action allows static as well as dynamic con-
tent to be included, and we hinted that this ability offers flexibility that isn’t achievable by
using the include directive. One example of such flexibility is that the page attribute can be
specified via a request parameter, because the <jsp:include> action isn’t executed until the
main page is requested:

<jsp:include page="${param.nextPage}" />

Here you can see how the value of the page attribute isn’t known until the main JSP page
containing the <jsp:include> is requested and the value is obtained by extracting a request
parameter by using EL. In other words, it’s possible to create dynamic content that is so
dynamic, its content isn’t known until request time!

You can include additional request parameters with the request that is passed to the
included page. You do that with the <jsp:param> element:

<jsp:include page="includedPage">
<jsp:param name="userName" value="Dan" /> 

</jsp:include>
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The <jsp:param> tag has two attributes: name and value. The attribute name gives the name
of the parameter, which can be used by the included page to access the parameter. The attri-
bute value, which can be a request-time expression, gives the value of the attribute.

The <jsp:useBean> Action

Before any JavaBeans component can be manipulated from a JSP page, it’s first necessary to
obtain an instance of the JavaBean, either by retrieving a preexisting JavaBean from one of the
available JSP scopes or by creating a new instance. Either option could take several lines of
scripting code, especially if the JavaBean needs to be initialized before use, which as you’ve
seen, can clutter the JSP page.

The <jsp:useBean> action is specifically designed to simplify this process. This standard
action associates an instance of a Java object (our JavaBean) that is defined with a given scope
and id and makes it available as a scripting variable of the same id. The <jsp:useBean> action
is highly flexible, and its exact functionality is controlled by the attributes passed to the action.
When used correctly, this action can greatly reduce the amount of scriptlet code that would
otherwise be required.

The syntax for the <jsp:useBean> action is as follows:

<jsp:useBean id="name" scope="page|request|session|application" typeSpec/>

where

typeSpec ::= class="className"                   |
class="className" type="typeName"   |
type="typeName" class="className"   |
beanName="beanName" type="typeName" |
type="typeName" beanName="beanName" |

type="typeName"

Before you see an example of the action at work, first consider Listing 1-8, a scriptlet-
based alternative that will print the current time of day (dateScriptlet.jsp):

Listing 1-8. dateScriptlet.jsp

<%@ page import="java.util.Date, java.text.DateFormat"%>
<html>
<head>
<title>Professional JSP 2.1</title>

</head>
<body style="font-family:verdana;font-size:10pt;">
<% 

DateFormat df = DateFormat.getInstance(); 
Date today = new Date();    

%>

<h2>Today's Date is <%= df.format(today) %></h2>
</body>

</html>
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This JSP page simply imports the java.util.Date and java.text.DateFormat classes for
use and uses a scriptlet to initialize the Date and DateFormat objects. Some simple template
text is used to construct an HTML page, and finally a JSP expression is used to format the Date
object.

Enter the code in Listing 1-8 into a file called dateScriptlet.jsp beneath the test web-
application folder in the normal manner. Open the following URL in your browser:

http://localhost:8080/test/dateScriptlet.jsp

The output should be similar to Figure 1-12, displaying the correct date and time.

Figure 1-12. This JSP page uses a scriptlet to display the date and time.

Although the previous example is perfectly functional, you can see the problems a web
designer with no Java skills would have understanding even these simple scriptlets. Another
possible problem could be that the JSP page won’t be compatible with the tools used by the
web designer because she’s used to XML-type languages. In a more complex example, you can
imagine how the problem gets worse and worse.

Let’s now see how you can encapsulate the previous date-formatting functionality into a
JavaBeans component and use the <jsp:useBean> action to solve the problems mentioned
earlier (see Listing 1-9).

Listing 1-9. DateFormatBean.java

package com.apress.projsp;

import java.util.Date;
import java.text.*;

public class DateFormatBean {
private DateFormat dateFormat;
private Date date;

public DateFormatBean() {
dateFormat = DateFormat.getInstance();
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date = new Date();
}

public String getDate() {
return dateFormat.format(date);

}

public void setDate(Date date) {
this.date = date;

}

public void setFormat(String format) {
this.dateFormat = new SimpleDateFormat(format);

}
}

This simple JavaBeans component (DateFormatBean.java) initializes itself with a default
date and format on initialization as well as providing custom methods to set a different date
format or time. When all the initialization is completed, the getDate() method simply returns
the predefined date in the given date format.

You can see in Listing 1-10 how simple it is to use <jsp:useBean> to initialize an instance
of DateFormatBean as opposed to the scriptlet approach.

Listing 1-10. dateBean.jsp

<html>
<head>
<title>Professional JSP 2.1 </title>

</head>
<body style="font-family:verdana;font-size:10pt;">
<jsp:useBean id="date" class="com.apress.projsp.DateFormatBean"/>

<h2>Today's Date is <%= date.getDate()%></h2>
</body>

</html>

The <jsp:useBean> action creates an instance of the JavaBean class and stores a reference
to it in a scripting variable, which is called date. All this without a single scriptlet! A simple JSP
expression is used to call the getDate() method to retrieve the formatted date. It should be no
surprise to learn that the output is exactly the same as in the earlier example—only the imple-
mentation is different.

The <jsp:getProperty> and <jsp:setProperty> Actions

You saw from the <jsp:useBean> action how simple it is to work with JavaBeans from inside
the JSP pages. It should probably be of little surprise to learn that there are also standard
actions designed to manipulate and retrieve the attributes of these JavaBeans, again without
the need for scriptlets or expressions!
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As the name suggests, the <jsp:getProperty> tag is used to retrieve or access the existing
properties of a JavaBean instance. Any JavaBean properties that are retrieved by using this tag
are automatically converted to a string and are placed into the implicit out variable, as output.

The syntax for this tag is as follows:

<jsp:getProperty name="name" property="propertyName" />

The <jsp:getProperty> tag has two attributes: name and property, both of which must 
be present. The name attribute references the name of the JavaBean instance on which the
property attribute exists. This attribute will search all available JSP scopes until the named
JavaBean is found. Should the tag fail to locate the requested JavaBean, a suitable exception
will be thrown at request time.

This tag is relatively simple in the functionality that it provides, but to use it in a JSP, you
must ensure that the JavaBean has already been made available to the JSP engine through a
<jsp:useBean> tag. Without the inclusion of this extra tag, neither the <jsp:getProperty> nor
the <jsp:setProperty> tag will function as expected.

Although the previous example you saw was a great improvement over the earlier scriptlet-
based example, you still relied on the use of a JSP expression to access the date property from
DateFormatBean. You can use the <jsp:getProperty> action instead of the expression so that
the entire JSP page is XML based.

Look at Listing 1-11 to see the changes to the earlier example that would be necessary
(dateBean_getProperty.jsp).

Listing 1-11. dateBean_getProperty.jsp

<html>
<head>
<title>Professional JSP 2.1 </title>

</head>
<body style="font-family:verdana;font-size:10pt;">
<jsp:useBean id="date" 

class="com.apress.projsp.DateFormatBean"/>
<h2>Today's Date is <jsp:getProperty name="date" 

property="date"/></h2>
</body>

</html>

Again, this is a better solution. Yet you still haven’t changed the content returned, just its
implementation. 

To complement the <jsp:getProperty> action, the <jsp:setProperty> tag can be used 
to set the value of an attribute inside a JavaBean. The <jsp:setProperty> action is somewhat
more flexible and provides the ability to set properties based on request attributes, and so on.
In its simplest form, the action may be used as follows:

<jsp:setProperty name="beanName" property="property" value="value"/>

The name and property attributes are used in exactly the same way as with the 
<jsp:getProperty> action; the additional value attribute simply indicates the new value to 
set the JavaBean property to.
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In addition to the preceding simple syntax, you can use the <jsp:getProperty> action in 
a number of other ways:

<jsp:setProperty name="beanName" property="*" />

When using this syntax, the JSP page will attempt to find request parameters in the
request with the same names as the JavaBean properties. The JavaBean properties will be 
set with the value of the matching request parameter.

<jsp:setProperty name="beanName" property="property"
param="paramName"/>

When using the param attribute, the JSP page will set the value of the property that has the
given property name to the value of the parameter given by paramName in the set of request
parameters.

<jsp:setProperty name="beanName" property="property" />

When using only the property attribute, the JSP page will attempt to set the value of the
property by matching the property name to the parameter with the same name in the set of
request parameters.

Although the <jsp:setProperty> action can be used anywhere within a JSP page, it’s often
used as a nested action inside the body content of the <jsp:useBean> action. The consequence
of this is that the nested <jsp:setProperty> action will be executed only the first time the
<jsp:useBean> instantiates a JavaBean. If an existing JavaBean is located in any one of the JSP
scopes, the nested action won’t be called.

In Listing 1-9 earlier, there were two methods that additionally set the date and the date
format properties to custom values. Let’s use the <jsp:setProperty> action to set the date for-
mat to a different value from that in the previous example (see Listing 1-12).

Listing 1-12. dateBean_setProperty.jsp

<html>
<head>
<title>Professional JSP 2.1</title>

</head>
<body style="font-family:verdana;font-size:10pt;">
<jsp:useBean id="date" class="com.apress.projsp.DateFormatBean">
<jsp:setProperty name="date" property="format" 

value="EEE, d MMM yyyy HH:mm:ss z"/>
</jsp:useBean>
<h2>Today's Date is <jsp:getProperty name="date" property="date"/></h2>

</body>
</html>

If you want to use a compiled JavaBean in a JSP web application, the JSP engine (for
example, Tomcat) needs to know where to look for it. By default Tomcat (and any other servlet
container) checks for classes in the WEB-INF\classes directory under the web-application
directory, and then in JAR files in the WEB-INF\lib directory. So, for our test web application
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we’ll put the JavaBeans in the webapps\test\WEB-INF\classes directory. Use the following
steps to create the web application:

1. Create the directory structure webapps\test\WEB-INF\classes\com\apress\projsp. 

2. Create a new file called DateFormatBean.java and enter the code from Listing 1-9 
earlier in this section and compile it.

3. Create the dateBean.jsp, dateBean_getProperty.jsp, and dateBean_setProperty.jsp
pages beneath the test web-application folder (Listings 1-10, 1-11, and 1-12).

Start Tomcat, open a browser, and run the dateBean.jsp, dateBean_getProperty.jsp, 
and dateBean_setProperty.jsp pages as you did earlier. Notice that this time, when you use
the dateBean_setProperty.jsp page, you have changed the date format that the JSP page
generates (see Figure 1-13)!

Figure 1-13. The JSP page uses a JavaBean with a setProperty element to format the date in a 
particular format.

The <jsp:forward> Action

Another handy action available to JSP page authors is the <jsp:forward> action, which not
surprisingly is used to forward the current request to another resource such as a static
resource, a JSP page, or a servlet in the same context as the containing JSP, for processing.

The syntax for the action is as follows:

<jsp:forward page="relativeURL" />

Any buffered content that was written before the call to the <jsp:forward> action will be
ignored. If any buffered content has already been flushed (sent to the client), the call will
result in an IllegalStateException.

Note that nested <jsp:param> actions may be used in the <jsp:forward> action in the
same way as with the <jsp:include> action to pass additional request parameters to the new
resource.

For example:

<jsp:forward page="/pages/login.jsp">
<jsp:param name="userName" value="Dan" /> 

</jsp:forward>
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Custom Actions
Earlier you learned about the potential problems created by introducing too much (if any at
all!) scriptlet code into a JSP page. Overuse of scriptlets complicates the lives of JSP developers
and non-Java-speaking UI designers alike.

You’ve also seen how many of the problems associated with scriptlet code can be allevi-
ated by encapsulating some of the ugly scriptlet code into JavaBeans components and
manipulating them by using some of the standard actions. Although this approach is far supe-
rior to the scriptlets approach, it’s not the only available solution.

Custom actions are another mechanism for encapsulating functionality into reusable
components for use inside JSP pages. Unlike JavaBeans components, custom actions have full
access to their environment (such as the request and session objects), which makes it far easier
to provide functionality suitable for a website. A good example of a custom action is performing
calculations where the result is locale sensitive, such as being dependent on the language or
number format. A JavaBeans component has no idea about the environment in which it’s run,
and therefore a developer would have to work a little harder to get the same functionality. That
isn’t to say that JavaBeans components have no advantages. For one, they’re by far the best
mechanism for representing business objects and storing state, because they don’t care about
their environment!

Custom actions are packaged together (usually with several similar or complementary
actions) into a tag library that must be registered with a JSP container via its TLD file, which
advertises the services provided by the tag library. After a tag library is successfully installed
inside a JSP container, the library must be imported by using the taglib directive you saw 
earlier before any of the action it provides may be used.

The following example demonstrates the use of a custom action called foo from a tag
library configured by a web application’s deployment descriptor called myTagLib:

<%@ taglib uri="/myTagLib" prefix="myPrefix" %>

<myPrefix:foo>
...

</myPrefix:foo>

You can see how a tag library must be imported before any of the actions it provides (in
this case the foo action) may be used on the page. Notice how a prefix is used to provide a
namespace for actions from one tag library to another.

You’ll learn more about creating and using custom actions, including some of the new
features for simplifying their creation, in Chapters 6, 7, and 8.

JavaServer Pages Standard Tag Library Actions
You saw previously how useful the standard actions included in the JSP specification are to
page authors; well, the JSTL takes this idea a step further and signifies a new phase for JSP
page authors.
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The JSTL specification was first released in June 2002 with the sole purpose of making JSP
pages easier to write. The JSTL provides four new tag libraries that may be used in a similar
manner to the standard tags you saw earlier:

• Core

• Internationalization (I18n) and Formatting

• XML

• SQL

As the names suggest, each library contains a host of useful actions that are suitable for
many tasks that JSP page authors are continually having to code manually, such as conditional
statements and looping, formatting based on locales, XML manipulation, and database access.

The JSTL also uses the EL, which makes the actions even easier to use, especially for a
developer unfamiliar with Java syntax. For a more in-depth look at the JSTL and how its tags
can be controlled, take a look at Chapter 4.

Summary
Hopefully this chapter has provided you with a general feel for where JSP technology fits
within the Java Platform, Enterprise Edition 5, and how it fits with regard to the other web
components such as servlets, tag libraries, and JavaBeans, which exist in the web tier for pro-
viding dynamic web-based content.

You were also introduced to some of the most popular JSP architectures that are regularly
used for designing modern web applications so that you can see the bigger picture next time
you’re confronted with design choices. Or maybe this chapter will help you analyze an existing
application.

Last, and most important, you were introduced to all the core syntax-level attributes that
are available to a JSP page author, including custom actions and the JSTL. This grounding will
give you a head start when approaching some of the more complex chapters, which will build
on the JSP basics that you’ve learned so far.
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Servlets and Deployment

In this chapter, you’ll look at the development and deployment of Java servlets. The Servlet
and JSP specifications are developed in parallel for each major release of the specifications;
the current releases are Servlet 2.5 and JSP 2.1. In this chapter, we’ll cover the following areas:

• An introduction to developing Java servlets, including a history of servlets

• Key features of the Java Servlet API

• Developing HTTP servlets

• Deploying Java Servlet 2.5–based web applications

This chapter isn’t a definitive guide to Java servlets; instead it provides an overview of the
Servlet API and the deployment of applications based on this API.

What Is a Servlet?
As you learned in the previous chapter, JSP pages are translated into servlets before the web
container executes them. This chapter presents the anatomy of a Java servlet and the Servlet
model that supports such servlets, and thus JSP pages.

A servlet is a server-side component that is capable of dynamically processing requests
and constructing responses in a protocol-independent manner. Figure 2-1 shows the classes
that are involved in developing servlets.

All the classes and interfaces shown in Figure 2-1 are in either the javax.servlet or
javax.servlet.http package. The javax.servlet package provides the contract between the
servlet or web application and the web container. This allows the vendors of web containers to
focus on developing the container in the manner most suitable to them, assuming they provide
implementations of the standard interfaces for the web application to use. From the devel-
oper’s perspective, the package provides a standard library to process client requests and
develop servlet-based web applications.

At the center of the package is the javax.servlet.Servlet interface. This interface defines
the core structure of all servlets; however, in developing most servlets, you inherit from a
defined implementation of this interface (such as HttpServlet).
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Figure 2-1. This Unified Modeling Language (UML) diagram shows the interfaces and classes that
form the Servlet API. Note that this diagram uses the convention of an open circle (also known as
lollipop notation) to represent an interface. The interfaces and classes that you will use the most
are the Servlet interface and its descendants, and the ServletRequest and ServletResponse inter-
faces and their descendants.

The additional classes and interfaces that you can see in Figure 2-1 provide additional
services to the web-application developer; for example, the web container provides access 
to the client request via a standard interface, ServletRequest, and provides access to the
response via ServletResponse. The javax.servlet package provides the basis for developing
cross-platform and cross-web-container web applications without worrying about the imple-
mentation of each web container.

Why Servlets?
Why use servlets at all? After all, you have JSP pages, which are far easier to create than
servlets. While this is definitely true, there are times when using a servlet is much more appro-
priate than using a JSP page. One such occasion is in the JSP Model 2 architecture; this was
discussed in Chapter 1.

Servlets are best used in situations where a great deal of programmatic control is required,
such as decision making, database querying, or accessing other enterprise resources. If you
attempt to perform these types of operations within a JSP page, you’ll encounter the following
problems:

• Maintainability: Because access to resources will be spread over a number of different
JSP pages and interspersed with HTML display information, your pages will be hard to
maintain. The code will also be hard to read because it is interspersed with the HTML
code and indentation becomes tricky.

• Reusability: When most of the processing logic is embedded into the JSP pages, it
becomes much more difficult to reuse common functionality because it’s usually
implemented by using scriptlets. Often this results in lots of cutting and pasting of code
that isn’t only bad from a reusability perspective but is also likely to introduce errors
and of course decrease productivity.

ServletConfig

Servlet ServletException

GenericServlet

Throws

HttpServlet

ServletOutputStreamUses ServletResponse

HttpServletResponse

ServletRequest

HttpServletRequest

ServletContext

HttpSession
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However, there are also many times when using a servlet isn’t appropriate. These situa-
tions occur primarily when a lot of display formatting is required. For example, it would be
best not to use a servlet to present the front page of a website. If you were to use a servlet, it
would contain lots of lines such as the following:

out.println("<a href=\"cart.jsp\">Cart</a>");

This is both messy and hard to maintain; every quotation mark must be escaped, and you
get no feel for the nesting in the page because the ubiquitous out.println statements surround
everything.

JavaServer Pages Are Servlets!
As mentioned in Chapter 1, JSP pages are translated to servlets before they are run. The web
container performs this translation transparently when a user makes a request for a given JSP
page. For example, say you were to code the following JSP page and save it as simple.jsp:

<html>
<body>
This is a very nice JSP page. Today's date is <%=new java.util.Date()%>

</body>
</html>

If you make a request for it, a servlet such as the following would be generated:

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public final class simple_jsp 
extends org.apache.jasper.runtime.HttpJspBase
implements org.apache.jasper.runtime.JspSourceDependent {

private static java.util.Vector _jspx_dependants;

public java.util.List getDependants() {
return _jspx_dependants;

}

public void _jspService(HttpServletRequest request, 
HttpServletResponse response)

throws java.io.IOException, ServletException {

JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
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JspWriter out = null;
Object page = this;
JspWriter _jspx_out = null;
PageContext _jspx_page_context = null;

try {
_jspxFactory = JspFactory.getDefaultFactory();
response.setContentType("text/html");
pageContext = _jspxFactory.getPageContext(this, request, response,

null, true, 8192, true);
_jspx_page_context = pageContext;
application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();
_jspx_out = out;

out.write("<html>\r\n");
out.write("  <body>\r\n");
out.write("    This is a very nice JSP page. Today's date is ");
out.print( new java.util.Date() );
out.write("\r\n");
out.write("  </body>\r\n");
out.write("</html>");

} catch (Throwable t) {
if (!(t instanceof SkipPageException)){
out = _jspx_out;
if (out != null && out.getBufferSize() != 0)
out.clearBuffer();

if (_jspx_page_context != null) 
_jspx_page_context.handlePageException(t);

}
} finally {
if (_jspxFactory != null) 

_jspxFactory.releasePageContext(_jspx_page_context);
}

}
}

■Note This servlet was generated by Tomcat 5.5 running on Windows XP and was written to the
%TOMCAT_HOME%\work\Catalina\localhost\jsp-examples\org\apache\jsp directory. The servlet
generated by your container will vary by container and operating system. Locations for these generated
servlets will also vary among web containers.
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As you can see, the servlet generated performs a whole lot of initialization, such as getting
hold of the servlet context, session, and page context objects that might be used by your JSP.
After this has been done, the servlet outputs the template text and JSP elements by using a
series of write and print statements. If you look at the generated servlet and compare it to the
JSP, it’s easy to see why it’s better to write JSPs to perform display formatting operations rather
than servlets.

The javax.servlet Interfaces
The javax.servlet package is composed of fourteen interfaces. The web container imple-
ments these seven interfaces:

• ServletContext

• ServletConfig

• ServletResponse

• ServletRequest

• RequestDispatcher

• FilterChain

• FilterConfig

These are objects that the container must provide to the servlets within it. The developer
uses the interfaces to develop servlets, and the web-container vendors can decide the most
suitable way to implement these interfaces. The remaining seven interfaces are implemented
by the web-application developer to provide the application’s functionality:

• Servlet

• ServletContextListener

• ServletContextAttributeListener

• ServletRequestAttributeListener

• ServletRequestListener

• SingleThreadModel

• Filter

As we have mentioned, the Servlet interface is key in developing servlets. This interface
defines the life-cycle methods of a basic servlet: initialization, service, and destruction. The
interface definition is shown here:

package javax.servlet;

import java.io.IOException;

public interface Servlet {
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public void init(ServletConfig servletconfig) 
throws ServletException;

public ServletConfig getServletConfig();
public void service(ServletRequest servletrequest, 

ServletResponse servletresponse)
throws ServletException, IOException;

public String getServletInfo();
public void destroy();

}

This interface also provides a method to obtain an instance of the ServletConfig inter-
face. The container uses the ServletConfig interface to pass initialization information to a
servlet. The ServletConfig interface also has a way to get hold of an instance of ServletContext
for the current web application (via the getServletContext() method). The ServletContext
interface is the web application’s view on the web container. This allows a web application to
use the services of the container, such as logging and request dispatching. You can see the
ServletConfig interface definition here:

package javax.servlet;

import java.util.Enumeration;

public interface ServletConfig {
public String getServletName();
public ServletContext getServletContext();
public String getInitParameter(String s);
public Enumeration getInitParameterNames();

}

The ServletContext interface definition is shown here:

package javax.servlet;

import java.io.InputStream;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.Enumeration;
import java.util.Set;

public interface ServletContext {
public ServletContext getContext(String s);
public int getMajorVersion();
public int getMinorVersion();
public String getMimeType(String s);
public Set getResourcePaths(String s);
public URL getResource(String s)

throws MalformedURLException;
public InputStream getResourceAsStream(String s);
public RequestDispatcher getRequestDispatcher(String s);
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public RequestDispatcher getNamedDispatcher(String s);
/**
* @deprecated Method getServlet is deprecated
*/
public Servlet getServlet(String s)

throws ServletException;
/**
* @deprecated Method getServlets is deprecated
*/
public Enumeration getServlets();
/**
* @deprecated Method getServletNames is deprecated
*/
public Enumeration getServletNames();
public void log(String s);
/**
* @deprecated Method log is deprecated
*/
public void log(Exception exception, String s);
public void log(String s, Throwable throwable);
public String getRealPath(String s);
public String getServerInfo();
public String getInitParameter(String s);
public Enumeration getInitParameterNames();
public Object getAttribute(String s);
public Enumeration getAttributeNames();
public void setAttribute(String s, Object obj);
public void removeAttribute(String s);
public String getServletContextName();

}

The ServletContextListener interface is a life-cycle interface that programmers can
implement to listen for changes to the state of the ServletContext object. This means that
programmers can choose to be informed of events such as the destruction or creation of a
ServletContext object. This allows the developer to perform application startup- and shut-
down-type functionality (for example, logging creation or destruction of the resource, or
initializing application-level constants) within a web applications. The ServletContextListener
interface definition is shown here:

package javax.servlet;

import java.util.EventListener;

public interface ServletContextListener extends EventListener {
public void contextInitialized(ServletContextEvent

servletcontextevent);
public void contextDestroyed(ServletContextEvent 

servletcontextevent);
}
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Implementations of the ServletContextAttributeListener interface can perform similar
functionality, but the events that they are notified about relate to the modification (adding,
changing, deleting) of attributes on the servlet context. This interface definition is shown here:

package javax.servlet;

import java.util.EventListener;

public interface ServletContextAttributeListener extends EventListener {
public void attributeAdded(ServletContextAttributeEvent 

servletcontextattributeevent);
public void attributeRemoved(ServletContextAttributeEvent 

servletcontextattributeevent);
public void attributeReplaced(ServletContextAttributeEvent 

servletcontextattributeevent);
}

The RequestDispatcher interface manages client requests by directing them to the appro-
priate resources on the server. The developer can use this interface to redirect the application
to different pages and servlets. The definition of this interface is shown here:

package javax.servlet;

import java.io.IOException;

public interface RequestDispatcher {

public void forward(ServletRequest servletrequest, 
ServletResponse servletresponse)

throws ServletException, IOException;
public void include(ServletRequest servletrequest, 

ServletResponse servletresponse)
throws ServletException, IOException;

}

The ServletRequest interface encapsulates all the information that is transmitted to a
servlet through its service() method during a single client request. A ServletRequest object
created by the container provides methods to access parameter names, parameter values, and
attributes, as well as an input stream. The source for this interface is shown here:

package javax.servlet;

import java.io.*;
import java.util.*;

public interface ServletRequest {

public Object getAttribute(String s);
public Enumeration getAttributeNames();

CHAPTER 2 ■ SERVLETS AND DEPLOYMENT52

513-0 ch02.qxd  10/3/05  4:22 PM  Page 52



public String getCharacterEncoding();
public void setCharacterEncoding(String s)

throws UnsupportedEncodingException;
public int getContentLength();
public String getContentType();
public ServletInputStream getInputStream()

throws IOException;
public String getParameter(String s);
public Enumeration getParameterNames();
public String[] getParameterValues(String s);
public Map getParameterMap();
public String getProtocol();
public String getScheme();
public String getServerName();
public int getServerPort();
public BufferedReader getReader()

throws IOException;
public String getRemoteAddr();
public String getRemoteHost();
public void setAttribute(String s, Object obj);
public void removeAttribute(String s);
public Locale getLocale();
public Enumeration getLocales();
public boolean isSecure();
public RequestDispatcher getRequestDispatcher(String s);
public String getRealPath(String path);
public int getRemotePort();
public String getLocalName();
public String getLocalAddr();
public int getLocalPort();

}

You can access parameters passed to the request via the following methods:

public String getParameter(String name)
public String[] getParameterValues(String name)
public java.util.Enumeration getParameterNames()
public java.util.Map getParameterMap()

The getParameter() method will return the parameter value with the given name, or null
if the parameter does not exist. If this method is used with a multivalued parameter, the value
returned will be equal to the first value in the array returned from the getParameterValues()
method. The getParameterNames() method is used to retrieve a java.util.Enumeration of
String objects containing the names of all the parameters found in the request. If the request
does not contain any parameters, an empty Enumeration will be returned. Finally, the
getParameterMap() method returns a java.util.Map containing all the parameters found in
the request. The parameter names form string-based keys to individual parameter values that
are stored as string arrays.
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The javax.servlet Classes
In addition to the interfaces that you’ve seen, there are nine classes contained within the
javax.servlet package. They are as follows:

• GenericServlet

• ServletContextEvent

• ServletContextAttributeEvent

• ServletInputStream

• ServletOutputStream

• ServletRequestEvent

• ServletRequestAttributeEvent

• ServletRequestWrapper

• ServletResponseWrapper

The GenericServlet abstract class can be used to develop protocol-independent servlets
and requires only that subclasses implement its service() method. For servlets intended to
function in a web context, it’s more common to extend the HttpServlet abstract class (which
you’ll look at in a later section).

The two event classes, ServletContextEvent and ServletContextAttributeEvent, are 
used for notification about changes to the ServletContext object and its attributes.

The two event classes, ServletRequestEvent and ServletRequestAttributeEvent, are 
used for notification about changes to the ServletRequest object and its attributes.

The ServletInputStream and ServletOutputStream abstract classes provide the ability 
to read and write binary data from and to the client. Classes that extend either of these
abstract classes must provide an implementation of the java.io.InputStream.read() and
java.io.OutputStream.write() methods, respectively.

Last, the wrapper classes ServletRequestWrapper and ServletResponseWrapper provide
useful implementation of the ServletRequest and ServletResponse interfaces. These can be
used or subclassed to give developers the ability to adapt the standard behavior of these
objects for their own applications’ needs.

The Life Cycle of a Servlet
The javax.servlet.Servlet interface defines the methods that all servlets must implement
and, among others, three methods that are known as life-cycle methods:

public void init(ServletConfig config) throws ServletException
public void service(ServletRequest req, ServletResponse res) 

throws ServletException, IOException
public void destroy()
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These life-cycle methods are each called at separate times during the life span of a servlet,
from the initial creation to the moment it’s removed from service and destroyed. These meth-
ods are called in the following order:

1. When the servlet is constructed, it is initialized with the init() method.

2. Any requests from clients are handled initially by the service() method before dele-
gating to the doXxx() methods in the case of an HttpServlet. The service() method is
responsible for processing the request and returning the response.

3. When the servlet needs to be removed from service, it’s destroyed with the destroy()
method, then garbage collected and finalized. When the container decides to take 
a servlet out of service, it first ensures that any service() method calls have been
completed.

Figure 2-2 shows this sequence of events.

Figure 2-2. The servlet life cycle moves from instantiation and initialization to the servicing of
requests. At the end of the servlet life cycle, the container will stop sending requests to the servlet
and remove the servlet intance.
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A Simple Servlet
In this section, you’ll look at an example of a simple generic servlet. This servlet will extend 
the class GenericServlet that provides a basic implementation of the Servlet interface. You’ll
implement the service() method of this class in our subclass, which will do the work of our
servlet. You’ll also override the init() and destroy() methods of the GenericServlet abstract
base class. The code for our servlet is shown in Listing 2-1 (written as a standard .java file).

Listing 2-1. MyServlet.java

package com.apress.projsp;

import java.io.*;
import java.util.Date;

import javax.servlet.*;

public class MyServlet extends GenericServlet {

public void init(ServletConfig config) throws ServletException {
super.init(config);
log("MyServlet initialized at:" + new Date());

}

public void service(ServletRequest request, ServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html><head><title>BasicServlet</title></head>");
out.println("<body><h2>" + getServletName() + "</h2>");
out.println("This is a basic servlet.<br>");
out.println("<hr></body></html>");
out.close();

}

public void destroy() {
log("MyServlet was destroyed at:" + new Date());

}
}

This servlet performs a very simple job: it outputs a string of HTML. When the servlet is
initialized, it will print a message to the servlet log. This is achieved via the log() method of
the GenericServlet base class as follows:

log("MyServlet initialized at:" + thisDate);
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You’ll also use this method to print a message when the servlet is destroyed. To deploy 
the servlet to a web container, you’ll need to provide a deployment descriptor (web.xml) and
arrange the files in the appropriate directory structure for Java web applications. The deploy-
ment descriptor gives the container information about the components that you are
deploying to it. Deployment descriptors are thoroughly explained later in this chapter. For
now it suffices to see the deployment descriptor that will allow you to deploy your servlet:

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<servlet>
<servlet-name>MyServlet</servlet-name>
<servlet-class>com.apress.projsp.MyServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>MyServlet</servlet-name>
<url-pattern>/MyServlet</url-pattern>

</servlet-mapping>
</web-app>

Our files must be arranged as shown in Figure 2-3.

Figure 2-3. The directory structure for the examples in the servlet chapter

• servletExamples is the name of our web application.

• WEB-INF is the directory indicating that this is a web application—the directory name is
case sensitive.

• web.xml is the deployment descriptor, which sits inside the WEB-INF folder.

• classes is the directory where you store the classes—in appropriate subdirectories for
the package structure, for example, com\apress\projsp (as shown here) might contain
MyServlet.class and MyServlet.java.

CHAPTER 2 ■ SERVLETS AND DEPLOYMENT 57

513-0 ch02.qxd  10/3/05  4:22 PM  Page 57



Although the web container will generate the JSP implementation servlet and compile 
it, you need to compile servlets that you write. To do this, you need the javax.servlet API
classes in your class path. Depending on your web container, these might exist either as a
separate Servlet JAR file or as part of a greater Java EE 5 JAR. In the case of Tomcat 5, the file 
is servlet-api.jar located in the common\lib directory. Using your favorite build method or
integrated development environment (IDE), you need to add the library with the servlet API
to your class path. If you are using some container other than Tomcat, consult the documen-
tation to determine the JAR file that contains the Servlet API classes.

There are two ways you can deploy a web application into Tomcat:

• Copy your application’s files and directories directly into Tomcat’s webapps directory.

• Create a distributable Web ARchive (WAR) file.

For simplicity, you’ll use the former here, but use the latter with the more complete exam-
ple at the end of this chapter.

So to deploy the application within Tomcat, you can place this directory structure within
the %TOMCAT_HOME%\webapps directory; the application will now be available at the following
URL: http://localhost:8080/servletExamples/MyServlet. You’ll get the page shown in
Figure 2-4 in your browser.

Figure 2-4. The output from MyServlet displays a simple message in the browser.

If you were to look at your web container’s log file (for Tomcat this is located at
%TOMCAT_HOME%\logs\localhost.YYYY-MM-DD.log) you’ll see the message shown in Figure 2-5
toward the end of the file.

Figure 2-5. When the servlet container calls the init() method of MyServlet, it prints a message to
the container’s log file.
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If you now stop the web container and look at the log again, you’ll see that the servlet has
been destroyed and the text shown in Figure 2-6 will be present in the log.

Figure 2-6. When the servlet container calls the destroy() method, MyServlet prints another 
message to the log.

HTTP Servlets
As we have mentioned, the javax.servlet package provides generic interfaces and classes to
service clients’ requests independent of the protocol used. This means that any behavior that
is specific to a particular package has to be implemented within the application by the devel-
oper. For this reason, the javax.servlet package is extended to provide a mechanism to
handle requests in a protocol-dependent manner. This allows protocol-specific functionality
to automatically be provided to the developer.

In this section, you’ll look at one such extension: the javax.servlet.http package. This
package provides classes that can be used and extended to develop servlets that provide
HTTP-specific functionality.

The main class in the javax.servlet.http package is the HttpServlet abstract class. This
class extends from the javax.servlet.GenericServlet class. This means that all functionality
provided by this class is available to HTTP servlets. The first point to note about the HttpServlet
class is that it has several new methods that provide protocol-specific functionality. Instead of
the single service() method as in the GenericServlet class, you now have methods such as
doGet() and doPost() that allow your servlet to perform a different task depending upon the
manner in which it’s being called. However, this rarely happens in practice.

The request-handling methods that are provided are as follows:

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

The doGet() method is intended to retrieve an entity from the server as referenced by a
request URL.

protected void doHead(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

The doHead() method is simply a GET request that is intended to return only the HTTP
header information.

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
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The doPost() method is intended to allow posting of information (forms and so on) to the
server.

protected void doPut(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

The doPut() method is used to upload a file to a server in a manner similar to the FTP.

protected void doOptions(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

protected void doTrace(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException

The doOptions() and doTrace() methods allow you to override the behavior of HTTP.
There is almost no reason to override either of these methods unless the servlet implements
functionality beyond the HTTP 1.1 specification.

To handle a request of a given type, you simply override the appropriate method.

HTTP Responses and Requests
As well as providing the HttpServlet class, the javax.servlet.http package also provides
HTTP-specific versions of the ServletRequest and ServletResponse objects. These are named
HttpServletRequest and HttpServletResponse, respectively.

HttpServletRequest
You can use the HttpServletRequest interface to access the HTTP-specific information 
of the request to your HttpServlet (such as the HTTP request parameters). Since the
HttpServletRequest interface extends the ServletRequest interface, you can perform all the
functions of ServletRequest as well, such as retrieving request parameters. Some of the use-
ful operations that you can perform on your request are covered in the following sections.

Retrieving HTTP Request Header Information

HTTP headers store a wide range of information about the user and the request, and they are
transmitted between a user (usually a browser) and a web server during each request. HTTP
header information is separate from the body of a request and provides some useful informa-
tion that can be used by a web component (servlet or JSP page) when constructing a response.

A few of the more common headers are shown in Table 2-1 to give you an idea of the
information passed between the browser and web server.

Table 2-1. HTTP Header Names and Their Usage

Header Usage

Date The date and time the request was served

Accept The media types accepted by the client

Accept-Encoding The types of data encoding that the browser knows how to decode

Connection Whether the client can handle persistent HTTP connections

Content-Length The length of the body in bytes, or –1 if the length is unknown
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Header Usage

Cookie The cookies returned by the client browser to the server

Host The host and port of the original URL

Referrer The URL of any referring web page

User-Agent The client or browser making the request

The HttpServletRequest interface defines several methods that provide access to the
available headers:

public String getHeader(String name)
public java.util.Enumeration getHeaders(String name)
public java.util.Enumeration getHeaderNames()
public String getMethod()

The available methods for accessing HTTP headers take a similar form to those methods
used for accessing HTML form parameters. The getHeader() method is used to access a given
header’s value. The getHeaders() method returns an enumeration of string objects that repre-
sent all the values of a given request header; this method can be used for headers that may
have multiple values, such as the Accept-Language header. The name parameter passed to the
getHeader() or getHeaders() methods isn’t case sensitive.

When you are unsure of the available headers, the getHeaderNames() method may be used
to obtain an enumeration of available header names. Finally, the getMethod() method can be
used to retrieve the HTTP method used, such as GET, POST, or PUT.

HttpServletRequest also provides a couple of utility methods that can be used to convert
the return type of specific header values.

public long getDateHeader(String header)

The getDateHeader() method will return a given header as a long value that represents a
Date object. This method could be used with the If-Modified-Since or Date headers.

public int getIntHeader(String header)

The getIntHeader() method returns a given header as an integer value.
Both of these methods will return –1 if the given header isn’t available. The reason to use

these over the alternative getHeader() method is that you won’t have to perform any casting
on the value returned. This produces neater and more reliable code.

Retrieving Path Information

You can also extract a lot of information relating to the path used to request your servlet. The
following methods return information about this path:

public String getQueryString()

The getQueryString() method returns the query string of a request, or null if there was
no query string. For example, for the following URL, http://localhost:8080/servletExamples/
TestServlet?name=sam, the method would return name=sam.

public String getContextPath()
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The getContextPath() method returns the first part of the URL after the first “/”after the
server and port (localhost:8080 in the example URL). For the example URL, this would return
servletExamples.

public String getServletPath()

The getServletPath() method returns the path to your servlet. In the URL mentioned
earlier, this would return /TestServlet.

public String getPathInfo()

The getPathInfo() method returns any additional path information after your servlet
path and before your query string. In our example, there is no such information present, so
null would be returned.

public String getRequestURI()

The getRequestURI() method returns the complete URI for the request; for example, this
would be /servletExamples/TestServlet?name=sam for the URL mentioned earlier.

public String getRequestURL()

The getRequestURL() method returns the full URL that the client entered into the
browser to make the request to your servlet. For example, this is http://localhost:8080/
servletExamples/TestServlet?name=sam, for the URL mentioned earlier (yes that is correct,
it’s the whole URL!).

HttpServletResponse
You can use the HttpServletResponse interface to provide a response to the request to your
servlet. Because this class extends the ServletResponse interface, you can perform all the
functions of that class as well. Some of the useful operations that you can perform on your
response are covered here.

Setting an HTTP Response Header and Setting the Content Type of the Response

You’ve seen how the HttpServletRequest interface provides methods to access any HTTP head-
ers set by a client’s browser when requesting a web resource. Similarly, the HttpServletResponse
interface provides methods to set headers in the response that is sent back to the browser from
the web server. These methods are as follows:

public void addHeader(String name, String value)
public void addDateHeader(String name, long date)
public void addIntHeader(String name, int value)
public void setHeader(String name, String value)
public void setDateHeader(String name, long value)
public void setIntHeader(String name, int value)

Here you can see two similar types of methods: the addXxxHeader() and setXxxHeader().
Although similar in functionality, the two method types have distinctly different behavior. The
addHeader(), addDateHeader(), and addIntHeader() methods all simply add a named header
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value to the response. The result of calling any of these three methods is that multivalue head-
ers can be created in the response.

The setHeader(), setDateHeader(), and setIntHeader() methods will actually check for
the existence of a header or headers with the same name already in the response. If the meth-
ods find an existing header or headers, they are simply replaced with the new value;
otherwise, a new header is created.

It’s important to note that for any headers to take effect, they obviously must be set before
the response is committed and sent back to the client.

The HttpServletResponse interface also inherits the following two methods from its
superclass, javax.servlet.ServletResponse:

public void setContentLength(int length)
public void setContentType(String type)

The setContentLength() method, used for persistent HTTP connections, sets the length 
of the content body returned to the client. If this value is set too low, the client may stop read-
ing the response prematurely. Likewise, setting this value too high may leave clients hanging
around, needlessly waiting for more data. When this method is called from an HTTP servlet, it
has the effect of setting the Content-Length header.

The setContentType() method is used to set the Multipurpose Internet Mail Extensions
(MIME, RFC 2045 and 2046) type of the response. The effect of calling this method from an
HTTP servlet is that the Content-Type header is set accordingly.

In an HTTP servlet that serves HTML content, the content type is set as follows:

response.setContentType("text/html");

text/html is the most common type of content returned from servlets. It should also be
noted that MIME types are used in many protocols other than HTTP (such as Simple Mail
Transfer Protocol, or SMTP, e-mail) to indicate the type of the response and to show that many
different content types exist.

Another method that is worth mentioning in this context is the
setLocale(java.util.Locale) method that is provided by the javax.servlet.ServletResponse
interface. This method automatically sets the Content-Language header with the locale. If the
servlet has defined a content type, setLocale() will also set the charset component of the
Content_Type header.

Acquiring a Text Stream for the Response

The ServletResponse interface is responsible for the response that is sent back to a client after
the request for some form of resource (HTML, XML, file, and so on). This interface makes a
java.io.PrintWriter available to any servlet that returns text-based markup such as HTML,
XML, or WML to a client.

The PrintWriter object enables character data to be sent back to the client. Therefore, the
following method is provided by the ServletResponse interface:

public java.io.PrintWriter getWriter() throws java.io.IOException
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■Note This method returns a PrintWriter object that uses the character encoding as specified when
calling the setContentType() method. The setContentType() method must be called before calling the
getWriter() method.

The ServletResponse interface also provides a flushBuffer() method, which will force
any content stored in an internal buffer to be written to the client. Calling the flush() method
of the PrintWriter will also have a similar effect.

Acquiring a Binary Stream for the Response

As mentioned earlier, servlets do not just have to return character data such as HTML to clients.
The ServletResponse interface also provides access to a javax.servlet.ServletOutputStream
object, which can be used for returning binary information such as a GIF image to a client and
is obtained with the following method:

public javax.servlet.ServletOutputStream getOutputStream() 
throws java.io.IOException

The ServletOutputStream class, as the name suggests, is a subclass of java.io.OutputStream,
so the normal techniques of chaining may be employed: ServletOutputStream can be wrapped
inside a java.io.BufferedOutputStream or java.io.ObjectOutputStream.

Calling flush() on ServletOutputStream or flushBuffer() on ServletResponse will com-
mit the response to the client.

Redirecting an HTTP Request to Another URL

It’s often desirable for a servlet to redirect the request to another URL. The reasons for doing
this are many—for example, a user may not have logged in to an application and needs to be
redirected to a login page, or a site may have moved and users need to be pointed toward an
alternative URL.

As the name suggests, the redirect mechanism involves a server informing the client that
they must request another URL. Most modern browsers support this functionality automati-
cally, and it causes the user only a slightly longer waiting period before their request is served.

It should be noted that there is a distinct difference between redirecting and forwarding a
user to an alternative URL. Forwarding is totally invisible to the client, and the resource that
was forwarded to is returned as if it were the output from the original request. This is a power-
ful mechanism; generally, forwarding is used to hide the implementation details of components
that make up a web application.

The sendRedirect() method is provided by the javax.servlet.http.HttpServletResponse
interface:

public void sendRedirect(String location)

The location URL passed into the sendRedirect() method may be an absolute or relative
URL. Absolute URLs must start with a “/” and are interpreted as relative to the servlet con-
tainer root. Relative URLs do not start with a “/” and are interpreted as relative to the current
request URI.
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It’s important to note that if the response has already been committed when the
sendRedirect() method is called, an IllegalStateException is thrown.

Another important point to note is that if URL rewriting is being used to maintain client 
sessions and a redirect is required, the encodeRedirectURL() method of the HttpServletResponse
interface should be used to add the session information to the redirect URL so that the client’s
session state is maintained. There are multiple types of redirect headers, which are detailed in
the section “Error Pages” later in this chapter.

HttpServlet Example
This section presents a simple example of an HttpServlet. This servlet will simply obtain the
headers from the HttpRequest and respond by outputting these to the requesting browser.
Here, you do not implement duplicate functionality in both the doGet() and doPost() meth-
ods; instead you call one from the other (doPost() calls doGet()) so that the servlet responds
identically regardless of whether the request is a GET or a POST. The code for the servlet is
shown in Listing 2-2.

Listing 2-2. HttpServletHeaders.java

package com.apress.projsp;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HttpServletHeaders extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response) 
throws IOException, ServletException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();
out.println("<html>");

out.println("<head>");

out.println("<title>Here are the headers</title>");
out.println("</head>");
out.println("<body>");

out.println("<h3>Headers</h3>");
out.println("<table border=0>");
Enumeration e = request.getHeaderNames();
while (e.hasMoreElements()) {
String headerName = (String)e.nextElement();
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String headerValue = request.getHeader(headerName);
out.println("<tr><td>");
out.println(headerName);
out.println("</td><td>");
out.println(headerValue);
out.println("</td></tr>");

}
out.println("</table>");

out.println("</body>");
out.println("</html>");
}

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

doGet(request, response);
}

}

You’ll deploy the servlet by using the deployment descriptor shown in Listing 2-3 (see the
following “Deploying Java Servlet–Based Web Applications” section). As you can see, it’s quite
similar to the one you used earlier.

Listing 2-3. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<servlet>
<servlet-name>HttpServletHeaders</servlet-name>
<servlet-class>com.apress.projsp.HttpServletHeaders</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>HttpServletHeaders</servlet-name>
<url-pattern>/HeaderServlet</url-pattern>

</servlet-mapping>

</web-app>

Now compile the servlet file and copy it with the deployment descriptor into the directory
structure shown in Figure 2-7. To compile the servlet, you will need to add the appropriate JAR
file to your class path. For Listing 2-2, you will need the Servlet API JAR file. If you are using
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Tomcat, this file is servlet-api.jar in the common\lib directory. If you are using some other
web container, consult the documentation to determine the appropriate JAR file to use.

Figure 2-7. The directory structure used for the example HttpServletHeaders

• servletExamples is the name of your web application.

• WEB-INF is the directory indicating that this is a web application—the directory name is
case sensitive.

• web.xml is the deployment descriptor, which sits inside the WEB-INF folder.

• classes is the directory where you store the classes—in appropriate subdirectories for
the package structure, for example, com\apress\projsp\ (as shown here) will contain
HttpServletHeaders.class and HttpServletHeaders.java.

Figure 2-8 shows what you’ll see in your browser when making a request for
http://localhost:8080/servletExamples/HeaderServlet.

Figure 2-8. The HttpServletHeaders servlet echoes the request headers to the client.
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Deploying Java Servlet–Based Web Applications
In this section, you’ll look at the deployment of Java servlet–based web applications. You’ll
focus on the deployment of servlets. We’ve already created and used deployment descriptors
(the file named web.xml) several times. As we mentioned earlier, the deployment descriptor
describes the web application to the container. The deployment descriptor file is perhaps the
single most important item of your web application.

For the deployment descriptor to be valid for web applications using the Servlet 2.5 speci-
fication, several things must be true:

• The file must conform to the web application XML Schema, shown here:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/➥

web-app_2_5.xsd"
version="2.5">

• The deployment descriptor must be a well-formed XML file.

• The deployment descriptor must be named web.xml.

• The deployment descriptor must reside at the top level of the WEB-INF directory of your
web application.

Now that you know what a deployment descriptor is, you may ask what it does. In a nut-
shell, the deployment descriptor conveys the elements and configuration information of a
web application to developers, assemblers, and deployers. All manner of information is
defined in the deployment descriptor: from information about the web application itself to
information about its constituent parts, and most important, how those parts are assembled
into a complete web application. This section discusses the elements of the deployment
descriptor that are important for most web applications. The way in which a deployment
descriptor is written is often the key to how well a web application fits its purpose. It’s simple
to write the components of a web application, but how it’s assembled is a difficult and often
neglected task.

The sections of the deployment descriptor that we are going to focus on are those that
relate to the deployment and configuration of servlets and JSP pages. This does not include
the deployment of tag libraries and expression language (EL) functions because these are cov-
ered elsewhere in this book. The sections that you’ll focus on here are as follows:

• Servlet definitions and mappings

• Servlet context initialization parameters

• Error pages

• JSP configuration elements

To illustrate the parts of the deployment descriptor, we’ll show you the following simple
(but complete) example and then explain its constituent parts: 
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<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<display-name>Test Web Application</display-name>
<description>A test web application</description>

<context-param>
<param-name>adminEmail</param-name>
<param-value>admin@apress.com</param-value>

</context-param>

<servlet>
<servlet-name>Servlet1</servlet-name>
<servlet-class>com.apress.projsp.Servlet1</servlet-class>
<init-param>
<param-name>version</param-name>
<param-value>0.1b</param-value>

</init-param>
</servlet>

<servlet>
<servlet-name>Servlet2</servlet-name>
<servlet-class>com.apress.projsp.Servlet2</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Servlet1</servlet-name>
<url-pattern>/home.html</url-pattern>

</servlet-mapping>
<servlet-mapping>
<servlet-name>Servlet2</servlet-name>
<url-pattern>/AnotherServlet</url-pattern>

</servlet-mapping>

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>false</el-ignored>
<scripting-enabled>false</scripting-enabled>
<include-prelude>/header.jsp</include-prelude>
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<include-coda>/footer.jsp</include-coda>
<page-encoding>UTF-8</page-encoding>

</jsp-property-group>
</jsp-config>

<error-page>
<exception-type>java.lang.ArithmeticException</exception-type>
<location>/error.html</location>

</error-page>

<error-page>
<error-code>404</error-code>
<location>/404.html</location>

</error-page>

</web-app>

Although the previous deployment descriptor looks daunting because of its size and use
of different, perhaps unfamiliar, tags, you’ll soon see that it’s very simple.

At the start of the deployment descriptor, there are several tags that are not directly
related to servlets but give information about the web application. These tags occur directly
after the <web-app> tag, which denotes the start of the deployment descriptor. These tags are
as follows:

<display-name>Test Web Application</display-name>
<description>A test web application</description>

The <display-name> tag allows you to specify a short name for the overall web application.
This tag is designed to allow the name of the web application to be displayed by GUI tools. The
<description> tag allows you to provide a short textual description of the purpose of this web
application. This is a very simplistic form of documentation for the overall web application.

Now let’s move on and look at the parts of the example deployment descriptor that relate
directly to servlet deployment.

Servlet Definitions
Looking at the deployment descriptor, you can see that it defines two servlets in the web
application. You can see this by looking at the number of unique <servlet> tags. The first of
our two servlets is defined here:

<servlet>
<servlet-name>Servlet1</servlet-name>
<servlet-class>com.apress.projsp.Servlet1</servlet-class>
<init-param>
<param-name>version</param-name>
<param-value>0.1b</param-value>

</init-param>
</servlet>
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The <servlet> tag contains several child tags that give information about the declaration
of the servlet. This information includes the unique name that the servlet is registered with in
this web application, and the full name of the class that implements the servlet’s functionality.

The <servlet-name> tag gives the servlet’s unique name within the web application. In the
case of our first servlet, you can see that it’s called Servlet1.

The <servlet-class> tag gives the fully qualified class name of the class that implements
the functionality of this servlet. In the case of our first servlet, you can see that Servlet1 is
implemented in the class com.apress.projsp.Servlet1.

Looking at the <servlet> element for our first servlet, you can see that it contains more
than just the name and class of the servlet. It also contains an <init-param> tag. This tag
allows you to specify initialization parameters for our servlet.

<init-param>
<param-name>version</param-name>
<param-value>0.1b</param-value>

</init-param>

As you can see, our servlet has one parameter set. The <param-name> child tag gives 
the name that the parameter can be accessed by, and the <param-value> gives the starting
value for the parameter. The parameter can be accessed from our first servlet by using the
getInitParameter() method on the ServletConfig object. This method is

public String ServletConfig.getInitParameter(String name)

So to access the parameter defined for our first servlet, you can use the following code
within the servlet’s class:

...
String version = getInitParameter("version");

...

Notice that you don’t need to get the ServletConfig object explicitly, because the
GenericServlet class implements the ServletConfig interface so that the method is available
to you.

You won’t be examining the definition of our second servlet in detail, because this is
nearly identical to the first servlet. However, the second servlet’s definition is simpler because
it does not contain any initialization parameters.

Servlet Mappings
After you’ve defined your servlet through the <servlet> tag, you need to map it to a particular
URL pattern. This is necessary so that the web container knows which requests to send to a
particular servlet. You may think, “Why can’t I just pass all requests to the servlet with the
same name as the end of the URL?” For example, http://localhost:8080/mywebapp/Servlet1
would be routed to the servlet defined with the name Servlet1. This would seem like a logical
approach and is in fact the most common way of implementing the mappings between
servlets and URLs. However, the approach isn’t very flexible. Imagine if you wanted to map
more than one URL to the same servlet, which could, for example, check that a user is logged
in. This is where the <servlet-mapping> element comes in, and where it illustrates its power.
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In the example deployment descriptor, you map servlets to some strange-looking URL
patterns. Our first servlet is invoked every time any URL that ends with home.html is encoun-
tered. The unique servlet name that you defined in the <servlet> tag (referenced here as
<servlet-name>) is mapped to a URL pattern referenced here in a <url-pattern> element:

<servlet-mapping>
<servlet-name>Servlet1</servlet-name>
<url-pattern>/home.html</url-pattern>

</servlet-mapping>

Again, we won’t discuss our second servlet, because this is very similar to the first, except
that it maps to any URL ending in AnotherServlet.

It’s worth mentioning at this stage that servlets can be mapped to more than one URL
through the use of wildcards in the <url-pattern> child tag of the <servlet-mapping> tag. For
example, the following maps every URL encountered to the same servlet, which allows you to
have a central servlet that handles all requests:

<servlet-mapping>
<servlet-name>ValidatorServlet</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

You can also have more than one <servlet-mapping> tag per defined servlet. This allows
you to map completely disparate URLs to the same target.

Servlet Context Initialization Parameters
Here we’ll discuss the application (or servlet context) initialization parameters. You’ve already
seen how to define initialization parameters for individual servlets; now you’ll look at defining
parameters for the whole web application.

To achieve this, you use the ServletContext object. The ServletContext is a servlet’s view
onto the web application that contains it. As such, if a parameter is set in the ServletContext,
it’s accessible from all servlets in the web application.

Through the deployment descriptor, you can provide the ServletContext with any 
number of initialization parameters. You could use such parameters to convey application
information such as an administrator’s e-mail address. These parameters are available to the
servlets in the web application via the getInitParameter() and getInitParameterNames()
methods of the ServletContext object:

public abstract String getInitParameter(String name)
public abstract Enumeration getInitParameterNames()

Note that because this is an interface, all methods are abstract and their implementations
must be provided by the web container.

In the example, you define one initialization parameter for your web application by using
a <context-param> element:

<context-param>
<param-name>adminEmail</param-name>
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<param-value>admin@apress.com</param-value>
</context-param>

This parameter represents the e-mail address of the application’s administrator. This 
can be pulled into any servlet in the application so that the e-mail address used is consistent
throughout the system. To obtain this parameter from any particular servlet, you can use the
following code:

...
String adminEmail = getServletContext().getInitParameter("adminEmail");

...

Error Pages
In the bad old days of web development, if an error occurred in an application, you would see
the familiar HTTP error 500, or worse still, a nasty stack trace on the browser. For example, if
your servlet performed an operation that resulted in an exception, it was quite common to see
the output shown in Figure 2-9 in the client browser.

Figure 2-9. When your application does not define error handling, it is possible that the user
could see stack traces or other user-unfriendly error messages.
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In a production system, this sort of page does not inspire much confidence in the end
user of the application! You can prevent such pages from appearing through the use of error
pages.

Error pages allow you to respond to problems with custom pages that offer specific infor-
mation about the trouble at hand. These errors can include Java exceptions as well as HTTP
errors (for example, the result of a page not being found).

Our sample deployment descriptor defines two error pages. The first error page is shown
whenever the server encounters a java.lang.ArithmeticException (as shown previously). The
tags to define this are shown here:

<error-page>
<exception-type>java.lang.ArithmeticException</exception-type>
<location>/error.html</location>

</error-page>

The <error-page> tag has two children: <exception-type> and <location>. The
<exception-type> child tag defines the exception to catch, and <location> defines the page 
or resource to display on encountering the error defined.

After adjusting your deployment descriptor, if you were to run the same servlet that pro-
duced the earlier error, error.html would be called and displayed (Figure 2-10) instead of the
nasty Java stack trace.

Figure 2-10. By defining error handling in your application, you can control what the user sees
when an error occurs.

As most users will agree, they would rather be presented with a human-readable error
page than a huge, meaningless (to some anyway!) Java stack trace.

■Tip In testing these error-handling examples with Microsoft Internet Explorer, you may find that Internet
Explorer does not display the error pages properly. Instead it displays its own default error page. When
Tomcat 5 encounters an error, it sends an HTTP status code of 500 along with the error page (see Table 2-2).
When the error page that is sent is less than a certain size, Internet Explorer displays its own error page
rather than the one sent by the server. Most often, the critical size is 512 bytes (although we have seen situ-
ations where 1024 bytes seems to be the critical size). So, if everything seems correct, but Internet Explorer
won’t display error.html or 404.html, try adding an HTML comment so that the file size (and thus
response size) exceeds 512 or 1024 bytes.
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Your sample deployment descriptor also contains an error-page definition for an HTTP
error. This is defined by using the following tags:

<error-page>
<error-code>404</error-code>
<location>/404.html</location>

</error-page>

This looks similar to the previous example, but note the use of the <error-code> child tag,
instead of the <exception-type> child. This <error-code> child defines the HTTP error under
which the defined error page will be shown. In this example, when the web container cannot
find a file requested in the web application, it will show the page 404.html rather than the
server’s default error page. For example, when you try to call WrongServlet, which is obviously
not a real servlet, you should get a customized error page like the one shown in Figure 2-11.

Figure 2-11. Error pages can be sent to the user for HTTP status codes.

A list of HTTP status codes and their meanings is given in Table 2-2.

Table 2-2. HTTP Status Codes and Their Meanings

Status Code Meaning Status Code Meaning

100 Continue 404 Not Found

101 Switching Protocols 405 Method Not Allowed

200 OK 406 Not Acceptable

201 Created 407 Proxy Authentication
Required

202 Accepted 408 Request Time Out

203 Nonauthoritative Information 409 Conflict

204 No Content 410 Gone

205 Reset Content 411 Length Required

206 Partial Content 412 Precondition Failed

300 Multiple Choices 413 Request Entity Too Large

301 Moved Permanently 414 Request URL Too Large

Continued
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Table 2-2. Continued

Status Code Meaning Status Code Meaning

302 Moved Temporarily 415 Unsupported Media Type

303 See Other 500 Server Error

304 Not Modified 501 Not Implemented

305 Use Proxy 502 Bad Gateway

400 Bad Request 503 Out of Resources

401 Unauthorized 504 Gateway Time Out

402 Payment Required 505 HTTP Version Not Supported

403 Forbidden

JavaServer Pages Configuration Elements
A new feature of the Servlet 2.4 deployment descriptor is the addition of several JSP configura-
tion elements inside a <jsp-config> element. These elements allow you to do the following:

• Enable or disable EL evaluation

• Enable or disable scripting elements

• Indicate page-encoding information

• Automatically include preludes and codas

You can perform some or all of these functions for individual pages or groups of pages.
This grouping is controlled by the <jsp-property-group> element. This allows you to map
URLs to groups of the properties mentioned earlier. As you can see in the previous example,
you are applying several properties to all JSP pages in the application; this uses the following
property group:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>

</jsp-property-group>
</jsp-config>

Enabling Expression Language Evaluation
To enable or disable the evaluation of the EL, you can use the <el-ignored> element. This

can be used to easily set the isELIgnored property of a group of JSP pages. By default, the EL
evaluation is enabled for web applications using a Servlet 2.4 or Servlet 2.5 web.xml. To dis-
able evaluation for all the JSP pages in our application, you can use a fragment similar to the
following:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>
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</jsp-property-group
</jsp-config>

You can also disable the EL for specific pages by using a snippet such as the following:

<jsp-config>
<jsp-property-group>
<url-pattern>noel.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group
</jsp-config>

Enabling Scripting Elements
To enable or disable the evaluation of scripting elements within a page, you can use the
<scripting-invalid> element. By default, scripting is enabled. To disable scripting for all 
the JSP pages in your application, you can use a fragment similar to the following:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>
</jsp-config>

To disable scripting for a specific page, you can use a snippet such as the following:

<jsp-config>
<jsp-property-group>
<url-pattern>noscript.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>
</jsp-config>

Indicating Page-Encoding Information
Using the <page-encoding> element, you can define the encoding for a group of JSP pages. 
The valid values of the <page-encoding> tag are those of the pageEncoding page directive. It’s a
translation-time error to define the pageEncoding of a JSP page through one value in the JSP
configuration element and then give it a different value in a pageEncoding directive, but it’s
legal to give it the same value. You can use a snippet similar to the one shown here to control
the page encoding:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<page-encoding>ISO-8859-2</page-encoding>

</jsp-property-group
</jsp-config>
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Automatically Including Preludes and Codas 
Through the use of the <include-prelude> and <include-coda> elements, you can automati-
cally include a page before and after the evaluation of a group of pages.

The <include-prelude> element is a context-relative path that must correspond to an 
element in the web application. When the element is present, the given path will be auto-
matically included (as in an include directive) at the beginning of each JSP page in this
<jsp-property-group>.

The <include-coda> element is a context-relative path that must correspond to an element
in the web application. When the element is present, the given path will be automatically
included (as in an include directive) at the end of each JSP page in this <jsp-property-group>.

The following fragment shows a file being included at the start and end of every JSP page
in the web application:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/header.jsp</include-prelude>
<include-coda>/footer.jsp</include-coda>

</jsp-property-group
</jsp-config>

An Example Web Application
You are now in the position to pull together all the information in this chapter as a complete
web-application example.

This section covers most of the code required to produce a sample web application, as 
well as the information needed to deploy the completed application to a web container (in this
example, Tomcat 5.5). In the interest of space, not all the source files needed for this application
are listed in the book. These files consist of one exception class, the error pages for the applica-
tion, and two simple HTML pages. These files are simple enough that you should be able to
develop them on your own. Alternately, you can download them as part of the code download
for this book, at the Source Code area of the Apress website (http://www.apress.com).

The Store
The example used in this section is the ubiquitous web-store application. You’ll see a front
page, a shopping cart, and a checkout page.

After you’ve looked at the code for the application, you’ll examine the deployment
descriptor for the application.

The application will be written in the JSP Model 2 style (see Chapter 1 for a detailed
description of this), beginning with the controller.

■Note Bear in mind that this is a very simplistic application. Over the course of this book, the examples
will grow gradually more sophisticated.
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The Controller Servlet
The Controller servlet (FrontController.java in Listing 2-4) coordinates the behavior of our
store.

Listing 2-4. FrontController.java

package com.apress.projsp.store;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FrontController extends HttpServlet {

public void init() throws ServletException {

HashMap products = new HashMap();

Product p = new Product(1, "Dog", "9.99");
products.put("1", p);

p = new Product(2, "Cat", "4.99");
products.put("2", p);

p = new Product(3, "Fish", "1.99");
products.put("3", p);

//Store products in the ServletContext
getServletContext().setAttribute("products", products);

}
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// load the action
String name = req.getPathInfo().substring(1);

String viewName = "/error.jsp";
try {
name = "com.apress.projsp.store." + name;
Class c = getClass().getClassLoader().loadClass(name);
Action action = (Action) c.newInstance();
viewName = action.process(req, res);

} catch (ClassNotFoundException e) {
e.printStackTrace();
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} catch (InstantiationException e) {
e.printStackTrace();

} catch (IllegalAccessException e) {
e.printStackTrace();

}

RequestDispatcher dispatcher = 
req.getRequestDispatcher(viewName);

dispatcher.forward(req, res);

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

doPost(req, res);

}

}

As you can see, this servlet is fairly simple. Its primary job is to receive a request, work out
how to process it, delegate the processing to an appropriate class, and forward it to the next JSP
page in the store. This is achieved by reading the request path and attempting to instantiate 
a class that matches the last part of it. For example, if the request is http://localhost:8080/
store/servlet/DummyAction, the servlet will attempt to instantiate a class called DummyAction
in the current package. After this class has been instantiated, it will call the method process on
it, passing in the current request and response objects. This relies on the class implementing 
a known interface called Action. This interface (Listing 2-5) is simple, containing only one
method.

Listing 2-5. Action.java

package com.apress.projsp.store;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public interface Action {

/**
* Peforms the processing associated with this action.
*
* @param request     the HttpServletRequest instance
* @param response    the HttpServletResponse instance
* @return  the name of the next view
*/
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public String process(HttpServletRequest request, 
HttpServletResponse response)

throws ServletException;

}

It is the job of implementations of this interface to process the current request and return
the name of the next page to forward it to. Our store has several implementations of this inter-
face, which will all be shown and explained in this section.

Getting back to the controller, you can see that it also performs another job. The init()
method of the servlet creates a collection of Product objects that are placed into the
ServletContext. This would not normally be done, because the products would be obtained
from somewhere such as a database or configuration file. We have done it this way to avoid
cluttering up the code with data-access code. Product is just an object that holds the basic
data for each item. See Listing 2-6.

Listing 2-6. Product.java

package com.apress.projsp.store;

public class Product {

private String name;
private String price;
private int id;

public Product(int id, String name, String price) {
this.price = price;
this.name = name;
this.id=id;

}

public String getPrice() {
return this.price;

}

public String getName() {
return this.name;

}

public int getId() {
return this.id;

}

public String toString() {
return "Product:id=" + id + " name=" + name + " price=" + price;

}

}
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The Store Actions and JavaServer Pages
Now we have the base for our actions and model, let’s flesh it out by combining them with 
the view.

MainAction

The main action in our store is implemented (surprisingly) by a class called MainAction. This
class implements the Action interface that you saw earlier. This action, the code of which is
shown in Listing 2-7, has no other purpose at this time than to forward onto the main page in
this site, main.jsp.

Listing 2-7. MainAction.java

package com.apress.projsp.store;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;

public class MainAction implements Action {

public String process(HttpServletRequest req, HttpServletResponse res)
throws ServletException {

return "/main.jsp";

}
}

The main page for this site, main.jsp, is shown in Listing 2-8. This simple page displays
the list of products available to purchase.

Listing 2-8. main.jsp

<%@ page import="java.util.*,com.apress.projsp.store.*" %>

<%
HashMap products = (HashMap) application.getAttribute("products");

// List the products, clickable to add to cart
Iterator it = products.values().iterator();
out.println("<table>");
while (it.hasNext()) {
out.println("<tr>");
Product product = (Product) it.next();

%>
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<td>
<a href='CartAction?add=true&id=<%=product.getId()%>'>➥

<%=product.getName()%></a>
</td>
<td>
<%=product.getPrice()%>
</td>

</tr>
<%}%>
</table>

You display the products by getting the previously created hash table from ServletContext
(this was created by the controller servlet that you read about earlier). You then loop through
the hash table, writing each product out into an HTML table row. Each product name is ren-
dered as a hyperlink so you can add it to the shopping cart that you’ll read about next.

This main page has a header and footer included so you can simply change the style of
the page without changing the code that displays products. This is achieved by using the
<include-prelude> and <include-coda> subelements of the <jsp-config> deployment-
descriptor element. The following excerpt shows the deployment-descriptor elements that 
are required:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/header.jsp</include-prelude>
<include-coda>/footer.jsp</include-coda>

</jsp-property-group>
</jsp-config>

This includes the file /header.jsp as the page header and the file /footer.jsp as the page
footer. These are included for every JSP page within the system.

The header simply contains a basic header and heading, as shown in Listing 2-9.

Listing 2-9. header.jsp

<html>
<head>

<title>The Store</title>
</head>
<body>

<h1>Welcome to the Apress Store</h1>
<br>

The footer closes the body and adds some navigation links, as shown in Listing 2-10.
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Listing 2-10. footer.jsp

<br>
<table>

<tr>
<td><a href="CartAction?add=false">Display Cart</a></td>
<td><a href="CheckOutAction">Check Out</a></td>

</tr>
</body>

</html>

CartAction

The cart in your store holds only one type of each product. This is primarily so that you can
illustrate error pages for your sample application. The code that implements your cart is
another action, CartAction.java, and a simple Java class, named Cart.java, shown in
Listing 2-11.

Listing 2-11. Cart.java

package com.apress.projsp.store;
import java.util.*;

public class Cart {

private HashMap items = new HashMap();

public Cart() {
}

public Iterator getItems() {
return items.values().iterator();

}

public void addItem(Product product) throws ItemAlreadyAddedException {
Integer id = new Integer(product.getId());
if (this.items.containsKey(id)) {
throw new ItemAlreadyAddedException();

}
this.items.put(id, product);

}

}

The code in Listing 2-12 shows the action, called CartAction.java, that handles the web
operations on the shopping cart.
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Listing 2-12. CartAction.java

package com.apress.projsp.store;

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class CartAction implements Action {

public String process(HttpServletRequest req, HttpServletResponse res)
throws ServletException {

// Check to see if you are adding to the cart or
// if you want to display the cart
String adding = req.getParameter("add");

// Get the cart if it exists
HttpSession session = reqt.getSession();

Cart cart = (Cart) session.getAttribute("cart");

if (cart == null) {
cart = new Cart();

}

if (adding.equalsIgnoreCase("true")) {
// Add to it
addToCart(req, cart);

}
return "/cart.jsp";

}

private void addToCart(HttpServletRequest request, Cart cart) 
throws ItemAlreadyAddedException {

// Get the item to add from the request

// Get the products from the ServletContext
HashMap products = (HashMap)request.getSession().getServletContext().

getAttribute("products");

// Find the one represented by the ID that you passed in
try {
String id = request.getParameter("id");
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Product p = (Product) products.get(id);

System.out.println(p);
// Add it to the cart
cart.addItem(p);
// Add the cart to the session
request.getSession().setAttribute("cart",cart);

} catch (NumberFormatException nfe) {
throw new ItemAlreadyAddedException();

}
}

}

In this code, CartAction performs two tasks: it both adds to the shopping cart and dis-
plays the cart.

The first thing done in this action is to retrieve the shopping cart from the user’s session.
If there is no cart in the session, a new Cart object is created as follows:

Cart cart = (Cart) session.getAttribute("cart");

if (cart == null) {
cart = new Cart();

}

Next, this method decides what to do to the cart based on a parameter (called adding)
passed to the action in HttpServletRequest. If the parameter contains the value true, you 
call the method addToCart(). If the adding parameter is false, you simply redirect to the
cart.jsp page. This method looks for another parameter in HttpServletRequest called id. 
It then looks for this product in the list of products that you placed into ServletContext in 
the initialization, and adds it to the cart object. As mentioned earlier, a cart can contain only
one of each product. If the user tries to add more than one of the same item to the cart, an
ItemAlreadyAddedException is thrown. As you’ll see later, the web container catches this
exception and a special page is shown. 

■Note We do not show the listing for ItemAlreadyAddedException.java, nor the page sent in response to
this exception, duplicateItem.html, in this book. Creation of these files is left as an exercise for you. Or, if you
download the code for this book from the Source Code area of the Apress website (http://www.apress.com),
you can find the source for ItemAlreadyAddedException.java and duplicateItem.html.

After the item is added to the cart (or if the adding parameter is false), the cart is written
out to the user’s browser by redirecting to the cart.jsp page. This page is shown in Listing 2-13.
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Listing 2-13. cart.jsp

<%@page import="java.util.*,com.apress.projsp.store.Cart,
com.apress.projsp.store.Product"%>

<%Iterator items = ((Cart)session.getAttribute("cart")).getItems();%>
<h1>Current Cart Contents:</h1>
<table>
<%while (items.hasNext()) {%>

<tr>
<%Product p = (Product)items.next();%>

<td><%=p.getName()%></td>
<td><%=p.getPrice()%></td>
</tr>

<%}%>

</table>

CheckOutAction

A store is useful only if you can actually buy the products that you put into your cart. In the
example store, the CheckOutAction handles this. Obviously, you cannot really buy the items
because this is only an example. The checkout process in our store simply displays the con-
tents of the cart and gives the user a Confirm button. Listing 2-14 shows the code for the
CheckOutAction.

Listing 2-14. CheckOutAction.java

package com.apress.projsp.store;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class CheckOutAction implements Action {

public String process(HttpServletRequest req, HttpServletResponse res)
throws ServletException {

return "/checkout.jsp";

}
}
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The action simply redirects the user to the checkout.jsp page shown in Listing 2-15.

Listing 2-15. checkout.jsp

<jsp:include page="cart.jsp" />

<br>Please Click Confirm to check out<br>
<form action='ConfirmAction'><input type='submit' value='Confirm'></form>

This page includes the content of the cart.jsp page to display the cart to the user. The
page also includes a Confirm button. When clicked, the button will invoke ConfirmAction.

ConfirmAction

The confirm action in our store simply redirects to a confirmation page. In a real store, this
action might process credit-card information or any number of other things. Listing 2-16
shows the code for this action.

Listing 2-16. ConfirmAction.java

package com.apress.projsp.store;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;

public class ConfirmAction implements Action {

public String process(HttpServletRequest req, HttpServletResponse res)
throws ServletException {

return "/confirmed.html";
}

}

ConfirmAction simply redirects you to an HTML file to tell the user that their order has
been confirmed. In a real store, you would output a receipt or something like it at this stage.

Having seen all the important code for the simple store application, you’ll now look at the
deployment descriptor required to deploy this application.

The Deployment Descriptor
Now it’s time to deploy the application. Listing 2-17 shows the deployment descriptor that
you’ll be using to do this.

Listing 2-17. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
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xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<servlet>
<servlet-name>FrontController</servlet-name>
<servlet-class>

com.apress.projsp.store.FrontController
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>FrontController</servlet-name>
<url-pattern>/servlet/*</url-pattern>

</servlet-mapping>

<jsp-config>
<jsp-property-group>

<url-pattern>/*</url-pattern>
<include-prelude>/header.jsp</include-prelude>
<include-coda>/footer.jsp</include-coda>

</jsp-property-group>
</jsp-config>

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

<error-page>
<exception-type>

com.apress.projsp.store.ItemAlreadyAddedException
</exception-type>
<location>/duplicateItem.html</location>

</error-page>

</web-app>

This deployment descriptor contains all the elements to build the application and allow it
to be deployed into a web container.

The first thing that you set up is the controller servlet. This servlet processes all requests
beginning with /servlet that are received by the web application. This is achieved by using
two different deployment descriptor elements, including the <servlet> element:

<servlet>
<servlet-name>FrontController</servlet-name>
<servlet-class>

com.apress.projsp.store.FrontController
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</servlet-class>
<load-on-statup>1</load-on-statup>

</servlet>

and the <servlet-mapping> element:

<servlet-mapping>
<servlet-name>FrontController</servlet-name>
<url-pattern>/servlet/*</url-pattern>

</servlet-mapping>

This means that the controller servlet will be requested by using a path similar to the
following:

http://localhost:8080/store/servlet/ActionName

where ActionName is the name of the class that implements the action that you wish to process
your request.

After you’ve mapped the controller servlet, you declare the pages to be included as the
header and footer of each page in the application. This is achieved by using the following
elements:

<jsp-config>
<jsp-property-group>

<url-pattern>/*</url-pattern>
<include-prelude>/header.jsp</include-prelude>
<include-coda>/footer.jsp</include-coda>

</jsp-property-group>
</jsp-config>

This says that for every page (shown by the /* in the <url-pattern> element) in the appli-
cation, you’ll include /header.jsp at the start and /footer.jsp at the end. This allows you to
change the appearance of the site at deployment time. 

You then have the welcome file for the application:

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

This index page just ensures that you can direct the user to the MainAction without the
user having to know the complex URL required.

Next you define an error page for the application. This page is invoked when a specified
error occurs in any part of the application. The <error-page> element in the deployment
descriptor that does this is shown here. More information about this mechanism can be found
in the earlier discussion of error pages.

<error-page>
<exception-type>

com.apress.projsp.store.ItemAlreadyAddedException
</exception-type>
<location>/duplicateItem.html</location>

</error-page>
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This definition says that whenever the exception com.apress.projsp.store.ItemAlready➥

AddedException is thrown, the page duplicateItem.html is shown. As you may you recall, we
have said that only one item of a specific type can be added to the user’s shopping cart. If this
constraint is violated, the previous exception is thrown and the user is presented with a page
indicating that no duplicate items can be added to the cart.

Deploying the Application
Now we’ll demonstrate how to deploy the completed and archived application to Tomcat.

■Note The files for this example and the earlier examples, along with the respective WAR files, are avail-
able for download from the Source Code area of the Apress website (http://www.apress.com).

First you must create a WAR file containing the application. A WAR file is just like a JAR file
except that the files must be located in specific directories and it’s created by using the jar
utility. Therefore, before you can create the WAR file, you must place all the files in the correct
directories as shown in Figure 2-12 (this is the same structure that you saw earlier when you
deployed directly to Tomcat).

Figure 2-12. The directory structure for the store application

• store is the root directory. When you deployed to Tomcat, this was the name of the web
application, but when you deploy as a WAR, it’s the name of the WAR file that becomes
the application’s name (in Tomcat). All the JSP files (main.jsp, cart.jsp, checkout.jsp,
error.jsp, header.jsp, and footer.jsp) and HTML files (index.html, confirmed.html,
and duplicateItem.html) should be located under this directory. 

• WEB-INF is the directory indicating that this is a web application—the directory name is
case sensitive.

• web.xml is the deployment descriptor, which sits inside the WEB-INF folder.

• classes is the directory where you store all the class files in appropriate subdirectories
for the package structure, for example, com\apress\projsp\store\ (as shown here) 
will contain Action.class, Cart.class, CartAction.class, CheckOutAction.class,
ConfirmAction.class, FrontController.class, ItemAlreadyAddedException.class,
MainAction.class, and Product.class.
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After the files are in their respective folders, run the following command from the com-
mand prompt from the root folder as follows:

\store>jar -cvf store.war.

This will create a WAR file in the same directory that contains all the items in the
application.

Deploying with Tomcat

Deploying this application with Tomcat is simplicity itself. For basic deployments, all you need
to do is copy your WAR file into the webapps directory of your Tomcat installation. It’s located
at %TOMCAT_HOME%\webapps.

If this is the first time you have copied the WAR file to the webapps directory, Tomcat will
detect the new file and automatically deploy the application. If you are attempting to redeploy
the store application, Tomcat does not check for newer versions of existing WAR files; you can
do a couple of things to get Tomcat to redeploy the application. We recommend that you go to
the Tomcat Management page, which you can access through a link on the main Tomcat page,
http://localhost:8080. Find the store application in the list and click the Undeploy link for
the application. Then, copy the WAR file to the webapps directory and Tomcat will redeploy it.

To deploy the example in a more advanced way, you can follow these steps:

1. Copy your WAR file to the webapps directory of your Tomcat installation. This step is
voluntary, but it’s sensible to keep your web-application deployments in the same
place.

2. Add an entry to the server.xml file. This file is located in the %TOMCAT_HOME%\conf direc-
tory. The line that you should add to deploy the store application is as follows:

<Context path="/store" docBase="/store.war" reloadable="true"/>

This line declares a context to exist with its base URI being /store (this can be any
valid path). This context is fulfilled by the application at /store.war. You are passing
another parameter when creating the context.

If the reloadable parameter is set to true, Tomcat monitors classes in WEB-INF\classes
and WEB-INF\lib for changes and automatically reloads the web application if a change
is detected. This feature is useful during application development, but it requires sig-
nificant runtime overhead and isn’t recommended for use on deployed production
applications.

There are many other parameters that can be passed. Most of these are beyond the
scope of this chapter, but it would be very useful to enable more control over how 
your application is deployed. Details of these parameters can be found at
http://jakarta.apache.org/tomcat/. 

3. Start Tomcat, and your application will be deployed. It can now be accessed at
http://localhost:8080/store/. The home page contains a link that passes you
through to the main page at http://localhost:8080/store/servlet/MainAction. 
Figure 2-13 shows the main store page accessed from the home page.
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Figure 2-13. The main store page, accessed from the home page

4. If you make changes to the application, create a new WAR file, remove the old applica-
tion by using the Tomcat Management page, copy the new WAR over the old one, and
Tomcat will redeploy the new version. Alternately, if the only change is a change to a
JSP, you can simply copy the new JSP to the appropriate location in the application
directory under webapps. Tomcat will automatically detect the new JSP, translate and
compile it, and use it for the next request for that JSP.

Summary
This chapter has covered a very large subject area in a very short space. It is intended as an
overview, and you are encouraged to explore more detailed texts on the subjects that it contains.
You’ve seen that the Java Servlet API allows you to build platform-independent server-side Java
components to handle user requests. You’ve also seen that servlets are protocol-independent
but that they can be developed for specific protocols, particularly HTTP.

You’ve also looked at the deployment of servlet-based web applications, with particular
attention paid to the deployment descriptor. You’ve seen how the deployment descriptor
describes servlets to the container. You’ve learned about the new deployment-descriptor ele-
ments that support the configuration of JSP 2.1 pages. These elements provide the ability to
enable and disable the EL and scripting as well as the ability to automatically include other
pages at the start and end of a group of JSP pages.
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The JavaServer Pages
Expression Language

One of the features of the JSP specification that you’ll be using most often is the JSP expres-
sion language, an intentionally simple language that is, to a large extent, independent from JSP.

In previous incarnations of JSP, Java code was embedded into JSP pages in the form of
scriptlets, for example:

<%
MyBean bean = new MyBean();
String name = bean.getName();
out.println(name);

%>

This scriptlet creates a new instance of a class called MyBean, gets its name property, assigns
this to a string variable, and then outputs this string to the page. Now you might be looking at
this and thinking, “I can achieve the same thing by using the JSP standard actions (<useBean>
and <getProperty>).”

Although this is certainly true, it was previously extremely hard to write a function-rich
JSP-based web application without using a number of scriptlets within your pages. In fact,
there are many problems associated with using Java code in the form of scriptlets in JSP pages.
The first and most obvious of these is that it’s very common for non-Java programmers to cre-
ate the user interface for a system. This is because graphic designers are generally better than
Java programmers at creating functional user interfaces. The second problem caused by the
use of scriptlets is that of maintainability. Embedding large amounts of code into the user
interface of a system makes the interface much harder to change and understand.

For all of these reasons, the JSP 2.0 specification introduced an expression language (EL)
that can do pretty much everything that scriptlets can do. This language is far simpler to under-
stand than Java and looks very similar to JavaScript. The following are good reasons for this
similarity:

• JavaScript is something that most page authors are already familiar with.

• The EL is inspired by ECMAScript, which is the standardized version of JavaScript.
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In fact, both ECMAScript and the XPath EL inspired the JSP EL. The EL specification
states, “. . . the experts involved were very reluctant to design yet another expression language
and tried to use each of these languages, but they fell short in different areas.”

If you’ve been following the progress of JSP, and the JSP Standard Tag Library (JSTL),
you’re probably aware that the first expression language was released as part of the JSTL. The
EL was then incorporated into the JSP 2.0 specification with JSTL 1.1.

At around the same time, the JavaServer Faces (JSF) expert group was developing an
expression language for JSF. Because of JSF requirements, the JSF expression language had
some differences from the JSP expression language. JSP 2.1 unifies the two versions so that
there is a single expression language used for JSP, JSTL, and JSF.

In this chapter, you’ll learn the following:

• The syntax and usage of the EL, including reserved words, disabling scriptlets in a page,
and disabling the evaluation of the EL on a page or set of pages 

• The operators within the EL, including arithmetic operators, comparison operators,
logical operators, and other operators

• The use of JavaBeans with the EL

• The implicit objects within the EL

• The declaration and use of functions in the EL

The Syntax and Use of the Expression Language
In this section, you’ll look at the syntax of the EL, see how to use it on a JSP page, and learn the
reserved words of the language. After you’ve looked at the basics, you’ll move on to look at
how and why you might disable the EL and Java scriptlets within a page or set of pages.

Basic Syntax
No matter where the EL is used, it’s always invoked in a consistent manner, via the construct
${expr} or #{expr}, where expr is the EL expression that you wish to have evaluated.

In the EL 2.1 specification, the syntax of ${expr} and #{expr} are equivalent and can be
used interchangeably. However, when used with some other Java Platform, Enterprise Edition
API, the other API may enforce restrictions on the use of ${expr} and #{expr}. Specifically,
when used with JSP pages, the two forms cannot be used interchangeably. Within a JSP page,
${expr} is used for expressions that are evaluated immediately, whereas #{expr} is used for
expressions for which evaluation is deferred. Deferred expressions are used with custom
actions, which you will look at in Chapters 6 and 7.

A simple use of the EL is shown here. This piece of code creates a JavaBean and outputs 
its name property:

<jsp:useBean id="bean" class="MyBean"/>
${bean.name}

We’ll discuss the detailed syntax of JavaBeans later in the “JavaBeans and the Expression
Language” section.
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Note that in the previous example you used the <useBean> standard action to create 
the object. This is the recommended way to do this, rather than instantiating the object in a
scriptlet.

Literals
Just as in any programming language, the EL provides several literals for developers to use. A
literal can be of a Boolean, integer, floating point, string, or null type. The following are valid
values for each literal type:

• Boolean: true or false.

• Integer: This is limited to values defined by the IntegerLiteral regular expression as
follows:

IntegerLiteral ::= ['0'-'9']+

This regular expression says that an integer is any sequence of digits using the digits
from 0 to 9. The specification also allows an integer literal to be preceded by a unary “-”
symbol to form negative integer literals. For example, the following are valid integers:

-102
0
21
21234

• Floating point: This is defined by the following FloatingPointLiteral expression:

FloatingPointLiteral ::= ([''0'-'9'])+ '.' (['0'-'9'])* Exponent?
| '.' (['0'-'9'])+ Exponent?
| (['0'-'9'])+ Exponent?

Exponent ::= ['e','E'] (['+','-'])? (['0'-'9'])+

This expression is more complex. As with integer literals, a floating-point literal can be
preceded by a unary “-” symbol to produce negative floating-point literals. To help you
understand this, here are some valid floating-point literals:

-1.09
-1.003
1.0E10
1.
-10.0
0.1

• String: A string is any sequence of characters delimited with either single or double
quotes. For example, "a string" and 'a string' are both valid; however, "as' and 'as"
are not valid. If you want to represent quotes within a string, then you can use \" for
double quotes, or \' for single quotes. Alternately, if the string is delimited by double
quotes, you can use single quotes within the string without escaping the single quotes,
and vice versa. To represent a \ in a string, you use the escape sequence \\. 

• Null: You can represent null by using the literal null.
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Default Values and the Expression Language
Experience suggests that it’s most important to be able to provide as good a presentation as
possible, even when there are simple errors in the page. To meet this requirement, the EL does
not provide warnings, just “default values” and “errors.” Default values are type-correct values
that are assigned to a subexpression when there is a problem, and errors are exceptions to be
thrown (and then handled by the standard JSP error-handling process). An example of such a
default value is 'infinity'. This value is assigned to an expression that results in a divide by
zero. For example, the following piece of EL will display infinity rather than causing an error:

${2/0}

The equivalent Java expression would throw an ArithmeticException.

Using the Expression Language
You can use the EL in the same places as you would have used a scriptlet, for example:

• Within attribute values for JSP standard and custom tags

• Within template text (that is, in the body of the page)

Using the Expression Language Within Custom Tags 
Using the EL within the attributes of a custom tag in a JSP page allows you to dynamically
specify the attribute values for a custom tag. This is an extremely powerful mechanism. The
following code snippet shows how you might dynamically specify an attribute to a custom tag
by using a scriptlet:

<myTagLibrary:myTag counter="<%= 1+1 %>" /> 

To achieve this dynamic behavior prior to the JSP 2.0 specification, you had to use
scriptlets. As we’ve discussed, scriptlets are untidy and cause all sorts of problems with read-
ability and maintainability. By using an EL statement, you can dynamically provide the values
to a custom tag’s attribute. If you were to repeat the previous tag example by using the EL, you
would see that the code is much neater:

<myTagLibrary:myTag counter="${1+1}" />

You can see that the value 1+1 is being passed to the custom tag as an attribute named
counter. The details of the creation of custom tags are discussed at length in Chapters 6
through 8.

You’ll look at more advanced use of the language with JavaBeans, arithmetic, and com-
parisons later in this chapter.

Using the Expression Language Within JSP Template Text
Now that you’ve seen how the EL can be used to provide the values of custom tag attributes,
you’ll learn how you can use the EL within the body of a JSP page so that you can produce
dynamic content. Listing 3-1 shows an example of a JSP page with some dynamic content
generated by the EL. This page displays the value of a parameter (passed to the page) called
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name. The user is then given a text field in which to enter a new name, and a button to submit
the name back to the page for another greeting.

Listing 3-1. templateText.jsp

<html>
<head>
<title>EL and Template Text</title>
<style>
body, td {font-family:verdana;font-size:10pt;}

</style>
<head>
<body>
<h2>EL and Template Text</h2>
<table border="1">
<tr>
<td colspan="2">Hello ${param['name']}</td>

</tr>
<tr>
<form action="templateText.jsp" method="post">
<td><input type="text" name="name"></td>
<td><input type="submit"></td>

</form>
</tr>

</table>
</body>

</html>

To run this example, you need to deploy it into a JSP 2.0– or JSP 2.1–compliant web con-
tainer. As with all examples in this book, we will be using Tomcat 5.5, so you’ll need to create
the deployment descriptor shown in Listing 3-2.

Listing 3-2. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

</web-app>

Here is the complete list of steps needed to create, deploy, and run this example:

1. Create the directory %TOMCAT_HOME%\webapps\expressionLanguage\WEB-INF.

2. Create the web.xml file shown in Listing 3-2. Save it to the webapps\expressionLanguage\
WEB-INF folder.
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3. Create the JSP page in Listing 3-1 and save it to the webapps\expressionLanguage folder.

4. Start Tomcat, if needed, open your web browser, and go to
http://localhost:8080/expressionLanguage/templateText.jsp.

Figure 3-1 shows the page that should appear in the web browser.

Figure 3-1. The templateText.jsp displays the value submitted by the user.

As you can see, this page is a very simple, personalized greeting. When the page first
loads, there will be no request parameter, so the greeting will be only the word “Hello.” When
the Submit Query button is clicked, the request is submitted with the parameter name. The
JSP page accesses this parameter and uses an EL statement to print the greeting. You’ll look at
how the request variable is accessed later, in the "Expression-Language Implicit Objects" sec-
tion. For now, try entering different values within the text box and clicking Submit Query.

Reserved Words
As with any other language, the JSP EL has many words that are reserved. A reserved word
(also known as a keyword) is one that has a special meaning within the language. This means
that you cannot use the reserved word to represent anything else, such as a variable identifier.
The following are reserved words in the JSP EL:

and

eq

gt

true

instanceof

or

ne

lt

false
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empty

not

if

ge

null

div

mod

It’s worth noting that not all of these words are currently in the language, but they may be
in the future, and developers should avoid using them. You’ll see examples of using the major-
ity of the reserved words during the course of this chapter.

Disabling Scriptlets
As we’ve mentioned, the EL is intended to replace the use of Java scriptlets in developing JSP-
based web applications. To this end, it’s possible to disable the evaluation of scriptlets through
configuration parameters. This allows a developer to ensure that no one inadvertently uses
scriptlets instead of the EL. This can allow best practices to be more easily enforced.

You can disable scriptlets within a page using the web.xml deployment descriptor by
choosing to disable evaluation for a single page, a set of pages, or for the entire application.

The tags that you need to add to the deployment descriptor are within the <jsp-config>
element. The following example disables scriptlets for all JSP pages within an application:

<jsp-config>
<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>
</jsp-config>

The <url-pattern> element can represent a single page, for example:

<jsp-config>
<jsp-property-group>

<url-pattern>/test.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>
</jsp-config>

It can also represent a set of pages, for example:

<jsp-config>
<jsp-property-group>
<url-pattern>/noscriptlets/</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>
</jsp-config>
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Disabling the Expression Language
Just as you can disable scriptlets within a page, you can also disable the evaluation of the EL.
In previous versions of JSP, the characters ${ had no special meaning; therefore, it’s possible
that people have used them in their JSP pages. If you were to try to deploy these pages on a JSP
2.0– or JSP 2.1–compliant web container, you would get errors. Figure 3-2 shows the kind of
error that you could expect to see.

Figure 3-2. A page implemented under an earlier JSP specification may use the characters ${,
resulting in an error when the same page is used in a JSP 2.0 or later container.

It’s worth noting that if a web application is deployed by using a Servlet 2.3 deployment
descriptor (that is, one that conforms to the 2.3 Document Type Definition, http://java.sun.com/
dtd/web-app_2_3.dtd), then the evaluation of the EL is automatically deactivated. This is to
reduce the chance that an error will occur when a web container is upgraded. Conversely, if 
a web application is deployed with a Servlet 2.4 or Servlet 2.5 deployment descriptor (that is,
the web application conforms to the 2.4 XML Schema, http://java.sun.com/xml/ns/ 
j2ee/web-app_2_4.xsd, or to the 2.5 XML Schema, http://java.sun.com/xml/ns/javaee/ 
web-app_2_5.xsd), then the EL is enabled by default.

You can disable EL evaluation in two ways:

• Individually on each page by using the page directive

• Within the web.xml file by using a JSP configuration element

To disable the EL for a single page, it’s simplest to use the isELIgnored attribute of the
page directive in the header of the page:

<%@ page isELIgnored="true" %>
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If you choose to disable evaluation within the web.xml file, you can disable for a single
page, a set of pages, or the entire application. The following XML example shows how you
might disable the EL for an entire application:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

To disable the evaluation of the EL for a single page within the deployment descriptor,
you can use an XML fragment similar to the following:

<jsp-property-group>
<url-pattern>noel.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

To disable the evaluation of the EL for a set of pages within the deployment descriptor,
you can use an XML fragment similar to the following:

<jsp-property-group>
<url-pattern>/noel/</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

If you try to use the EL after you’ve disabled it, you won’t see any errors and the ${expr}
expression within the JSP page will appear unaltered in the final output.

Arithmetic Evaluation Using the Expression 
Language
Now that you’ve examined the basic syntax of the EL and where it can be used, you’ll look at
some specific uses of the language. The first of these is using the EL to evaluate arithmetic
operations. There are many cases within web-application development where you need to
perform some mathematics on a page. This might be to show a number within the text of a
page or to pass a number to a custom tag. In either case, the concepts are exactly the same.

Arithmetic operators are provided to act on both integer and floating-point values. There
are six operators that you can use and combine to achieve the vast majority of mathematical
calculations with ease:

• Addition: +

• Subtraction: -

• Multiplication: *

• Exponents: E

• Division: / or div

• Modulus: % or mod
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The last two operators are presented with two alternative syntaxes (both will produce
exactly the same result). This is so that the EL is consistent with both the XPath and ECMAScript
syntaxes. You can use all the operators in a binary fashion (that is, with two arguments, such
as 2 + 3) and the subtraction operator to represent the unary minus (that is, -4 + -2).

As you would expect, each operator has a precedence that determines the order of evalua-
tion of an expression. This precedence is as follows:

• ()

• - (unary)

• * / div mod %

• + - (binary)

You’ll update this list when you look at the comparison operators in the next section. You
can, of course, use parentheses to change the order of evaluation, as these take the highest
precedence.

With operators of equal precedence, the expression is evaluated from left to right, for
example:

2 * 5 mod 3

is equivalent to (2 * 5) mod 3, which evaluates to 1—rather than 2 * (5 mod 3), which evalu-
ates to 4.

Listing 3-3 is a JSP page that shows an example of all the operators in action.

Listing 3-3. arithmetic.jsp

<html>
<head>
<title>Arithmetic</title>
<style>
body, td {font-family:verdana;font-size:10pt;}

</style>
</head>
<body>
<h2>EL Arithmetic</h2>
<table border="1">
<tr>
<td><b>Concept</b></td>
<td><b>EL Expression</b></td>
<td><b>Result</b></td>

</tr>
<tr>
<td>Literal</td>
<td>${'${'}10}</td>
<td>${10}</td>

</tr>
<tr>
<td>Addition</td>
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<td>${'${'}10 + 10 }</td>
<td>${10 + 10}</td>

</tr>
<tr>
<td>Subtraction</td>
<td>${'${'}10 - 10 }</td>
<td>${10 - 10}</td>

</tr>
<tr>
<td>Multiplication</td>
<td>${'${'}10 * 10 }</td>
<td>${10 * 10}</td>

</tr>
<tr>
<td>Division / </td>
<td>${'${'}10 / 3 }</td>
<td>${10 / 3}</td>

</tr>
<tr>
<td>Division DIV</td>
<td>${'${'}10 div 3 }</td>
<td>${10 div 3}</td>

</tr>
<tr>
<td>Modulus</td>
<td>${'${'}10 % 3 }</td>
<td>${10 % 3}</td>

</tr>
<tr>
<td>Modulus</td>
<td>${'${'}10 mod 3 }</td>
<td>${10 mod 3}</td>

</tr>
<tr>
<td>Precedence</td>
<td>${'${'}2 * 5 mod 3 }</td>
<td>${2 * 5 mod 3}</td>

</tr>
<tr>
<td>Precedence with parens</td>
<td>${'${'}2 * (5 mod 3) }</td>
<td>${2 * (5 mod 3)}</td>

</tr>
<tr>
<td>Division by Zero</td>
<td>${'${'}10 / 0 }</td>
<td>${10 / 0}</td>

</tr>
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<tr>
<td>Exponential</td>
<td>${'${'}2E2}</td>
<td>${2E2}</td>

</tr>
<tr>
<td>Unary Minus</td>
<td>${'${'}-10}</td>
<td>${-10}</td>

</tr>
</table>

</body>
</html>

To run this example, you need to deploy it into a JSP 2.0– or JSP 2.1–compliant web
container just as you did earlier:

1. Copy the JSP page in Listing 3-3 to the %TOMCAT_HOME%\webapps\expressionLanguage
directory.

2. Start Tomcat, if needed, open your web browser, and go to
http://localhost:8080/expressionLanguage/arithmetic.jsp.

Figure 3-3 shows the output of the JSP page.

Figure 3-3. The arithemetic operators allow you to perform many basic math operations 
in a JSP page.
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All that this JSP page does is print out the result of the expression next to the expression
itself. It also demonstrates an interesting technique: that of displaying the ${ characters on a
JSP page. This is easily achieved by embedding the literal '${' in an EL statement. For exam-
ple, to show the string ${2+3} on a JSP page, you can use the following expression:

${'${'}2 + 3 }

You may be thinking that the operators that are provided are not powerful enough. For
example, where is the square-root operator? Advanced operators are deliberately not provided
to the JSP developer because advanced calculations should not be done in a page. They should
either be done in the controller layer of the application, or by using view-helper components
such as custom tags or EL functions (see the “Expression-Language Functions” section later in
this chapter).

Comparisons in the Expression Language
Another useful feature of the EL is the ability to perform comparisons, either between num-
bers or objects. This feature is used primarily for the values of custom tag attributes, but can
equally be used to write out the result of a comparison (true or false) to the JSP page. The EL
provides the following comparison operators:

• == or eq

• != or ne

• < or lt

• > or gt

• <= or le

• >= or ge

The second version of each operator exists to avoid having to use entity references in JSP
XML syntax; however, the behavior of the operators is the same.

In the JSP page in Listing 3-4, you can see the comparison operators in use.

Listing 3-4. conditions.jsp

<html>
<head>
<title>EL Conditions</title>
<style>
body, td {font-family:verdana;font-size:10pt;}

</style>
</head>
<body>
<h2>EL Conditions</h2>
<table border="1">
<tr>
<td><b>Concept</b></td>
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<td><b>EL Condition</b></td>
<td><b>Result</b></td>

</tr>  
<tr>
<td>Numeric less than</td>
<td>${'${'}1 &lt; 2}</td>
<td>${1 < 2}</td>

</tr>  
<tr>
<td>Numeric greater than</td>
<td>${'${'}1 &gt; 2}</td>
<td>${1 > 2}</td>

</tr>  
<tr>
<td>Numeric less than</td>
<td>${'${'}1 lt 2}</td>
<td>${1 lt 2}</td>

</tr>  
<tr>
<td>Numeric greater than</td>
<td>${'${'}1 gt 2}</td>
<td>${1 gt 2}</td>

</tr>  
<tr>
<td>Numeric Greater than or equal</td>
<td>${'${'}1 &gt;= 1}</td>
<td>${1 >= 1}</td>

</tr>
<tr>
<td>Numeric Less than or equal</td>
<td>${'${'}1 &lt;= 1}</td>
<td>${1 <= 1}</td>

</tr>  
<tr>
<td>Numeric less than or equal</td>
<td>${'${'}1 le 1}</td>
<td>${1 le 1}</td>

</tr>  
<tr>
<td>Numeric greater than or equal</td>
<td>${'${'}1 ge 1}</td>
<td>${1 ge 1}</td>

</tr>  
<tr>
<td>Numeric equal to</td>
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<td>${'${'}1 == 1}</td>
<td>${1 == 1}</td>

</tr>  
<tr>
<td>Numeric equal to</td>
<td>${'${'}1 eq 1}</td>
<td>${1 eq 1}</td>

</tr>  
<tr>
<td>Numeric not equal to</td>
<td>${'${'}1 != 2}</td>
<td>${1 != 2}</td>

</tr>  
<tr>
<td>Numeric not equal to</td>
<td>${'${'}1 ne 2}</td>
<td>${1 ne 2}</td>

</tr>  
<tr>
<td>Alphabetic less than</td>
<td>${'${'}'abe' &lt; 'ade'}</td>
<td>${'abe' < 'ade'}</td>

</tr>  
<tr>
<td>Alphabetic greater than</td>
<td>${'${'}'abe' &gt; 'ade'}</td>
<td>${'abe' > 'ade'}</td>

</tr>  
<tr>
<td>Alphabetic equal to</td>
<td>${'${'}'abe' eq 'abe'}</td>
<td>${'abe' eq 'abe'}</td>

</tr>  
<tr>
<td>Alphabetic not equal to</td>
<td>${'${'}'abe' ne 'ade'}</td>
<td>${'abe' ne 'ade'}</td>

</tr>  
</table>
</body>

</html>

Again, you’ll deploy the JSP page into a JSP 2.0– or JSP 2.1–compliant web container. Here
is the list of steps to create, deploy, and run the JSP page:

1. Enter the JSP code in Listing 3-4 into a file called conditions.jsp and save it to the
expressionLanguage folder.
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2. Start Tomcat, open your web browser, and go to http://localhost:8080/
expressionLanguage/conditions.jsp.

Figure 3-4 shows the web page generated by this JSP page.

Figure 3-4. Conditional operators can be used to compare operators in a JSP page.

You are now in a position to update your precedence table from the previous section with
the comparison operators. Again, parentheses can be used to alter the order of evaluation, and
identical precedence operators are evaluated from left to right as follows:

• ()

• - (unary)

• * / div mod %

• + - (binary)

• < > <= >= lt gt le ge

• == != eq ne
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Logical Operators in the Expression Language
The EL also enables you to perform logical operations on Boolean arguments. The logical
operators are as follows:

• && or and

• || or or

• ! or not

Once again, there are alternatives for each of the operators.
If either of the arguments is not Boolean, an attempt will be made to convert them to

Boolean; if this is not possible, an error will occur.
Listing 3-5 shows some examples of the logical operators in action.

Listing 3-5. logic.jsp

<html>
<head>
<title>EL Logic</title>
<style>
body, td {font-family:verdana;font-size:10pt;}

</style>
</head>
<body>
<h2>EL Logic</h2>
<table border="1">
<tr>
<td><b>Concept</b></td>
<td><b>EL Expression</b></td>
<td><b>Result</b></td>

</tr>    
<tr>
<td>And</td>
<td>${'${'}true and true}</td>
<td>${true and true}</td>

</tr>
<tr>
<td>And</td>
<td>${'${'}true && false}</td>
<td>${true && false}</td>

</tr>
<tr>
<td>Or</td>
<td>${'${'}true or true}</td>
<td>${true or false}</td>

</tr>
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<tr>
<td>Or</td>
<td>${'${'}true || false}</td>
<td>${true || false}</td>

</tr>
<tr>
<td>Not</td>
<td>${'${'}not true}</td>
<td>${not true}</td>

</tr>
<tr>
<td>Not</td>
<td>${'${'}!false}</td>
<td>${!false}</td>

</tr>
</table>

</body>
</html>

Once again, you’ll run this example by deploying it in a web container:

1. Enter the JSP code in Listing 3-5 into a file called logic.jsp and save it to the
expressionLanguage folder.

2. Start Tomcat and go to http://localhost:8080/expressionLanguage/logic.jsp. 

Figure 3-5 shows the web page generated by this JSP page.

Figure 3-5. Logical operators can be used with Boolean arguments in a JSP page.
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Other Operators
Besides the arithmetic, comparison, and logical operators that you’ve seen so far, several 
other operators are available to developers using the EL. These operators are mainly related 
to objects. A property or method of an object can be accessed by using either the . (dot) or []
(bracket) operator, which is deliberate in order to align the language with ECMAScript. For
example, obj.property is equivalent to obj["property"].

This syntax is also used to access the items within maps, lists, or arrays. For example, 
to access the item in a map with the key "sam", you could use myMap["sam"] or myMap.sam.

The final operator that you’ll look at is the empty operator. The empty operator is a prefix
operator that can be used to determine if a value is null or empty. To evaluate the expression
empty A, the EL implementation code first checks whether A is null. If A is null, the expression
evaluates to true. If A is an empty string, array, map, or an empty list, then the expression
also evaluates to true. If A is not null or empty, the expression evaluates to false.

Now that you’ve seen all the available operators, you can again update your precedence
table to include these new operators:

• []

• ()

• - (unary) not ! empty

• * / div % mod

• + - (binary)

• < > <= >= lt gt le ge

• == != eq ne

• && and

• || or

You’ll see much more about these operators in our discussion of using the EL with
JavaBeans in the next section.

JavaBeans and the Expression Language
So far you’ve looked at the syntax of the EL. This in itself is not very useful when creating web
applications. In this section, you’ll focus on how to use the EL to read values from JavaBeans
to display within a JSP page. In previous incarnations of the JSP specification, you would have
had to use code such as the following to read values from a JavaBean:

<jsp:getProperty name="myBean" property="name" />

An alternative (and more common) method is to use a scriptlet such as the following:

<%= myBean.getName()%>
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As we’ve discussed, the use of scriptlets does not represent good practice in JSP develop-
ment. This may make you ask the question, “If I can use the <getProperty> standard action,
why does anyone use scriptlets?" The answer to this question is simple: We developers are
lazy! The scriptlet option represents less code and is a lot quicker to type! 

To get around this problem, the EL provides a nice way to access the properties of a
JavaBean that is in scope within a page, request, session, or application. To achieve the same
as the previous code sample, you can use the following expression:

${myBean.name}

This is a nice neat way to access properties; there are no nasty brackets or any other Java-
like syntax present. This brings us to another core feature of the EL: the concept of named
variables. The EL provides a generalized mechanism for resolving variable names into objects.
This mechanism has the same behavior as the pageContext.findAttribute() method of the
PageContext object. Take the following, for example:

${product}

This expression will look for the attribute named product by searching the page, request,
session, and application scopes, in that order, and will print its value. This works regardless of
how the object was placed into the particular scope. That is, one JSP page could put an attribute
into request, session, or application scope, and another JSP page could access the attribute
simply by using an EL statement that uses the name of the attribute. If the attribute is not
found, null will be returned. This method is also used to resolve the implicit objects that we’ll
talk about in the next section.

Listing 3-6 is a JSP page that uses EL to access JavaBeans.

Listing 3-6. simpleBean.jsp

<jsp:useBean id="person" class="com.apress.projsp.Person" scope="request">
<jsp:setProperty name="person" property="*"/>

</jsp:useBean>
<html>
<head>
<title>EL and Simple JavaBeans</title>
<style>
body, td {font-family:verdana;font-size:10pt;}

</style>
<head>
<body>
<h2>EL and Simple JavaBeans</h2>
<table border="1">
<tr>
<td>${person.name}</td>
<td>${person.age}</td>
<td>&nbsp;</td>

</tr>
<tr>
<form action="simpleBean.jsp" method="post">
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<td><input type="text" name="name"></td>
<td><input type="text" name="age"></td>
<td><input type="submit"></td>

</form>
<tr>

</table>
</body>

</html>

The JSP page in Listing 3-6 uses a JavaBean of type com.apress.projsp.Person. That
JavaBean is shown in Listing 3-7.

Listing 3-7. Person.java

package com.apress.projsp;
public class Person {

private String name;
private int age;
public Person() {

setName("A N Other");
setAge(21);

}
public void setName(String name) {

this.name = name;
}
public String getName() {

return name;
}
public void setAge(int age) {

this.age = age;
}
public int getAge() {

return age;
}

}

Use the following steps to deploy the JSP page and JavaBean into a web container:

1. Create a file called simpleBean.jsp in the expressionLanguage folder, and enter the
code from Listing 3-6 into it.

2. Inside the expressionLanguage\WEB-INF directory, create a directory called classes.

3. Create a com\apress\projsp subdirectory within the WEB-INF\classes directory.

4. Create a file called Person.java within the WEB-INF\classes\com\apress\projsp
directory with the contents shown in Listing 3-7, and compile it.

5. Start Tomcat and your web browser and go to http://localhost:8080/
expressionLanguage/simpleBean.jsp.
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You should see something similar to the page shown in Figure 3-6.

Figure 3-6. EL can be used to access JavaBeans and the properties of JavaBeans.

The JSP page in Listing 3-6 creates a JavaBean of type com.apress.projsp.Person with an
id of person, and sets its properties to the values of parameters in the HTTP request with the
same name as the properties. This is achieved with the following code:

<jsp:useBean id="person" class="com.apress.projsp.Person" scope="request">
<jsp:setProperty name="person" property="*"/>

</jsp:useBean>

The <jsp:setProperty> tag has various syntaxes. When you use property="*", that tells
the page implementation class to find each request parameter with the same name as a
JavaBean property, and to set the JavaBean property with the value of the request parameter.

The JSP page accesses the object via the id given to it in the previous <useBean> tag, in 
this case, person. The page then displays the values of the properties of the Person JavaBean 
in a table; this is achieved by the following code:

<tr>
<td>${person.name}<td>
<td>${person.age}</td>
<td>&nbsp;</td>

</tr>

The id is used to access the JavaBean that you declared with the previous <useBean> tag.
In this example, the object was created and accessed within the same page. However, as we
noted earlier, the object could have been created from any page, and still accessed in the
simpleBean.jsp page.

It’s worth noting that you could have used the following code to access the properties 
of our JavaBean:

<tr>
<td>${person["name"]}</td>

CHAPTER 3 ■ THE JAVASERVER PAGES EXPRESSION LANGUAGE116

513-0 ch03.qxd  10/28/05  12:53 PM  Page 116



<td>${person["age"]}</td>
<td>&nbsp;</td>

</tr>

Try changing the values in the form and clicking Submit Query. You should see your new
values in the table. Now that you’ve seen a very simple use of JavaBeans and the EL, you’ll look
at a more complex use of the two technologies.

Nested Properties of a JavaBean
The EL provides you with a simple mechanism to access nested properties of a JavaBean. 
For example, Listing 3-8 shows a JavaBean, which has a nested property of type Address
(Listing 3-9).

Listing 3-8. Person.java

package com.apress.projsp;

public class Person {
private String name;
private int age;
private Address address;

public Person() {
setName("A N Other");
setAge(21);

this.address = new Address();
}
public void setName(String name) {
this.name = name;

}
public String getName() {
return name;

}
public void setAge(int age) {
this.age = age;

}
public int getAge() {
return age;

}
public void setAddress(Address address) {
this.address = address;

}
public Address getAddress() {
return address;

}
}
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As you can see, this JavaBean has a property that is in fact another JavaBean—the Address
JavaBean (Address.java). Listing 3-9 shows the Address JavaBean.

Listing 3-9. Address.java

package com.apress.projsp;
import java.util.Collection;
public class Address {
private String line1;
private String town;
private String county;
private String postcode;
private Collection phoneNumbers;
public Address() {
this.line1 = "line1";
this.town = "a town2";
this.county = "a county";
this.postcode = "postcode";  

}
public void setLine1(String line1) {
this.line1 = line1;

}

public String getLine1() {
return line1;

}
public void setTown(String town) {
this.town = town;

}
public String getTown() {
return town;

}
public void setCounty(String county) {
this.county = county;

}
public String getCounty() {
return county;

}
public void setPostcode(String postcode) {
this.postcode = postcode;

}
public String getPostcode() {
return postcode;

}
public Collection getPhoneNumbers() {
return phoneNumbers;
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}
public void setPhoneNumbers(Collection phoneNumbers) {
this.phoneNumbers = phoneNumbers;

}
}

It’s simple to access these nested properties by using the EL. With the EL, you can chain
the various objects and properties in an EL statement. The following JSP snippet shows how
you could use chaining to access the line1 property of the address property of the person
JavaBean.

${person.address.line1}

The Address JavaBean contains a collection of other JavaBeans as one of its properties.
Although you can’t see it in Listing 3-9, this collection is a collection of JavaBeans—PhoneNumber
JavaBeans. This JavaBean is shown in Listing 3-10.

Listing 3-10. PhoneNumber.java

package com.apress.projsp;
public class PhoneNumber {
private String std;
private String number;

public String getNumber() {
return number;

}
public String getStd() {
return std;

}
public void setNumber(String number) {
this.number = number;

}
public void setStd(String std) {
this.std = std;

}
}

The EL also provides a simple mechanism for accessing such collections and the proper-
ties of their enclosed JavaBeans. The following JSP snippet would access the first phone
number for a person’s address:

${person.address.phoneNumbers[1].number}

As this snippet shows, you can freely mix both dot and bracket notation as needed to
access JavaBean properties.

We can bring this whole discussion together by way of the following example. Listing 3-11
shows a JSP page that displays all the details relating to a person and that person’s address.
Note how the JSP page uses alternative syntaxes for object property access.
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Listing 3-11. complexBean.jsp

<html>
<head>
<title>EL and Complex JavaBeans</title>
<style>
body, td {font-family:verdana;font-size:10pt;}

</style>
</head>
<body>  
<h2>EL and Complex JavaBeans</h2>
<table border="1">
<tr>
<td>${person.name}</td>
<td>${person.age}</td>
<td>${person["address"].line1}</td>
<td>${person["address"].town}</td>
<td>${person.address.phoneNumbers[0].std}

${person.address.phoneNumbers[0].number}</td>
<td>${person.address.phoneNumbers[1].std}

${person.address.phoneNumbers[1].number}</td>
</tr>    

</table>
</body>
</html>

Unlike previous examples where you loaded the JSP page directly, this example uses a sim-
ple Java servlet (Listing 3-12) to set up the information within the JavaBeans. The servlet then
adds the object to the request by using the name “person.” The JSP page, as mentioned earlier,
searches the various scopes to find the JavaBean with the name used in the EL statement.

Listing 3-12, PopulateServlet.java, is the servlet that initializes the various JavaBeans
and then uses a RequestDispatcher to forward the request to complexBean.jsp. To compile this
class, you’ll need to include a servlet library in the CLASSPATH. If you are using Tomcat 5, you
can find the library, servlet-api.jar, in the common\lib directory. If you are using some other
web container, check your container documentation for the correct servlet library to include.

Listing 3-12. PopulateServlet.java

package com.apress.projsp;
import java.io.IOException;
import java.util.ArrayList;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class PopulateServlet extends HttpServlet {
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protected void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException 

{

Person p = new Person();
p.setName("Sam Dalton");
p.setAge(26);
Address a = new Address();
a.setLine1("221b Baker Street");
a.setTown("London");
a.setCounty("Greater London");
a.setPostcode("NW1 1AA");
ArrayList al = new ArrayList();
PhoneNumber ph = new PhoneNumber();
ph.setStd("01895");
ph.setStd("678901");
al.add(ph);

ph = new PhoneNumber();
ph.setStd("0208");
ph.setStd("8654789");    
al.add(ph);
a.setPhoneNumbers(al);
p.setAddress(a);
req.setAttribute("person", p);
RequestDispatcher rd = req.getRequestDispatcher("complexBean.jsp");
rd.forward(req, res);

}
}

This servlet class should be placed within the WEB-INF\classes\com\apress\projsp folder.
You’ll also need to modify the WEB-INF\web.xml file to contain the additional tags in Listing 3-13.

Listing 3-13. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<servlet>
<servlet-name>BeanTestServlet</servlet-name>
<servlet-class>com.apress.projsp.PopulateServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>BeanTestServlet</servlet-name>
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<url-pattern>/BeanTest</url-pattern>
</servlet-mapping>

</web-app>

Compile all the Java classes and deploy the files to a web container in the manner
described for previous examples. The request for this application is http://localhost:8080/
expressionLanguage/BeanTest. The request is passed to the BeanTestServlet. The servlet cre-
ates and initializes the various JavaBeans and forwards the request to complexBean.jsp.
Figure 3-7 shows the web page you would see in your browser.

Figure 3-7. The expression language can easily handle nested properties of JavaBeans.

This example shows how an object or attribute can be created in one part of the web
application and accessed from some other part of the application. The JSP page searches the
various scopes until it locates the named object.

Expression-Language Implicit Objects
Within JSP scriptlets you have many implicit objects available to you. These objects allow you
to access things such as the request, session, and page context. The EL also provides you with
these implicit objects, and a lot more besides. The objects are always available under well-
known names and are resolved to objects in the same way as JavaBeans. Table 3-1 lists the
implicit objects, along with brief descriptions of each object.

Table 3-1. JSP Implicit Objects

Implicit Object Description

applicationScope This is a Map that contains all application-scoped variables. The Map is
keyed on the name of the variable.

cookie This is a Map that maps cookie names to a single Cookie object. If more
than one cookie exists for a given name, the first of these cookies is
used for that name.

header This is a Map that contains the values of each header name.
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Implicit Object Description

headerValues This is a Map that maps a header name to a string array of all the
possible values for that header.

initParam This is a Map that maps context initialization parameter names to their
string parameter values.

pageContext The PageContext object.

pageScope This is a Map that contains all page-scoped variables. The Map is keyed
on the name of the variable.

param This is a Map that contains the names of the parameters to a page. Each
parameter name is mapped to a single string value.

paramValues This is a Map that maps a parameter name to a string array of all the
values for that parameter.

requestScope This is a Map that contains all request-scoped variables. The Map is keyed
on the name of the variable.

sessionScope This is a Map that contains all session-scoped variables. The Map is keyed
on the name of the variable.

Listing 3-14 shows an example JSP page that uses some of these implicit objects.

Listing 3-14. implicit.jsp

<jsp:useBean id="sessionperson" class="com.apress.projsp.Person" 
scope="session" />

<jsp:useBean id="requestperson" class="com.apress.projsp.Person" 
scope="request" />

<html>
<head>
<title>Implicit Variables</title>
<style>
body, td {font-family:verdana;font-size:10pt;}
</style>

</head>
<body>
<h2>Implicit Variables</h2>
<table>
<tr>
<td>Concept</td>
<td>Code</td>
<td>Output</td>

</tr>
<tr>
<td>PageContext</td>
<td>${'${'}pageContext.request.requestURI}</td>
<td>${pageContext.request.requestURI}</td>

</tr>
<tr>
<td>sessionScope</td>
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<td>${'${'}sessionScope.sessionperson.name}</td>
<td>${sessionScope.sessionperson.name}</td>

</tr>
<tr>
<td>requestScope</td>
<td>${'${'}requestScope.requestperson.name}</td>
<td>${requestScope.requestperson.name}</td>

</tr>
<tr>
<td>param</td>
<td>${'${'}param["name"]}</td>
<td>${param["name"]}</td>

</tr>
<tr>
<td>paramValues</td>
<td>${'${'}paramValues.multi[1]}</td>
<td>${paramValues.multi[1]}</td>

</tr>    
</table>

</body>
</html>

This example shows how to use the request- and session-scope maps, the request param-
eter map, and the request parameter values map as well as the pageContext object. All the
other objects are used in exactly the same manner and are not shown here.

If you deploy this example to a web container (as described in the previous sections) 
and request the page with a URL similar to http://localhost:8080/expressionLanguage/
implicit.jsp?name=sam&multi=number1&multi=number2, you’ll see a page similar to that shown
in Figure 3-8.

Figure 3-8. Using implicit variables, you can access various objects that provide information
about the application, the page, the request, the session, and so on.
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Expression-Language Functions
This final section discusses perhaps the most interesting part of the JSP EL: functions. An EL
function is mapped to a static method of a Java class. This mapping is specified within a tag
library descriptor (TLD), as you’ll see later.

As with the rest of the EL, a function can appear either in template text or in the attributes
of a custom tag.

A function in EL can take any number of parameters, and these are again declared in a
deployment descriptor. Functions are assigned a namespace that is used to access a function
similar to package specifications in Java classes; for example, the following JSP code invokes
an EL function:

${MyFunctions:function("param")}

The namespace in this example is MyFunctions, which is declared by using this taglib
directive:

<%@ taglib uri="/WEB-IF/taglib.tld" prefix="MyFunctions" %>

You’ll see this directive used in other places in this book to declare namespaces for cus-
tom tags; in this chapter you’ll use it to declare namespaces for EL functions. Functions must
always have a namespace, with one exception: if a function is used within the attribute of a
custom tag, the function call may omit the namespace as long as the function is declared
within the same TLD as the custom tag.

A TLD is an XML file that declares a tag library. The TLD contains information relating to
the tags in the library and the classes that implement them. The TLD also contains the decla-
rations and mappings of EL functions. Each TLD can describe zero or more static functions.
Each function is given a name and a specific method in a Java class that will implement the
function. The method must be a public static method on a public class. If this is not the case, 
translation-time error will occur. Within a TLD, function names must be unique, and if two
functions have the same name, a translation-time error will occur. Here is an example of the
TLD entries used to declare a function:

<taglib>
...
<function>
<name>nickname</name>
<function-class>com.apress.projsp.Functions</function-class>
<function-signature>
java.lang.String nickname(java.lang.String)

</function-signature>
</function>

</taglib>

This TLD fragment declares a function called nickname, which is intended to return the
nickname for a particular user. If you look at the tags, you can see that we declared the name
of the function that will be used by the EL by using the <name> element, the class that imple-
ments the function by using the <function-class> element, and the signature of the function
by using the <function-signature> element. It’s this last element that is the most interesting
and also the most complex.
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The syntax of the <function-signature> element is as follows:

return_type static_function_name(parameter_1_type,..,parameter_n_type)

It’s important to note that the parameter and return types must be the fully qualified Java
class names. If the declared signature of the function does not match that of the function in
the Java class, a translation-time error will occur.

For more information about the content of TLDs, especially those that relate to custom
tags, see Chapters 6 through 8.

A Simple Function
You are now ready to look at some example functions. The first of these examples outputs a
greeting to the user. This greeting is customized depending on the time of day. So, for example,
if called before midday the greeting will be Good Morning; if called after midday but before 6 p.m.,
the greeting will be Good Afternoon; and finally, if called after 6 p.m. but before midnight, the
greeting will be Good Evening. Listing 3-15, Functions.java, is the Java class that implements
this function.

Listing 3-15. Functions.java

package com.apress.projsp;
import java.util.Calendar;
public class Functions {
public static String sayHello() {
Calendar rightNow = Calendar.getInstance();
int hour = rightNow.get(Calendar.HOUR);
int AmPm = rightNow.get(Calendar.AM_PM);

if (AmPm == Calendar.AM) {
return "Good Morning";

} else if (AmPm == Calendar.PM && hour < 6) {
return "Good Afternoon";

} else {
return "Good Evening";

}
}

}

The TLD for this function is very simple, because the function has no parameters.
Listing 3-16 shows the TLD, which is named taglib.tld and is located in the tags folder 
under the WEB-INF folder.

Listing 3-16. taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

CHAPTER 3 ■ THE JAVASERVER PAGES EXPRESSION LANGUAGE126

513-0 ch03.qxd  10/28/05  12:53 PM  Page 126



"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

<tlib-version>1.0</tlib-version>
<jsp-version>2.1</jsp-version>
<short-name>projsp</short-name>
<uri>/projsp</uri>
<description>
</description>
<function>
<name>greet</name>
<function-class>com.apress.projsp.Functions</function-class>
<function-signature>java.lang.String sayHello()</function-signature>

</function>
</taglib>

This TLD declares our function to have the name greet and to return a string and take no
parameters. You can use this function in a JSP page, as shown in Listing 3-17. Notice how you
declare the namespace for your tag library as projsp in the first line, and that the function
name is prefixed with projsp. The function is called by using the name provided by the TLD,
rather than by the actual function name in the Java class file.

Listing 3-17. greet.jsp

<%@ taglib prefix="projsp" uri="/WEB-INF/tags/taglib.tld"%>
<html>
<head>
<title>Greet</title>

</head>
<body>
<pre>${projsp:greet()}</pre>

</body>
</html>

With this example, we need to make an addition to the deployment descriptor. Listing 3-18
shows the addition to make:

Listing 3-18. tag-lib (Addition to web.xml)

<taglib>
<taglib-uri>

/chapter3
</taglib-uri>
<taglib-location>

/WEB-INF/tags/taglib.tld
</taglib-location>

</taglib>
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To deploy this example, perform the following steps:

1. Add the code shown in Listing 3-18 to web.xml.

2. Create and compile the source code for Functions.java, shown in Listing 3-15, and
save it to the WEB-INF\classes\com\apress\projsp directory.

3. Create the JSP page greet.jsp (Listing 3-17) and save it to the expressionLanguage
folder.

4. Create a folder within the WEB-INF directory called tags, and a file called taglib.tld
within this folder. The contents of taglib.tld are shown in Listing 3-16.

5. Start Tomcat, open your web browser, and go to http://localhost:8080/
expressionLanguage/greet.jsp.

You should see a page similar to that shown in Figure 3-9. As expected, the output of this
JSP page when viewed after 6 p.m but before midnight contains the greeting “Good Evening.”
If you view the page at different times of the day, you will see different greetings.

Figure 3-9. The EL can be used to call static functions of Java classes in the web application.

A More Complex Function
Having looked at a very simple function that takes no parameters, you are now in a position to
look at a more complex function. This function allows you to view the untranslated source of a
JSP page presented in HTML format. To do this, the function will accept two parameters. Add
the method shown in Listing 3-19 to the Functions.java source file that was first presented in
Listing 3-15.

Listing 3-19. source() (Addition to Functions.java)

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import javax.servlet.jsp.PageContext;
//...
public static String source(String filename, PageContext pageContext)
throws IOException {
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// use the servlet context to read in the file
InputStream in;
BufferedReader br;
StringBuffer buf = new StringBuffer();

in = pageContext.getServletContext().getResourceAsStream(filename);
br = new BufferedReader(new InputStreamReader(in));
String line = br.readLine();
while (line != null) {
// replace opening and closing tags
line = line.replaceAll("<", "&lt;");
line = line.replaceAll(">", "&gt;");
// writing out each line as we go
buf.append(line + "\n");
line = br.readLine();

}
br.close();
// return the contents of the file
return buf.toString();

}
//...

You’ll notice that this function uses pageContext to read in the JSP file to be displayed. In
addition to importing the package for pageContext, you will need to include the jsp-api.jar
library in the CLASSPATH to compile the class. For Tomcat 5, the jsp-api.jar library is in the
common\lib directory. If you have some other container, consult your container’s documenta-
tion to determine the correct library. The pageContext is passed in as a parameter, and as such
it must be declared in the function signature. The <function> element for this function in the
TLD is shown in Listing 3-20. You need to add this element to the TLD in Listing 3-16.

Listing 3-20. <function> (Addition to taglib.tld)

<function>
<name>source</name>
<function-class>com.apress.projsp.Functions</function-class>
<function-signature>
java.lang.String source(java.lang.String, javax.servlet.jsp.PageContext)

</function-signature>
</function>

As you can see, we’ve declared the second parameter to this function to be of type
javax.servlet.jsp.PageContext.

Listing 3-21 shows a JSP page that calls the function. Notice that that taglib directive
defines the prefix for the tag to be "Source". This is in contrast to the <short-name> element 
of the TLD (Listing 3-16). The JSP specification says that the <short-name> element is the pre-
ferred prefix for tags defined in the TLD. However, the prefix attribute in the taglib directive
overrides the TLD. The function is thus called with the prefix (from the taglib directive) and
name (from the TLD). Two arguments are passed to the function: the request parameter
named name and the pageContext implicit object.
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Listing 3-21. source.jsp

<%@ taglib prefix="Source" uri="/WEB-INF/tags/taglib.tld"%>
<html>
<head>
<title>Source</title>

</head>
<body>
<pre>${Source:source(param.name, pageContext)}</pre>

</body>
</html>

Add Listing 3-19 to Functions.java and compile that file. Also, add Listing 3-20 
to taglib.tld. If Tomcat is running, you will need to restart Tomcat, or reload the
expressionLanguage web application so that Tomcat will reload the class file.

Open a web browser and enter http://localhost:8080/expressionLanguage/source.jsp?
templateText.jsp into the address bar. If you created templateText.jsp from Listing 3-1,
Figure 3-10 shows an example of the page you might see. Notice that the name of the file to 
be displayed is passed as a request parameter in the URL. You can use this JSP page to view 
the source of any resource in the expressionLanguage web application, as long as you pass the
correct path to the file. You cannot use source.jsp to view sources in other web applications,
because this page has access only to the files that can be seen in the current pageContext.

Figure 3-10. You can pass any objects available in the JSP page to an EL function. In this 
example, a String and a PageContext object were passed to a function.
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Functions in Tag Attributes
One of the most powerful uses of functions in the EL is to preprocess the attributes passed 
to standard and custom tags. In this section, you’ll look at such a use of the EL. You’ll write a
function that will convert a tag’s parameter to uppercase; although this is not a particularly
complex function, it should suffice. We don’t want to get bogged down in the details of the
function’s implementation.

Let's first take a look at the Java method that provides this function, shown in Listing 3-22.

Listing 3-22. toUpperCase() (Addition to Functions.java)

public static String toUpperCase(String theString) {
return theString.toUpperCase();

}

This is an extremely simple function that merely converts its parameter to uppercase. The
TLD entry for the function is shown in Listing 3-23.

Listing 3-23. <function> (Addition to taglibs.tld)

<function>
<name>upper</name>
<function-class>com.apress.projsp.Functions</function-class>
<function-signature>
java.lang.String toUpperCase(java.lang.String)

</function-signature>
</function>

In this example, you’ll create a JavaBean and use the standard tag <jsp:setProperty> to
set the JavaBean’s property. Listing 3-24 shows this simple JavaBean, SourceBean.java. To show
the use of functions with tag attributes, we’ll use a function to preprocess the attribute value.

Listing 3-24. SourceBean.java

package com.apress.projsp;

public class SourceBean {
String string;
public String getString() {
return string;

}
public void setString(String s) {
string = s;

}
}

Now that you’ve seen the constituent parts, you’ll look at a JSP page in Listing 3-25 that
uses a function to preprocess the attribute to the <jsp:setProperty> tag.
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Listing 3-25. tagFunction.jsp

<%@ taglib prefix="projsp" uri="/WEB-INF/tags/taglib.tld"%>
<html>
<body>
<jsp:useBean id="sb" class="com.apress.projsp.SourceBean"/>
<jsp:setProperty name="sb" property="string" 

value="${projsp:upper('a string')}" />
${sb.string}

</body>
</html>

This JSP page creates a JavaBean, uses a <jsp:setProperty> tag to set its property, 
and then displays the value of the property by using the EL statement ${sb.string}. In the
<jsp:setProperty> tag, you can see that we use a function to preprocess the string passed to
the value attribute. Functions can be used to preprocess the attributes of all standard tags and
custom tags (which you will see in later chapters). To deploy this to a web container, follow the
steps for the other examples in this chapter. Figure 3-11 shows the web page generated by the
JSP page.

Figure 3-11. The value of the attribute was changed to uppercase before the property 
of the JavaBean was set. When the property is displayed in a web page, the property is 
displayed in its processed form.

We’ve deliberately made this example simplistic, so that we can focus on the concept of
calling a function in a tag attribute by using EL. However, you can use this technique to per-
form any processing that might be needed.

Nesting Functions
Another powerful use of functions is to nest them together. For example, you can use the
uppercase function from the previous example (Listings 3-22 and 3-25) to render the source 
of a page produced by our view-source function in uppercase. Listing 3-26, uppersource.jsp,
shows how you might do this.
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Listing 3-26. uppersource.jsp

<%@ taglib prefix="projsp" uri="/WEB-INF/tags/taglib.tld"%>
<html>
<body>
<pre>

${projsp:upper(projsp:source(param.name, pageContext))}
</pre>

</body>
</html>

Deploy this JSP page, and then access it with the URL http://localhost:8080/
expressionLanguage/uppersource.jsp?name=uppersource.jsp. Figure 3-12 shows the page 
that is generated.

Figure 3-12. EL functions can be nested. This example uses the source() function to access a source
file, and then the upper() function to convert the source to uppercase.

Functions can be nested to an arbitrary degree to perform some interesting and powerful
operations. The only restricting factor is your imagination. This nesting encourages small
functions that perform specialized jobs, which is a very positive design point.

Expression-Language Functions vs. Custom Tags
As you’ll see in later chapters, the JSP specification provides a powerful custom tag mecha-
nism. You might ask why you would use tags over functions and vice versa. There are several
factors that can help you to make the choice:

• Is knowledge of the environment required? If the answer is yes, tags are the way to go. A
tag provides easy access to pageContext and other variables; functions do not. To access
these implicit objects within a function, you must pass them in as a parameter. 
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• Do you require iterative behavior over a body? If the answer is yes, you should use a tag.
Functions do not provide functionality to process a body (they don’t have one), whereas
tags do.

• Are you trying to provide a small, reusable piece of functionality that acts on one or
more arguments? If the answer to this is yes, you should use a function. Overall, func-
tions are much simpler to write than tags; therefore, they provide a great opportunity to
write small, self-contained pieces of functionality.

• Would you like to reuse existing Java code in a web context? If the answer is yes, func-
tions are ideal. Because functions are no more than static Java methods, you can easily
reuse existing code. 

The choice of tags versus functions should be eased by consulting these points, but 
it’s worth noting that the true power of the EL becomes evident when it’s combined with cus-
tom tags.

Summary
In this chapter, you’ve looked at the JSP EL. This EL is largely intended to replace scriptlets and
to be used in combination with custom tags. 

You’ve examined the following topics in this chapter:

• The reasons that the EL has come about, including a look at its history

• The syntax and usage of the EL, including reserved words, disabling scriptlets in a page,
and disabling the evaluation of the EL on a page or set of pages

• The operators within the EL, including arithmetic operators, comparison operators,
logical operators, and other operators

• The use of JavaBeans with the EL

• The implicit objects within the EL

• The declaration and use of functions in the EL, including reasons for using functions
over tags and vice versa

In the next chapter, you’ll learn about the JSTL and the tags contained within it.
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JavaServer Pages Standard 
Tag Library 

Despite the popularity of using JSP technology to build the dynamic presentation layers
required by today’s modern web applications, JSP page authors have repeatedly come up
against the same problems.

In all but the simplest of web applications, JSP pages have needed to contain some form
of logic to tailor the dynamic content, and until recently this has been done by using JSP
scriptlets. Although this solution does produce the required output, using too many scriptlets
on a page reduces its readability and therefore its maintainability and generally makes a JSP
page look ugly. When using scriptlets, it’s all too easy to forget a closing brace or something
equally as trivial, and in a large JSP page it can take a significant amount of time to track down
the source of the resultant error.

Reduced maintainability isn’t the only limitation of a scriptlet-based approach; it also
places an assumption on the skill set of the JSP page author developing or maintaining the
page. Because scriptlets are written in Java, JSP page authors need to be Java developers or at
least have more than a basic understanding of the language. Often the specific design skills of 
a web designer cannot be controlled, or the designer requires some assistance to fully embrace
JSP technology. A perfect example of the skills mismatch is that a web designer may have a pre-
ferred HTML editor or IDE that may not support Java scriptlets because editors are generally
designed for XML-type languages such as HTML.

More recently, a better approach has been for Java developers to create their own custom
actions (often known as custom tags) and make them available to web designers via tag
libraries. This solution is far better than the scriptlet-based approach, because the use of a
custom tag places no assumptions on the skills of the page author—custom tags are simply
XML based. One obvious drawback of custom tags is that they must be coded, packaged, and
tested before use, which is a nontrivial task and must be done by a Java developer. This can
place time constraints on when web designers can start work, and in some cases Java develop-
ers have found themselves writing all manner of custom tags for even the simplest of tasks to
ensure that no scriptlets are necessary.

The JavaServer Pages Standard Tag Library (JSTL) specification 1.0 was first released in
June 2002, and its arrival signified a new phase for JSP page authors. The JSTL specification
outlines a number of custom actions that are designed to handle the vast majority of common
tasks needed by JSP page authors. Gone are the days of using ugly scriptlets, and thanks to the
JSTL, hopefully only more complicated functionality warrants the construction of a custom
action.
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A few days after the JSTL 1.0 specification was released, the Jakarta Taglibs project from
Apache followed up with a reference implementation of the specification ready for use.

The first maintenance release of JSTL (JSTL 1.1) was completed in November 2003. A
second maintenance release, JSTL 1.2, was started in June 2004. Because that release has not
been finalized, we will be using JSTL 1.1 in this chapter. Because JSTL is a maintenance
release, most or all of the topics here should still apply when JSTL 1.2 is released.

Throughout this chapter, you’ll take an in-depth look at the actions provided by the JSTL.
You’ll see how actions may be used via examples that will demonstrate just how much simpler
it is to build dynamic JSP-based applications with JSTL that avoid many of the problems asso-
ciated with scriptlets.

To fully appreciate the actions provided by the JSTL, you should be familiar with the syn-
tax of the new expression language (EL)—the subject of the preceding chapter.

Installing the JavaServer Pages Standard 
Tag Library
Before you delve too deeply into the details of the tags that compose the JSTL, it’s a good idea
to understand what’s involved with installing the JSTL into a JSP container that’s ready for use.
Fortunately, the process isn’t too demanding and should take only a few minutes.

To be able to use the JSTL, you must have the following:

• At least a Servlet 2.3– and JSP 1.2–compliant container

• An implementation of the JSTL specification

Although Servlet 2.3 and JSP 1.2 are the minimum, we will be using Tomcat 5.5, which
implements Servlet 2.4 and JSP 2.1, and we will use the JSTL 1.1 reference implementation.
Any compliant container can be used to develop applications using the JSTL. If you’re using
an alternative container, consult the appropriate documentation for installation instructions.
Note that the JSTL installation on other containers may be similar, so it’s worth reading on!

Originally, the reference implementation (RI) of the JSTL was provided by the Apache
Jakarta project as part of its Taglibs project. Subsequently, Sun Microsystems included the RI
as part of the Java Web Services Developer Pack (JWSDP). So you have a couple of options for
obtaining the reference implementation. If you need only the JSTL, you can download it from
the Jakarta project website (http://jakarta.apache.org/taglibs). Alternately, you can get it
by downloading the JWSDP from Sun (http://java.sun.com/webservices/jwsdp).

In the future, it’s possible that most servlet and JSP containers will come preconfigured
with an implementation of the JSTL (possibly with the container vendor’s own optimized ver-
sion!) but for now you must download an implementation and install it into Tomcat manually.

At the time of this writing, the latest version of the JWSDP is version 1.6, but there could
be a more recent release by the time you’re reading this.

After you’ve downloaded and installed the JWSDP, you’ll have access to all of its contents,
which include the following:

• JavaServer Faces (JSF)

• XML and Web Services Security (XWS-Security)
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• Java Architecture for XML Binding (JAXB)

• Java API for XML Processing (JAXP)

• Java API for XML Registries (JAXR)

• Java API for XML-based RPC (JAX-RPC)

• SOAP with Attachments API for Java (SAAJ)

• JavaServer Pages Standard Tag Library (JSTL)

• Java WSDP Registry Server

• Ant build tool

• Apache Tomcat

As you can see, the JWSDP contains a whole host of useful tools. For now, we are inter-
ested in only the JSTL implementation, which can be found in the jstl directory of the JWSDP
installation, as shown in Figure 4-1.

Figure 4-1. The JSTL libraries are located in the jstl\lib directory of the JWSDP installation.
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There are two JAR files that you’ll need shortly:

• jstl.jar

• standard.jar

If you download and install the JSTL reference implementation directly from the Jakarta
project, you are looking for the same two JAR files. They will be located in the lib subdirectory
located in the directory where you install the JSTL RI.

To install the JSTL and ensure it’s working correctly, let’s create a small web application. In
the Tomcat directory, you’ll find a folder called webapps. Create a directory inside the webapps
directory called jstltest. Figure 4-2 shows the structure of the jstltest directory.

Figure 4-2. The jstltest\WEB-INF directory has subdirectories named classes, lib, and tld.

In the jstltest directory, create a lib directory and a tld directory. The lib directory is
where you place any JAR files that the web application requires, and the tld directory holds
the tag library descriptor (TLD) files for the tag libraries. You’ll learn more about TLD files in
the next few chapters.

The deployment descriptor for this test is shown in Listing 4-1. As in previous examples in
the book, save it to the WEB-INF directory.

Listing 4-1. web.xml

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

version="2.5">
<taglib>

<taglib-uri>http://java.sun.com/jstl/core</taglib-uri>
<taglib-location>/WEB-INF/tlds/c.tld</taglib-location>

</taglib>

<taglib>
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<taglib-uri>http://java.sun.com/jstl/fmt</taglib-uri>
<taglib-location>/WEB-INF/tlds/fmt.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/xml</taglib-uri>
<taglib-location>/WEB-INF/tlds/x.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/sql</taglib-uri>
<taglib-location>/WEB-INF/tlds/sql.tld</taglib-location>

</taglib>
</web-app>

The deployment descriptor contains four taglib elements that describe the TLD files avail-
able for this test application. The JSTL contains four broad categories of tags identified by the
TLDs: c.tld, fmt.tld, x.tld, and sql.tld. We will discuss the four sets of tags in more detail
later in this chapter.

Now that you have a deployment descriptor for the web application, you can install the
required JSTL libraries that you downloaded earlier. In the newly created web application
structure, locate the lib directory in the jstltest\WEB-INF directory. Copy the two JSTL JAR
files mentioned earlier into the WEB-INF\lib directory (see Figure 4-3).

Figure 4-3. To use the JSTL in a web application, you need to copy the JSTL libraries into the web
application’s lib directory.

Now you need to copy the TLD files referenced in the deployment descriptor into the 
WEB-INF\tld directory (see Figure 4-4). If you are using the JSTL RI from the Jakarta project,
the TLD files are located in the tld directory under the JSTL installation directory. If you are
using the JWSDP, these TLD files are located in the jstl\tld directory the JWSDP installation.
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Figure 4-4. The four tld files (c.tld, fmt.tld, sql.tld, and x.tld) are copied into the WEB-INF\tld
directory of the web application.

■Note If you have JSTL 1.1 from the Jakarta project, you will notice that the tld directory contains a
number of other TLDs. For example, the files that have 1_0 as part of the filename are the JSTL 1.0 versions
of the TLDs.

At this point, you’re ready to create a JSP page to test one of the tags provided by the JSTL
to see whether the installation has succeeded. Create the JSP page shown in Listing 4-2 and
save it beneath the jstltest directory, at the same level as the WEB-INF directory. For now,
don’t worry too much about understanding the content of the page; it will all be explained in
further detail later.

Listing 4-2. test.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<c:out value="Congratulations, JSTL is working!"/>

You’re now ready to test the JSTL installation!
Start Tomcat, if needed, and wait a few seconds for the server to start. After the server has

started, open a browser and go to the following URL:

http://localhost:8080/jstltest/test.jsp

You should refer to the application by requesting its context followed by the requested
resource, test.jsp. As usual, if you altered the port number or installed Tomcat onto a remote
machine, make the appropriate changes to the URL. If all is well and JSTL is successfully
installed, you should see a web page similar to Figure 4-5 in your browser.
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Figure 4-5. If you have created the web application properly, the web page will display the 
welcome message. If JSTL has not been installed correctly, an error page will most likely be 
displayed. Tomcat serves an HTTP 500 error page.

You may be wondering whether you can install the JSTL implementation libraries into 
a single location so that they’re available to all web applications hosted by the container.
Although this is possible by placing the JSTL JAR files into the class path of the container, it’s
discouraged because different web applications may require different versions or even differ-
ent implementations of the JSTL that could cause complications.

Understanding the JavaServer Pages Standard 
Tag Libraries
The JSTL is often referred to as a single tag library when in fact it’s a collection of four tag
libraries. Each tag library provides useful actions (or tags) based on the following functional
areas:

• Core

• Internationalization (I18n) and formatting

• Relational database access 

• XML processing

One of the primary goals of the JSTL is to simplify the lives of JSP page authors. Providing
a collection of tag libraries reinforces this goal by further separating simple, reusable logic
from the page’s presentation, thus making the page easier to read and maintain.

Having four tag libraries provides a handy namespace for each available tag, which ulti-
mately makes it easier to identify which functional area a tag belongs to and gives the JSP page
author some indication of the intended use for the tag.

Before diving headfirst into an explanation of the tags provided by each of the four libraries,
take a step back for a moment to understand the general functionality provided by each.
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The Core Tag Library
As its name suggests, this library contains a whole host of core, general-purpose actions that
provide simple but effective solutions to everyday problems experienced in almost every JSP-
based web application. Simple tasks such as displaying content based on runtime conditions
or iterating over a collection of items, as well as a host of URL-manipulation features, can all
be achieved via the actions provided by the Core library. Gone are the days of repeatedly
embedding lots of ugly scriptlet code in your JSP pages!

The Internationalization and Formatting Tag Library
The huge popularity of the Internet has led to more and more organizations employing web-
based technology to enable their applications to reach a wider client base. This trend has
brought about an important need to interact with clients from around the world by using their
own language and formatting conventions.

The process of constructing an application so that it’s able to adapt to various languages
and regions without any additional engineering effort is known as internationalization, or
I18n for short (“internationalization” is a 20-character word that begins with “i,” ends with “n,”
and has 18 letters in between). The Internationalization and Formatting tag library provides a
series of actions to aid in the use of the three key components associated with international-
ization: locales, resource bundles, and base names.

The SQL Tag Library
The vast majority of enterprise web applications rely on a relational database to store their
enterprise information. Although it’s generally preferable to use Model-View-Controller
(MVC) architecture to separate the business logic and database access from the presentation
tier, sometimes you may need to access a database from JSP pages.

The JSTL provides an assortment of actions via the SQL tag library to facilitate the basic
interaction with a relational database by using SQL commands such as SELECT, INSERT, UPDATE,
and DELETE.

The XML Processing Tag Library
The use of XML to represent and exchange enterprise data is rapidly becoming the industry
standard. XML is therefore becoming more and more important to the JSP page author, and it
should be of little or no surprise to find that the JSTL provides a separate tag library to deal with
XML processing. The XML actions provided cater to the basic XML needs a page author is likely
to require as well as more complex actions for XML flow control and XML transformations.

TWIN TAG LIBRARIES

We mentioned in an earlier note that the JSTL 1.1 reference implementation from Jakarta includes the JSTL
1.0 TLDs. You also may have noticed that there are two versions of each JSTL 1.0 TLD.

Because JSTL 1.0 was released prior to JSP 2.0, there was a requirement to ensure that the JSTL was
fully supported by JSP 1.2-compliant containers. To be able to support both the scripting (rtexprvalues)
and the EL (elexprvalues) worlds, it was decided to create a set of twin tag libraries, one to support the
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new EL and the second to support request-time expressions. Because there are two tag libraries for each
functional area, there are two URIs to identify each tag library. The following list shows the URIs for each
functional area and each version of the TLD:

• Core expression language TLD: http://java.sun.com/jstl/core

• Core runtime values TLD: http://java.sun.com/jstl/core_rt

• XML expression language TLD: http://java.sun.com/jstl/xml

• XML runtime values TLD: http://java.sun.com/jstl/xml_rt

• Formatting expression language TLD: http://java.sun.com/jstl/fmt

• Formatting runtime values TLD: http://java.sun.com/jstl/fmt_rt

• SQL expression language TLD: http://java.sun.com/jstl/sql

• SQL runtime values TLD: http://java.sun.com/jstl/sql_rt

If, for whatever reason, you are using the JSTL 1.0 implementation, it’s possible to mix the use of the run-
time and EL actions. To do so, you just include a taglib directive for each library you are using, and use the
correct standard tag. For example, in the following code snippet, there is a taglib directive for both the EL for-
mat library and runtime format library. Within the snippet, you can see the use of the <fmt:param> tag used
with an EL expression; alternately, in the line that uses a JSP scriptlet, the <fmt_rt:param> tag is used.

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt_rt" prefix="fmt_rt" %>
<fmt:message key="stockPrice">

<fmt:param value="${closePrice}">
<fmt_rt:param value="<%=quoteBean.getOpenPrice()%>"/>

</fmt:message>

Using the JavaServer Pages Standard Tag
Libraries
Now that you understand the general composition of the JSTL, in this section you’ll learn
about the tags provided by each of its four libraries.

The Core Tag Library
As mentioned previously, the Core tag library provides JSP page authors with a set of reusable
actions to cater to the simple “core” requirements that almost every JSP application has in
some shape or form, such as object manipulation, looping, and so on.

Until now, such common functionality has been implemented via two alternative meth-
ods: Java scriptlets and custom actions. As we’ve discussed, scriptlets are the least favorable
approach, because they not only require the JSP page author to understand Java syntax but
also add clutter to JSP pages, thus reducing readability. A better alternative has been to encap-
sulate such functionality into a custom action, but of course it’s up to the JSP page author to
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code such a component, which the author may or may not have the skills to do. Although a
custom action has until now been the best solution because it enables a high level of reuse,
why should all JSP page authors be forced to write their own libraries of such simple core
functionality?

Thankfully, the JSTL provides such a library, thus making it easier for JSP page authors 
to concentrate on what they do best—building attractive, functional presentation layers—
without the burden of having to worry about the intricacies of the Java programming
language. The JSTL core library can be split further to expose its main functional areas:

• Scoped variable manipulation

• Conditionals

• Looping and iteration

• URL manipulation

Let’s take a closer look at each of the actions.

Scoped Variable Manipulation
This first group of actions provides the means to work with scoped variables (JSP-scoped
attributes) as well as cope with errors.

The <c:out> Action

As the name suggests, the <c:out> action evaluates an expression and outputs it to the current
JspWriter. It’s equivalent to the JSP syntax <%= expression %>.

Here is an example of this simple but useful action:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<c:out value="Good Afternoon!" />
<c:out value="${book.author.name}" default="Unknown"/>

The expression to be evaluated is supplied via the value attribute, and the result is con-
verted into a string before being returned as part of the response. Notice that an optional
default value can be supplied that is returned if the expression evaluates to null. Should a Null
expression be evaluated and no default value is supplied, an empty string is returned instead.

The <c:out> action also has a second form that enables the default attribute to be speci-
fied as part of the action’s body content, which the JSP container will evaluate and trim on
your behalf should the default value be required. Therefore, you can rewrite the example as
follows:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<c:out value="${book.author.name}">
Unknown

</c:out>
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The <c:set> Action

You can use the <c:set> action to set a variable in a particular web application scope (page,
request, session, or application), and it’s often used in conjunction with the <c:out> action.

Let’s look at an example. Listing 4-3 shows a JSP page that stores the value of the 
User-Agent request header in session scope, and then accesses the value in another tag.

Listing 4-3. core_set.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<c:set var="browser" value="${header['User-Agent']}" scope="session" />
Your Browser User Agent is : <c:out value="${browser}"/>

The var attribute sets the name by which the variable may be referenced in the given
scope. In a similar manner to the <c:out> action, the value of the variable can be specified in
two possible ways: first, by simply using the value attribute, or second, by supplying the tag
with some body content that is automatically evaluated and trimmed by the JSP container.

In this case, the <c:set> action is being used to store a session-scoped variable called
browser, which stores the value of the User-Agent request header that indicates the type of
browser that initiated the request. The <c:out> action is then used to output the value stored
inside the attribute. Figure 4-6 shows one example of the page generated by the JSP example
code in Listing 4-3.

Figure 4-6. One capability of the core actions is to set a variable so that it can be used later in the
page. In this example, the value of the User-Agent header was stored and then later printed as
part of the page display.

Note that should a null value be specified for the value attribute, then the scoped vari-
able defined by var and scope is removed (in other words, setting the var to null has the effect
of removing the object referred to by var). If a scope is supplied, the behavior is determined by
the action of PageContext.removeAttribute(var, scope); if no scope is supplied, the behavior
is determined by PageContext.removeAttribute(var). It is these methods that provide the
internal implementation.
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Another use of the <c:set> action is to set a property of a scoped object. To do this, you
use attributes named target and property, as shown in this snippet: 

<c:set target="person" property="firstName" value="Sondra" />

When target is an object, the action sets the value of the given property with the value
attribute. If target is a Map, then value is stored in the Map using property as the key. When
value is null, the property is set to null when target is an object, or the entry given by
property is removed when target is a Map.

The <c:remove> Action

You probably won’t be surprised to learn that the <c:remove> action removes a variable from a
specific application scope. Now, we’ve never needed to remove a variable’s value from a web
application, but in case you need that capability, you’ve got it.

We think that it would most likely be used for variables with session or application
scope. Suppose you had a web application that is customized for beginners and expert users.
If you used a session variable to track whether the user was a beginner, you would want to
remove that variable when the user decided to use expert level. Listing 4-4 shows a JSP page
that does this.

Listing 4-4. core_remove.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<c:if test="${param.expert != null}">
<c:remove var="level" scope="session"/>

</c:if>
<html>
<body>
Your level is <c:out value="${level}" default="Expert"/>
<c:choose>
<c:when test="${level != null}">
<p/>Here are the things you need to do...
</c:when>
<c:otherwise>
<p/>You're the expert, you figure it out...
</c:otherwise>

</c:choose>
</body>

</html>

In Listing 4-4, we assume that somewhere else in the application, the user was assigned a
level of beginner. At some point, the user decides he can handle expert mode, and a request is
sent to this page with the request parameter expert set to a non-null value. Because level is a
session-scoped variable, it needs to be removed in only one place. Now any other page that
uses the variable level will see that it has been removed. When this JSP page is accessed in
expert mode, as shown in Figure 4-7, the page displays expert-mode information.
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Figure 4-7. When the variable is removed from the application, that variable is no longer accessi-
ble from other tags. Because the variable level is no longer set, this page displays expert-level
information.

■Note Okay, we’ll be the first to admit that the example in Listing 4-4 is simplistic and could be accom-
plished in other ways. But frankly, we’ve never had the need to remove a variable, and any other example 
we thought of was equally simplistic. If you ever need to remove a variable from a JSP page, you’ve got 
the means.

As you can see, this is one of the simplest actions provided by the JSTL because it simply
accepts a var attribute that indicates the named attribute to remove as well as an optional
scope attribute, which indicates the scope from which to remove the attribute.

Again, if an attribute scope is specified, the behavior is specified by the PageContext.
removeAttribute(var, scope) method because this is the underlying method that is called;
otherwise, the PageContext.removeAttribute(var) method is used when no scope is specified.

The <c:catch> Action

The <c:catch> action provides a simple mechanism for catching any java.lang.Throwable
exceptions that are thrown by any nested actions.

This simple action has a single var attribute that holds a reference to any java.lang.Throwable
exceptions that occur during execution of any of the nested actions forming the body content
of the action. The JSP container processes each nested action in the standard way, and any out-
put is returned to the current JspWriter.

This action provides JSP developers with granular error handling, thereby allowing errors
from multiple actions to be handled in a uniform way in a single place, which makes your
applications more robust. It should be noted, however, that this action should not be used 
to provide error handling to actions that are of central importance to the page. Instead,
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exceptions from such actions should propagate to predefined error pages in the standard man-
ner. Actions of secondary importance, however, may be enclosed inside the <c:catch> action:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<c:catch var="exception">

<fmt:parseDate var="dob" value="${param.birthDate}" 
pattern="yyyy-MM-dd" />

</c:catch>
<c:if test="${exception != null}">

<jsp:useBean id="dob" class="java.util.Date" />
</c:if>

You can see from this example how the <c:catch> action can come in handy for dealing
with errors that don’t warrant informing the user and forwarding to a separate error page. In
this example, the <fmt:parseDate> action from the Internationalization and Formatting tag
library throws an exception if an invalid date is entered and if it does, the exception is stored
in the exception variable. Should an exception be thrown during execution, it can be caught
and tested for, and a default value will be used instead without informing the user of the inter-
nal error.

Note that the scope of the var attribute will always be page, and should a java.lang.
Throwable exception not be thrown by a nested action, then the var variable won’t exist. If a
value for the var variable isn’t supplied, the java.lang.Throwable won’t be stored.

Conditionals
The content delivered by dynamic JSP-based web applications is often dynamic in nature
because its generated content is dependent on the values of ever-changing application data.
Until the release of the JSTL, JSP page authors were forced to provide such functionality via
Java scriptlets containing if statements, which isn’t just ugly, but prone to errors as well. The
conditional tags provided by the JSTL core tag library are far better suited for this purpose.

The <c:if> Action

The first and simplest of the conditional actions is <c:if>, which decides to evaluate its body
content depending on the value of an evaluated Boolean attribute. If the result of the attribute
expression evaluates to true, the action’s body content will be processed in the standard way
by the JSP container and any output will be returned to the current JspWriter.

Let’s use a really simple example to produce some dynamic content based on the current
hour of the day. Listing 4-5 shows a JSP page that displays a different message based on the
hour of the day.

Listing 4-5. core_if.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ page import="com.apress.projsp.CalendarBean"%>
<jsp:useBean id="cal" class="com.apress.projsp.CalendarBean"/>

The time is currently : <BR><BR>
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<c:out value="${cal.time}"/>,
<c:set var="hour" value="${cal.hour}" scope="request" />
<b>
<c:if test="${hour >= 0 && hour <=11}">

Good Morning!
</c:if>
<c:if test="${hour >= 12 && hour <=17}">

Good Afternoon!
</c:if>
<c:if test="${hour >= 18 && hour <=23}">

Good Evening!
</c:if>
</b>

As you can see, this JSP page uses an instance of a simple JavaBean component called
CalendarBean (a simple wrapper around the java.util.Calendar class). The page also sets a
variable called hour using the <c:set> action introduced earlier. After informing the user of 
the current time, the page then dynamically provides the user with a greeting depending on
whether it’s morning, afternoon, or evening. Notice how it takes three separate <c:if> actions
to accomplish this task.

Note that the reason for using the CalendarBean class as a wrapper is that the standard
java.util.Calendar class isn’t a standard JavaBean component and hence cannot be instanti-
ated by the <jsp:useBean> action or manipulated by the EL. An alternative would be to use
scriptlet code to provide access to a Calendar object, but as mentioned elsewhere this makes
your JSP pages cluttered and harder to maintain.

Figure 4-8 shows the output of the web page generated by core_if.jsp. 

Figure 4-8. The <c:if> action can be used to provide conditional output.

Additionally, the <c:if> action accepts an optional var attribute that represents a scoped
variable that can be used to store the result of evaluating the Boolean test expression. The
optional variable can be set to either a specific scope or the default page scope. You may be
surprised to learn that there is no explicit <c:else> action, but you’ll soon see why as we intro-
duce the <c:choose>, <c:when>, and <c:otherwise> actions.
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The <c:choose>, <c:when>, and <c:otherwise> Actions

You’ve now seen how the <c:if> action can be used to provide content based on a specific
condition. The <c:choose> action takes this step a little further and enables you to provide
handling for a set of mutually exclusive conditions, instead of just one.

The syntax for the <c:choose> action is as follows:

<c:choose>
body content (<c:when> and <c:otherwise> subtags)

</c:choose>

As you can see, the <c:choose> action has two possible nested actions that form its body
content: <c:when> and <c:otherwise>. The syntax for each is as follows:

<c:when test="testCondition">
body content

</c:when>
<c:otherwise>

conditional block
</c:otherwise>

The <c:when> action exists simply to provide handling for a specific condition, tested for
via its test attribute. Unlimited <c:when> actions may exist within a <c:choose> action to pro-
vide handling for a wide range of conditions. The <c:otherwise> action may appear only once
because it covers all remaining alternatives and must therefore appear after all <c:when>
actions. Because it represents the last possible option, there’s no need for it to evaluate a
Boolean expression.

Combined, the <c:choose>, <c:when>, and <c:otherwise> actions provide efficient han-
dling for a range of alternative conditions in a similar manner to if, else if, else blocks or
case/switch statements in modern programming languages.

When the JSP container first encounters a <c:choose> tag, it evaluates the body of the first
<c:when> action whose test condition evaluates to true and returns any output to the current
JspWriter without evaluating or processing any further <c:when> or <c:otherwise> actions.
Should the test condition of every <c:when> evaluate to false, then and only then does the
body of the <c:otherwise> action get processed. If no <c:when> condition evaluates to true
and there’s no <c:otherwise> action specified, the <c:choose> action will simply do nothing!

Let’s revisit the example JSP page that we created for the <c:if> action example, which
prints an appropriate welcome based on the time of day:

<c:if test="${hour >= 0 && hour <=11}">
Good Morning!

</c:if>
<c:if test="${hour >= 12 && hour <=17}">

Good Afternoon!
</c:if>
<c:if test="${hour >= 18 && hour <=23}">

Good Evening!
</c:if>
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There are three possible conditions that determine the welcome message returned to the
user. This logic would be far better implemented using a <c:choose> action instead. Let’s make
the appropriate changes:

<c:choose>
<c:when test="${hour >= 0 && hour <=11}">

Good Morning!
</c:when>
<c:when test="${hour >= 12 && hour <=17}">

Good Afternoon!
</c:when>
<c:otherwise>

Good Evening!
</c:otherwise>

</c:choose>

The new implementation of the welcome message logic is superior to the logic from the
<c:if> example for three reasons. First, the code is more self-describing and readable to a
nonprogrammer. Second, the code is more efficient. As soon as the JSP engine has found the
first nested action whose test condition evaluates to true, it doesn’t need to continue checking
the test conditions of any other actions. Compare this to the <c:if> example, where every
action was tested regardless. Last, because the nested actions of the <c:choose> action are
mutually exclusive, it’s impossible to execute the body of more than one of the conditions. 
A simple bug in the logic of the <c:if> example could easily cause the body of more than one
<c:if> action to be processed, thereby causing a very strange welcome message!

Looping and Iteration
Another facility often required by JSP page authors is the ability to generate large amounts of
presentation code (usually HTML tables or lists) by looping or iterating around the same JSP
code. This functionality has until now usually been implemented via scriptlets that contain
either while or for Java statements. Embedding such blocks of code into JSP pages makes it
difficult for JSP developers who are not familiar with Java to do their job effectively, and
scriptlets have a nasty habit of introducing silly, hard-to-detect bugs as well as reducing the
readability of JSP pages. The best JSP pages will contain little, if any, scriptlet code at all!

Thankfully, JSTL offers two useful actions for such purposes: <c:forEach> for general data
and <c:forTokens> for string tokenizing.

The <c:forEach> Action

The <c:forEach> action is probably one of the most useful actions provided by the JSTL that
enables its body content to be processed a number of times. The <c:forEach> action repeat-
edly processes its body content over a collection of objects or until a set number of iterations
has been achieved.

There are two alternate syntaxes for the <c:forEach> action. If you want to iterate over a
collection of objects, you would use this syntax (syntax 1):

<c:forEach[var="varName"] items="collection" [varStatus="varStatusName"]
body content

</c:forEach>
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If you want to iterate a set number of times, you would use this syntax (syntax 2):

<c:forEach [var="varName"] [varStatus="varStatusName"]
begin="begin" end="end" [step="step"]>

body content
</c:forEach>

If iterating over a collection (syntax 1), the only required parameter is the collection itself,
specified via the items attribute. The object referenced by the items variable can be any one of
the following data types:

• An array

• An implementation of java.util.Collection

• An implementation of java.util.Iterator

• An implementation of java.util.Enumeration

• An implementation of java.util.Map

• A string of comma-separated values

Whichever data type items references, the type of the exposed var variable will be that of
the object in the underlying collection. The only exceptions to this are arrays of primitives and
java.util.Maps that are represented by the object wrapper class of the primitive type and
Map.Entry, respectively.

As mentioned earlier, syntax 2 can be used when a fixed number of iterations are
required. Using this particular syntax, the type of the exposed var variable will be Integer
and will be incremented by 1 or step at the end of each iteration. The body content will be
processed repeatedly until the var variable is greater than or equal to the end variable. This
option is usually used when iterating over a finite (and known) collection.

Due to the flexibility provided by the <c:forEach> action, it’s inevitable that this action
will be slightly more complex than some of the others seen so far. For this reason, the com-
plete attribute list for the action is shown in Table 4-1.

Table 4-1. Attributes for the <c:forEach> Tag

Attribute Required Default Description

items No None Collection of items to iterate over.
If null, no iteration takes place.

begin No 0 If specified, must be >=0.
If items specified: Iteration 
begins at the item located at 
the specified value.
If items not specified: Iteration
starts from specified value.

end No Last object in the collection If specified, must be >=begin.
If items specified: Iteration stops
at the item at the specified index
(inclusive).
If items not specified: Iteration
stops when index reaches speci-
fied value.
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Attribute Required Default Description

step No 1 (process all objects) If specified, must be >=1.
Iteration processes every step
item in the collection.

var No None Name of the scoped variable that
represents the current item of the
iteration.

varStatus No None Name of the scoped variable 
that represents the status of the
iteration.
Object is of type javax.servlet.
jsp.jstl.core.LoopStatus.

As an example, imagine that as part of serving a client request, a controlling servlet has
caused some business logic to query a database and retrieve a result set. The data retrieved is
then used to populate a collection of objects, let’s say Book objects, which are placed into the
user’s session before control is forwarded to a JSP page in the presentation tier to display the
results.

The <c:forEach> action is extremely useful for this purpose and is commonly used to
retrieve the collection from the user’s session and iterate over its contents to build an HTML
table. Here is an example of some code to do just that:

<c:forEach var="book" items="${sessionScope.books}">
<tr> 
<td align="right" bgcolor="#ffffff"> 
<c:out value="${book.title}"/>
</td>

</tr>
</c:forEach>

The collection of books (which presumably was stored in the session scope by the name
of books) is retrieved from the session, and the action iterates over the collection of Book
objects. The action then creates the data for a single row of an HTML table, populated by the
title of each book.

The <c:forTokens> Action

The second iterating action provided by the JSTL is <c:forTokens>, which iterates over a string
of tokens separated by a set of delimiters, much in the same way as the functionality provided
by the java.util.StringTokenizer class that you may be familiar with. 

The syntax for the action is as follows:

<c:forTokens items="stringOfTokens" delims="delimiters"
[var="varName"] [varStatus="varStatusName"]
[begin="begin"] [end="end"] [step="step"]>

body content
</c:forTokens>

As you can see in Table 4-2, the attribute list is somewhat similar to the <c:forEach> action.
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Table 4-2. Attributes for the <c:forTokens> Tag

Attribute Required Default Description

items Yes None The string to tokenize.

delims Yes None The delimiter characters that separate
the tokens of the string.

begin No 0 If specified, must be >=0.
The token to start with.

end No If specified, must be >=begin.
The token to end with.

step No 1 (process all objects) If specified, must be >=1.
Iteration processes every step item in
the collection.

var No None Name of the scoped variable that repre-
sents the current item of the iteration.

varStatus No None Name of the scoped variable that repre-
sents the status of the iteration.
Object is of type javax.servlet.jsp.
jstl.core.LoopStatus.

Instead of iterating over a collection of objects or between set values like the <c:forEach>
tag, the <c:forTokens> tag works with a string of characters separated by designated delimiter
characters. Data is often structured in this way, with probably the most common example
being the Comma Separated Value (CSV) file often used with spreadsheet and database appli-
cations. As the name suggests, a CSV file contains “rows” of data with each “column” or piece
of data separated by a comma.

Let’s look at a simple example of the <c:forTokens> tag in action. Imagine that you have
some comma-separated data, perhaps the contents of a customer marketing CSV spreadsheet
that has the following structure:

FirstName,LastName,Sex,Occupation,Location

The previous data is concerned with customer data. You want to present this information
in a more readable format such as an HTML table. Because the data is structured with a consis-
tent delimiter character separating the “tokens” of data, this task is easy with the <c:forTokens>
tag, as you can see in Listing 4-6.

Listing 4-6. core_tokens.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<c:set var="queryResult" value="Dan,Jepp,Male,26,Java Developer,London" 

scope="request" />
<html>
<body>
<table border="1">
<tr>
<th>First Name</th>

Last token in the
string to be tokenized.
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<th>Last Name</th>
<th>Sex</th>
<th>Age</th>
<th>Occupation</th>
<th>Location</th>

</tr>
<tr>
<c:forTokens items="${queryResult}" delims="," var="token">
<td><c:out value="${token}"/></td>

</c:forTokens>
</tr>

</table>
</body>
</html>

This simple example has only a single string of data from which it has to build an 
HTML table with a single row. The main structure of the HTML table is constructed with 
the <c:forTokens> tag; this tag iterates through the string of data held in the queryResult
variable, extracting each token separated by the comma delimiter (as noted by the delims
parameter). Notice how each token is accessed from inside the body of the tag via the token
variable, which is declared as an attribute of the <c:forTokens> tag itself.

The output of the example JSP page in Listing 4-6 is shown in Figure 4-9.

Figure 4-9. The <c:forTokens> tag can be used to split a delimited string into tokens.

Without the <c:forTokens> tag, this simple problem wouldn’t have been as easy to 
overcome and may well have required some ugly JSP scriptlet code and an instance of a
java.util.StringTokenizer class. You can see that this is a far more readable and maintain-
able solution!

A slightly more realistic example may combine the use of the <c:forEach> tag to store
multiple strings of delimited data, which is perhaps the result of a database search for files. 
As the <c:forEach> tag iterates through each delimited string, the <c:forTokens> tag can pro-
duce the necessary HTML table row.
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URL-Related Actions
Obviously the ability to import, link, and redirect is fundamental in any JSP-based web appli-
cation. The JSTL provides several useful URL-related actions to simplify these requirements.

The <c:import> Action

This action imports the content of a URL-based resource and provides a simple, generic way
to access URL-based resources that can be either included or processed within the JSP page.

You can see a good example of the <c:import> action as it works with some of the actions
from the XML library, which, of course, require an XML document to work with. The <c:import>
action is the simplest way to retrieve a file containing XML or XSLT, which is then used by sub-
sequent XML actions for processing. For example:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<c:import url="http://mybookstore.com/book.xml" var="url" />
<x:parse xml="${url}" var="book" scope="session" />

Here you can see how the <c:import> action is used to retrieve a file called book.xml from
a remote location; the file is then utilized by the <x:parse> action from the XML tag library.
Note that in this case, because of the presence of the var parameter, the actual contents of the
file aren’t written to the current JspWriter but are instead stored in the named parameter.

The <c:import> action can also be used to specify absolute, relative, foreign, context-
relative, and FTP URL resources to provide a lot more functionality than the standard
<jsp:include> action you’re so used to having.

The <c:url> Action

The <c:url> action provides a handy way of constructing correctly formatted URLs that have
the correct URL-rewriting rules applied.

As you’re no doubt aware, without session tracking, or the ability to recognize a number
of requests from the same user, the majority of complex web-based applications wouldn’t be
functionally possible due to the statelessness of the HTTP protocol. Generally, browsers pro-
vide the session-tracking mechanism by storing cookies (small text files stored on the client
machine), which are sent back with each request the client makes during a “session.” Because
most modern browsers enable the user to disable cookies (usually for security reasons), it’s
important to ensure that any URLs that your web applications use are URL-rewritten so that
that their session-tracking capabilities are maintained if cookies are disabled.

A rewritten URL looks something like this:

http://www.myserver.com/shop/checkout.jsp;jsessionid=42eab543dc2

The actual rewriting of a URL simply involves appending a special value (the session ID)
to the end of the query string, which is used to track requests that originate from the same
user. These requests are therefore part of the same session.

Previously, JSP scriptlets were typically used to ensure that all URLs were rewritten by
calling the encodeURL() method provided by the HttpServletResponse interface.
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The <c:url> action takes care of all the URL rewriting on your behalf without the need 
for any scriptlet code! For example, to encode the URL, all that’s required is the following:

<c:url value="http://www.myserver.com/shop/checkout.jsp" />

The <c:redirect> Action

As the name suggests, the <c:redirect> action sends an HTTP redirect to a client.
For example, to redirect a user to an updated site or a moved application, the action is

used as follows:

<c:redirect url="http://www.myNewUrl.com" />

It’s as simple as that! The action does also support the use of another optional attribute
called context, which can be used to identify the name of a context when redirecting to a rela-
tive URL that belongs to a foreign context. In simpler terms, this means that you can actually
forward the request to another web application hosted inside the same container!

The <c:param> Action

The <c:import>, <c:url>, and <c:redirect> actions all deal with URLs and as you’re probably
aware it’s pretty common to pass request parameters as part of URLs by appending them to
the query string.

The <c:param> action is designed solely for this purpose and may be used as a nested tag
in the body content of either the <c:import>, <c:url>, or <c:redirect> actions. The <c:param>
action takes two simple attributes, name and value, which represent the name of the request
parameter along with its value, respectively. Note also that the value of the name and value
attributes are URL encoded by default.

For example:

<c:url value="http://www.myBookshop.com/books/catalogue.jsp" >
<c:param name="isbn" value="123456" />

</c:url>

Like many of the JSTL actions, the <c:param> action can be used in two forms, first as
shown previously, and second, whereby the value for the parameter is given inside the body
content of the action itself. Let’s take a look at the previous example using the alternative
format:

<c:url value="http://www.myBookshop.com/books/catalogue.jsp" >
<c:param name="isbn">123456</c:param>

</c:url>

The Internationalization and Formatting Tag Library
Preparing an application so it’s ready for the global marketplace is known as international-
ization (or I18n for short). A related term, localization (or l10n), refers to the process of
customizing an application for a particular language or region.
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The popularity of the Internet has enabled organizations to vastly increase their exposure
and client base by providing their services via dynamic web applications. Ensuring that clients
from around the world can interact with such applications by using their native language and
conventions has never been more important.

The Internationalization and Formatting tag library provided by the JSTL provides a set of
simple actions to aid this process and uses three key components associated with internation-
alization: locales, resource bundles, and base names.

Setting the Locale
The Internationalization and Formatting tag library provides actions that allow you to control
the locale settings for your JSP pages.

The <fmt:setLocale> Action 

As the name suggests, this action can be used to override the client-specified locale for the
processing of a JSP page. Any I18n formatting actions such as <fmt:message> that are found on
the page will use this specified locale instead of the one sent by the client browser.

The chosen locale is stored in a variable called javax.servlet.jsp.jstl.fmt.locale and
can be stored in any chosen scope.

This JSP code first sets the default locale for the page followed by the session:

<fmt:setLocale value ="en_US" />
<fmt:setLocale value ="fr_FR" scope="session" />

The value attribute accepts either a string representing the locale (a two-letter, lowercase
language code followed a two-letter, optional uppercase country code), or a reference to a
java.util.Locale object.

■Tip Locale codes are created by specifying a language code, an underbar, and an optional country code.
Language codes are defined by the ISO 639 standard (http://www.loc.gov/standards/iso639-2/
langhome.html). Country codes are defined by the ISO 3166 standard (http://www.iso.org/iso/en/
prods-services/iso3166ma/02iso-3166-code-lists/index.html).

Note that it’s also possible to set a default locale for use via the JSTL by using the following
configuration setting in the web application’s deployment descriptor (web.xml):

<context-param>
<param-name>javax.servlet.jsp.jstl.fmt.locale</param-name>
<param-value>en</param-value>

</context-param>

This configuration uses the locale code for English to set the default locale for the
application.
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■Caution The <fmt:setLocale> action overrides the browser-based locale setting. Therefore, if you use
this action, make sure it’s placed at the beginning of a JSP page before any I18n formatting actions.

Messaging Actions
After the locale has been defined for a client request, either by the client’s browser settings or
by use of the <fmt:setLocale> action, the JSTL messaging actions can be used to display con-
tent to the browser in its own language as identified by its locale.

To take advantage of localized messages, it’s necessary as a developer to provide a collec-
tion of resources (usually strings) for each locale that you intend to support. Each collection of
resources is known as a resource bundle and is implemented via a standard key=value proper-
ties file. For more information, take a look at the Java 2 Platform, Standard Edition (J2SE)
Javadocs for the java.util.ResourceBundle class.

The <fmt:bundle> and <fmt:setBundle> Actions

To enable the use of localized messages, you need to specify the required resource bundle that
provides the localized messages.

Either the <fmt:bundle> or <fmt:setBundle> actions can be used to specify a resource
bundle, and they’re identified by the basename to be used in the JSP page. Once successfully
declared, the resource bundle can then be used to provide localized messages via the
<fmt:message> action, which you’ll see shortly.

Although similar, the <fmt:bundle> and <fmt:setBundle> actions are used in different
ways to produce localized messages in JSP pages.

The <fmt:bundle> action is used to declare an I18n localization context for use by 
I18n-aware tags within its body content:

<fmt:bundle basename="Labels">
<fmt:message key="labels.firstName"/>
<fmt:message key="labels.lastName"/>

</fmt:bundle>

Here, a resource bundle with the name Labels is declared to provide the localized resources
for any nested <fmt:message> actions. The resource bundle contains at least two name-value
pairs given by the keys labels.firstName and labels.lastName.

Because the <fmt:bundle> action is designed to work so closely with nested <fmt:message>
actions, a handy optional attribute can also be used as follows:

<fmt:bundle basename="Labels" prefix="labels">
<fmt:message key="firstName"/>
<fmt:message key="lastName"/>

</fmt:bundle>

The optional prefix attribute enables the setting of a predefined prefix that is prepended
to the key attribute of any nested <fmt:message> actions, which makes their use so much
simpler.
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The <fmt:setBundle> action also provides similar functionality to those you just saw, but
with a subtle difference. Instead of having to nest any <fmt:message> actions as body content,
the <fmt:setBundle> action enables a resource bundle to be stored in the configuration vari-
able javax.servlet.jsp.jstl.fmt.localizationContext, so any <fmt:message> actions that
appear elsewhere in the JSP page can access the bundle without having to continually declare
it as follows:

<fmt:setBundle basename="Labels" />
<fmt:message prefix="labels.firstName" />

The <fmt:setBundle> action also enables you to declare the exported variable that stores
the bundle along with its scope. This flexibility makes it simple to use multiple bundles within
the same JSP page interchangeably.

Note that the JSTL does provide a mechanism to set a default resource bundle for a web
application via the following configuration setting in the application’s deployment descriptor
(web.xml):

<context-param>
<param-name>
javax.servlet.jsp.jstl.fmt.localizationContext

</param-name>
<param-value>messages.MyMessages</param-value>

</context-param>

The <fmt:message> Action

As mentioned earlier, localized messages are retrieved from a resource bundle by using the
<fmt:message> action, which uses a key parameter to extract the message from the resource
bundle and print it to the current JspWriter.

You’ve also seen that the <fmt:message> action can be used by itself on a page or as body
content to the <fmt:bundle> action. Should you wish to use the action by itself, you can specify
via the optional bundle attribute the resource bundle to use. This can be the default config-
ured bundle or a localization content that has been configured and stored in a separate
variable by the <fmt:setBundle> action.

Another optional parameter, var, enables the localized message to be stored in a parame-
ter instead of being printed to the JspWriter. As with most of the JSTL tags, the scope of this
variable can be set by using the scope attribute.

Let’s build a simple working example to demonstrate the <fmt:setLocale>, <fmt:setBundle>,
and <fmt:message> tags working together to create a localized JSP page.

Your first task is to set up the locale-specific resources, and in this case you’re simply
going to localize some simple strings by utilizing a resource bundle. There are several ways to
create a resource bundle, but the simplest is to build a list of name-value pairs representing
the locale-specific resources that you wish to externalize from the application code. Let’s
localize some simple strings and provide implementations in both English and Spanish. Start
by creating the properties file shown in Listing 4-7.
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Listing 4-7. labels_en.properties

nameQuestion=What is your name?
ageQuestion=How old are you?
locationQuestion=Where do you live?
submit=Send

The properties file in Listing 4-7 will be stored on the class path (under the WEB-INF\
classes directory, for example) in a file called labels_en.properties. This file will be the
English resource bundle for the localization-aware JSP page. Next, create another resource
bundle, this time in Spanish, as shown in Listing 4-8.

Listing 4-8. labels_es.properties

nameQuestion=¿Cómo te llamas?
ageQuestion= ¿Cuántos años tiene?
locationQuestion= ¿Dónde vives?
submit=Mande

The names stay the same, but this time the values are in Spanish! This bundle must be
placed in a file called labels_es.properties.

Now that you have the resource bundles in place, you can code the localized JSP page
shown in Listing 4-9.

Listing 4-9. locale.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c"%>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<fmt:setLocale value="en_GB" scope="request"/>
<fmt:setBundle basename="labels"/>
<h2>Survey</h2>
<form action="">
<table>
<tr>
<td><fmt:message key="nameQuestion"/></td>
<td><input type="text" size="16"></td>

</tr>
<tr>
<td><fmt:message key="ageQuestion"/></td>
<td><input type="text" size="16"></td>

</tr>
<tr>
<td><fmt:message key="locationQuestion"/></td>
<td><input type="text" size="16"></td>

</tr>
<tr>
<td><input type="submit" value='<fmt:message key="submit"/>'></td>

</tr>
</table>
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This JSP page sets the locale to be en_GB and configures the resource bundle by using 
the <fmt:setBundle> action along with the bundle basename called labels. The rest of the JSP
builds a small HTML form that asks the user to input some information about herself. Notice
how you have localized the labels for the form input fields by using the <fmt:message> action.

Not surprisingly, when you run this code, the locale is set to en_GB and the appropriate
resource bundle is loaded. Because the system cannot find a resource bundle named
labels_en_GB.properties, the resource bundle that matches is the next more general file that
matches, labels_en.properties. With the help of the <fmt:message> actions, the page shown
in Figure 4-10 is built and displayed.

Figure 4-10. With the locale set to en_GB, the page displays the English values for each 
message key.

To demonstrate that the page is supported in English-speaking countries as well as
Spanish-speaking countries, you simply have to change the following line of code:

<fmt:setLocale value="es_ES" scope="request"/>

Of course, in the real world, the locale is usually retrieved from a special header that is
sent by the client’s browser during the initial request. The only reason we explicitly set the
locale here is to demonstrate how the JSP page would work in a Spanish-speaking country.
The output is shown in Figure 4-11.
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Figure 4-11. When the local is set to es_ES, the page displays the Spanish values for the 
message keys.

You may be wondering what occurs if the client’s browser sends a locale value for which
there is no corresponding resource bundle. The answer to this question is left as an exercise to
the reader. (Hint: check the spec.)

Formatting Actions
Ensuring that your clients view your JSP pages in their own language is just the tip of the ice-
berg with regard to building a fully internationalized and localized application. In addition to
language, users from different locales have different standards regarding the following:

• Date and time formats

• Number formats

• Currency formats

• Colors

• Page layouts

• Address standards (zip codes)

Fortunately, to make your job easier, the formatting tag library provided by the JSTL
enables various data elements in a JSP page, such as numbers, dates, and times, to be format-
ted and parsed in a locale-sensitive or customized manner.

CHAPTER 4 ■ JAVASERVER PAGES STANDARD TAG L IBRARY 163

513-0 ch04.qxd  11/17/05  8:41 PM  Page 163



The <fmt:timeZone> and <fmt:setTimeZone> Actions

Date-and-time information on a JSP page can be displayed in a manner consistent with the pre-
ferred time zone of a client. This is enormously useful if your server that hosts the page and the
client reside in different time zones. The JSTL provides two actions to enable any I18n-aware
date-and-time actions to format or parse their date-and-time information in an appropriate
manner.

The <fmt:timeZone> and <fmt:setTimeZone> actions complement each other in a similar
fashion as the <fmt:bundle> and <fmt:setBundle> actions introduced earlier. The <fmt:timeZone>
action is used to specify a time zone for any nested I18n-aware actions that appear inside its
body content, whereas <fmt:setTimeZone> can be used to store a reference to a time zone in
an exportable variable for use anywhere on a JSP page.

The <fmt:timeZone> action is used as follows:

<fmt:timeZone value="GMT">
//...date/time actions go here

</fmt:timeZone>

A single attribute called value is used to specify the time zone, which can either be a
java.util.TimeZone object or a string that represents one of the time zone IDs supported by
the Java platform (such as “America/Los Angeles” or a custom time zone such as “GMT-8”).

The <fmt:setTimeZone> action is used as follows:

<fmt:setTimeZone value="GMT" var="myTimeZone" scope="request" />

This action enables a java.util.TimeZone object to be stored in a scoped variable that 
can be utilized by any I18n-aware actions such as the <fmt:formatDate> and <fmt:parseDate>
actions, which you’ll see next.

The <fmt:formatDate> and <fmt:parseDate> Actions

The two I18n-aware date actions provided by the JSTL are <fmt:formatDate> and
<fmt:parseDate>. Both actions may be used in conjunction with the time-zone actions
mentioned earlier.

The <fmt:formatDate> action provides flexible, time zone–aware formatting of java.
util.Date objects so that the date and time may be displayed correctly depending on the
client’s time zone. In its simplest form, the <fmt:formatDate> action applies the default for-
mats of the current time zone and outputs them to the current JspWriter as follows:

<jsp:useBean id="now"  class="java.util.Date /">
<fmt:formatDate value="${now}"/>

As mentioned, the <fmt:formatDate> action is highly flexible and provides the ability to
display dates and times in predefined or custom formats by using the conventions as set out
by the java.text.DateFormat class. The ability to store the formatted date in a scoped string
variable is also provided.
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Listing 4-10 shows just some of the formatting options provided by the <fmt:formatDate>
action. Notice how the standard <jsp:useBean> action is used here to create an instance of the
java.util.Date class, which is used by the JSTL actions.

Listing 4-10. fmt_formatDate.jsp

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>
<jsp:useBean id="now" class="java.util.Date" />
<h1>Examples of Date & Time Formatting</h1>
<hr>
<h2>Default Time Zone</H2>
Default format : <fmt:formatDate value="${now}"/><br>
A Date only in a Custom dd/MM/yyyy format :
<fmt:formatDate value="${now}" type="DATE" pattern="dd/MM/yyyy"/><br>
A Time only in MEDIUM format :
<fmt:formatDate value="${now}" type="TIME" dateStyle="MEDIUM"/><br>
A Date and Time in FULL format :
<fmt:formatDate value="${now}" type="BOTH" dateStyle="FULL"

timeStyle="FULL"/><br>
<hr>
<h2>America/Los_Angeles Time Zone</h2>
<fmt:timeZone value="America/Los_Angeles">
Default format : <fmt:formatDate value="${now}"/><br>
A Date only in a Custom MM-dd-yyyy format :
<fmt:formatDate value="${now}" type="DATE" pattern="MM-dd-yyyy"/><br>

A Time only in MEDIUM format :
<fmt:formatDate value="${now}" type="TIME" dateStyle="MEDIUM"/><br>

A Date and Time in FULL format :
<fmt:formatDate value="${now}" type="BOTH" dateStyle="FULL" 

timeStyle="FULL"/><br>
</fmt:timeZone>

Notice that in the first set of examples a time zone isn’t specified, so the default time zone
is used instead (MDT in this case). There are several examples that demonstrate the prede-
fined date-and-time formats as well as a custom date format of dd/MM/yyyy.

The second set of examples explicitly sets the time zone to America/Los_Angeles by using
the <fmt:timeZone> action. Notice how the times have been automatically altered to their new
time zone—clever, eh! Also notice that you’re using a different custom format of MM-dd-yyyy
instead this time.

■Tip Valid values for the value attribute of the <fmt:timeZone> action can be found in the Javadoc for
the java.util.TimeZone class.
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Figure 4-12 shows the results of all this formatting.

Figure 4-12. Dates and times can be formatted for specific time zones by using tags in the
formatting functional area.

The <fmt:parseDate> action provides complementary functionality to the <fmt:formatDate>
action by parsing and converting the string representation of dates and times that were for-
matted in a locale-sensitive or customized manner into java.util.Date objects. This action is
particularly useful if you need to enable clients from around the world to enter date-and-time
information in their own local format and have it correctly parsed into the correct object at
the server.

<fmt:parseDate type="date" pattern="dd/MM/yyyy" var="parsedDate">
22/12/2005

</fmt:parseDate>

Note that the string representing the date to be parsed can be passed in either via the
value attribute or in the actions body content as seen earlier. Here a custom date format is
used to parse the string 22/12/2005 into a java.util.Date object and store a reference to it in
the variable called parsedDate.
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The <fmt:formatNumber> and <fmt:parseNumber> Actions

As mentioned earlier, there are many forms of data that are represented differently based on
the time zone or locale. You’ve seen the JSTL actions to support date-and-time localization, so
it should come as no real surprise that support is also provided for the formatting and parsing
of numbers.

The <fmt:formatNumber> action is also flexible and capable of formatting a numeric value
in a locale-sensitive or custom format as a number, currency, or percentage. For example, the
following action ensures that the given number has at least three decimal places:

<fmt:formatNumber value="123.4" type="NUMBER" minFractionDigits="3" />

The result of this action will be to format the number 123.4 into the value 123.400. To
demonstrate the I18n capabilities of the <fmt:formatNumber> action, you can also automati-
cally extract the correct currency symbol from the locale when working with monetary values:

<%@page contentType="text/html;charset=ISO-8859-15" %>
<c:set var="salary" value="125000" />
<fmt:setLocale value="en_GB"/>
<fmt:formatNumber type="CURRENCY" value="${salary}" /><BR>
<fmt:setLocale value="fr_CH"/>
<fmt:formatNumber type="CURRENCY" value="${salary}" /><BR>
<fmt:setLocale value="fr_FR"/>
<fmt:formatNumber type="CURRENCY" value="${salary}" /><BR>
<fmt:setLocale value="it_IT"/>
<fmt:formatNumber type="CURRENCY" value="${salary}" />

The previous example sets the local currency to be first English, then Swiss, then French,
and finally Italian. It formats a currency in each case (notice the type="CURRENCY" attribute)
with the value of 125000 in the current locale. The results of the formatting actions are as
follows:

• English locale = £125,000.00

• Swish locale = SFr. 125'000.00

• French locale = 125 000.00 €

• Italian locale = € 125.000,00

Notice how the change in locale and the usage of the page directive content-type attribute
radically affects the way the value is interpreted. Depending on the locale, either the British
pound, Swiss franc, or Euro symbol is displayed. In addition, notice the usage of various for-
matting styles for the digits themselves.

As with the <fmt:parseDate> action, the <fmt:parseNumber> action is the reverse formatting
tag, used to convert a formatted string representing either a number, currency, or percentage
into an appropriate java.lang.Number.
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The SQL Tag Library
The use of SQL or any form of direct-data access from inside the presentation tier is highly
discouraged in production or large-scale applications in favor of a three-tier architecture. The
benefits of such an architecture are that it encourages the presentation of your data (your JSP
pages) to be cleanly separated from your business logic and data access, thereby making your
application far more adaptable and maintainable. Embedding SQL into your presentation tier
is also a bad idea because of the implications it has on security.

However, as mentioned earlier, the JSTL specification was developed as part of the Java
Community Process (JCP), and because enough developers requested a library of actions to
access relational databases, their wish was granted. These actions form part of the JSTL
specification.

Love them or loathe them, the SQL access actions exist. Their intended use is recommended
for Rapid Application Development (RAD) prototyping or very small-scale applications only.
Let’s take a brief look at the functionality provided by the SQL tag library.

The <sql:setDataSource> Action

All the actions provided in the SQL tag library operate on a data source defined by the java.
sql.DataSource class. The primary job of the <sql:setDataSource> action is therefore to con-
figure a data source that represents an underlying physical data store and expose it as either a
scoped variable or the data source configuration object javax.servlet.jsp.jstl.sql.DataSource.

The configured data source is used by the remaining actions in the SQL library to source
database connections so they may perform queries and updates, and so on.

A data source can be configured as follows:

<sql:setDataSource var="dataSource" driver="org.acme.sql.driver" 
url="jdbc:msql://localhost/tempDB" user="Dan" password="pwd"/>

The var attribute sets a label by which the data source can be accessed. The driver attri-
bute is the fully qualified class name of the JDBC driver class that is used to communicate with
the data source. The url attribute is the JDBC URL used to connect to the data source. The
user and password attributes are the username and password used to log in to the data source.
More information on JDBC can be found at http://java.sun.com/products/jdbc.

Note that it’s also possible to supply a relative path to a Java Naming and Directory
Interface (JNDI) resource via the optional dataSource attribute. If you have a JNDI name for
the dataSource, then providing it in the dataSource attribute will cause the JSP page to per-
form a JNDI lookup for the data source. In this case, you do not need to provide any of the
other attributes because they are provided as part of the resource accessed through JNDI.

The <sql:query> Action

Simple database query functionality is provided by the <sql:query> action:

<sql:query var="users" dataSource="${dataSource}" >
SELECT * FROM User WHERE UserName='Dan'

</sql:query>
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The dataSource attribute is used to reference a DataSource that was configured by using
the <sql:setDataSource> action. The mandatory var parameter is used to store the result of
the query and is of type javax.servlet.jsp.jstl.sql.Result. It’s possible to pass the string 
of SQL as either body content or by using the sql attribute.

It’s most familiar to see the <sql:query> and <c:forEach> actions working together to
display the results of the query in an HTML table as follows:

<sql:query var="users" dataSource="myDataSource" >
SELECT * FROM User WHERE UserName='Dan'

</sql:query>
<table>
<c:forEach var="row" items="${users.row}">
<tr>
<td><c:out value="${row.firstName}" /></td>
<td><c:out value="${row.lastName}" /></td>
<td><c:out value="${row.phoneNumber}" /></td>
</tr>

</c:forEach>
</table>

■Caution If the dataSource attribute is present, the <sql:query> action must not be nested inside a
<sql:transaction> action. The <sql:transaction> action is covered later in this chapter.

The <sql:update> Action

To complement the <sql:query> action, the <sql:update> action enables SQL Data Manipula-
tion Language INSERT, UPDATE, and DELETE statements to be executed. It is also used to execute
SQL Data Definition Language statements, such as a table creation or alteration statements.

The syntax of this action is similar to that of the <sql:query> action. Again, a var attribute
is available to store the result of the <sql:update> action except this time it’s not mandatory.
The type of the var parameter is java.lang.Integer.

<sql:update var="count" dataSource="myDataSource">
DELETE FROM Users WHERE UserName <> 'Dan'

</sql:update>

The <sql:param> and <sql:dateParam> Actions

Both the <sql:query> and <sql:update> actions provide support for nested <sql:param> and
<sql:dateParam> actions that are used to pass parameters into a parameterized string of SQL.

Both actions are incredibly simple and exist only to hold a simple object via its value
attribute:

<sql:param value="${userName}"/>
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To see how these tags could be used as part of a parameterized SQL statement, revisit the
example you saw in the <sql:update> example:

<sql:update var="count" dataSource="myDataSource">
DELETE FROM Users WHERE UserName <> ? AND Status = ?
<sql:param value="${userName}"/>
<sql:param value="${status}"/>

</sql:update>

The values held by each nested <sql:param> action are substituted for each parameter
marker (“?”) in the SQL. The order in which the <sql:param> actions occur determines which
parameter is substituted.

The <sql:transaction> Action

The final action provided by the SQL tag library is the <sql:transaction> action, which
enables a series of SQL actions to be grouped together to provide transactional behavior.
Transactions enable a series of database actions (such as queries, insertions, deletions, and so
on) to be treated as a single atomic action. The transaction is committed permanently to the
database only when all the database actions within it complete successfully; otherwise, the
transaction is rolled back and any actions are reversed.

Any <sql:query> or <sql:update> actions that wish to be included as part of the transac-
tion are nested inside the <sql:transaction> action itself. For example, let’s add the previous
examples to demonstrate the <sql:query> and <sql:update> actions inside a transaction:

<sql:transaction dataSource="myDataSource" isolation="read_committed">
<sql:query var="users">
SELECT * FROM User WHERE UserName='Dan'

</sql:query>
<sql:update var="count">
DELETE FROM Users WHERE UserName <> ? AND Status = ?
<sql:param value="${userName}"/>
<sql:param value="${status}"/>

</sql:update>
</sql:transaction>

As you can see, it’s simplicity itself! If both the <sql:query> and <sql:update> actions
complete successfully, the transaction will automatically be committed! If either the SELECT
command or the DELETE command fails, the entire transaction is rolled back.

The only points to be aware of are that any nested SQL tags must not supply their own
dataSource attributes because the DataSource is declared by the <sql:transaction> action
itself. An optional isolation attribute can also be supplied to set the isolation level of the
transaction. This attribute must be one of the following values:

• read_committed

• read_uncommitted

• repeatable_read

• serializable

ce configuration itself.

CHAPTER 4 ■ JAVASERVER PAGES STANDARD TAG L IBRARY170

513-0 ch04.qxd  11/17/05  8:41 PM  Page 170



The XML Processing Tag Library
XML has become the de facto standard for representing and exchanging data between enter-
prise applications. Data represented by XML isn’t only “self-describing” and easy to validate,
but it’s also text based, which has further increased its popularity, especially with the recent
rise of web services technologies.

Increasingly, XML is also being used internally by web applications to represent data
retrieved from the business or database layer, which is then rendered into an appropriate for-
mat (HTML, WML, and so on) by the presentation layer. Therefore, more and more JSP page
authors have to manipulate XML in order to generate some content. Until now, using XML
data has been a nontrivial task, often requiring specific programming skills of the page author.
To address this problem, the JSTL provides an XML processing tag library that is designed to
solve many of the common tasks met by page authors using XML data.

The XML processing tag library can be split into the following functional areas concerned
with XML data:

• XML core actions

• XML flow control actions

• XML transformation actions

The first two functional areas are very similar in nature to the core and flow control actions
provided by the Core tag library, except that they are designed to work with XML data. The XML
transformation actions enable XML data to be transformed into other content by using XSL
Transformations (XSLT) stylesheets.

Naturally, one of the key requirements when dealing with XML documents is to be able to
easily manipulate their content. The actions from the XML processing tag library are no differ-
ent and are all based around XPath (a W3C recommendation since 1999) to select and specify
individual parts of an XML document by a simple XPath expression.

■Note To use XPath with the examples in this section, you will need the Xalan libraries. If you down-
loaded the JWSDP as described in the beginning of this chapter, you can find the Xalan libraries in the
jaxp\lib\endorsed directory. Alternately, you can download Xalan from Apache. We downloaded the
Xalan libraries from http://xml.apache.org/xalan-j/ and then copied the JAR files to the lib
directory of the application.

The actions provided by the XML processing tag library support the use of only XPath
expressions, which are evaluated by an appropriate XPath engine, via the select attribute. All
other expressions are evaluated in the standard manner by the global EL in use.
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In addition to the standard XPath syntax, the XPath engine provided by the JSTL also sup-
ports the following “scopes,” which may be used in XPath expressions to access data stored in
the various web applications’ scopes.

$param:
$header:
$cookie:
$initParam:
$pageScope:
$requestScope:
$sessionScope:
$applicationScope:

You should be familiar with these scopes as they are defined in the same manner as those
used in the JSTL EL. Consider the following XPath expression:

$sessionScope:user

This expression could be used in a similar manner to the standard JSTL EL to reference an
attribute called user stored inside the session scope.

XML Core Actions
As the name suggests, the XML core actions provide fundamental tasks required to interact
with an XML document such as parsing and accessing the XML content.

The <x:parse>, <x:out>, and <x:set> Actions

The <x:parse> action simply parses a named XML document and saves it inside a scoped vari-
able for use by other tags from the XML tag library. For example, let’s imagine you’re working
with the XML file in Listing 4-11 that describes a book:

Listing 4-11. book.xml

<book>
<title>Professional JSP</title>
<author>Brown et. al</author>
<isbn>1-59059-513-0</isbn>
<published>September 2005</published>
<publisher>Apress</publisher>
<url>www.apress.com/book/bookDisplay.html?bID=464</url>

</book>

Assuming this file is stored in a file called book.xml, you can parse this file and store the
resulting object as follows:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<c:import url="book.xml" var="url" />
<x:parse xml="${url}" var="book" scope="session" />
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Hopefully you’ll be comfortable with the <c:import> action from the Core library, which is
used to generate the appropriate URL to the book.xml file (which is stored in the same directory
as the JSP page). The <x:parse> action parses the XML file and stores it in the session-scoped
variable book.

In the earlier example, the var parameter was used to indicate the name of a scoped vari-
able to hold the object created as a result of the parse. The JSTL specification doesn’t define
the type for this object and leaves it up to the container to specify the most appropriate type.
However, if the parameter varDom were used instead, the JSTL specification would insist that
the type of the resulting object must be org.w3c.dom.Document.

If you’re familiar with the JSTL Core tag library introduced earlier, you should be able to
guess what the <x:out> and <x:set> actions do because they’re like similarly named tags from
the Core tag library. These similarities aren’t by chance; the <x:out> and <x:set> actions from
the XML tag library are functionally identical to the <c:out> and <c:set> actions from the Core
tag library except that they’re designed to work with XML documents.

The <x:out> action evaluates an XPath expression (reference to somewhere in the XML
document) and outputs the result of the evaluation to the current JspWriter. Let’s build on the
earlier example to demonstrate the use of the <x:out> action. Listing 4-12 shows a JSP page
that uses various actions including the <c:import>, the <x:parse>, and the <x:out> actions.

Listing 4-12. xml_out.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<c:import url="book.xml" var="url" />
<x:parse xml="${url}" var="book" scope="session" />
<b><x:out select="$book/book/title"/></b><br>
<x:out select="$book/book/author"/><br>
<x:out select="$book/book/url"/><br>

You still parse the XML file in the same way, but this time some <x:out> actions have
been added that can be used to extract the values of the title, author, and url nodes from
beneath the parent book node (take a look at the earlier book.xml in Listing 4-11 if you’re 
confused). The document is parsed and interrogated by the <x:out> actions that use XPath
expressions to retrieve the required data. Figure 4-13 shows the output of the JSP page in
Listing 4-12.

Figure 4-13. XML tags can be used to parse and output values from XML formatted data.
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As mentioned earlier, the <x:set> action is also very close to the <c:set> action from the
Core tag library. Instead of evaluating an XPath expression and returning it to the current
JspWriter, the <x:set> actions simply store the values inside scoped variables.

Just to demonstrate all three tags working together, let’s see how the <x:set> action can 
be used in the previous example:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<c:import url="book.xml" var="url" />
<x:parse xml="${url}" var="book" scope="session" />
<x:set select="$book/book/title" var="title" scope="session"/>
<x:set select="$book/book/author" var="author" scope="session"/>
<x:set select="$book/book/url" var="bookUrl" scope="session"/>
<b><x:out select="$title" /></b><br>
<x:out select="$author" /><br>
<x:out select="$bookUrl" /><br>

Instead of using the <x:out> action to retrieve the values from the XML directly, you use
the <x:set> action to store the values to scoped variables first and then output them via the
<x:out> action.

XML Flow Control Actions
Now that you’ve seen how you can parse, store, and retrieve XML data, you can take a look at
the XML flow control actions that conditionally process JSP code based on the result of an
XPath expression and iterate over elements inside an XML document.

Again, the XML flow control actions bear a striking resemblance to the flow control
actions from the Core tag library. The only difference is—yes, you’ve guessed it—they work
with XML documents!

The <x:if> Action

Like the <c:if> action from the Core tag library, the <x:if> action conditionally processes
some JSP code based on a Boolean expression. The only difference is that the <x:if> action
uses an XPath expression that is evaluated and converted into a Boolean according to the
semantics of the XPath boolean() function:

• A number is true if and only if it’s neither zero (positive or negative) nor NaN (Not 
A Number).

• A nodeset is true if and only if it’s nonempty.

• A string is true if and only if its length is nonzero.

The <x:if> action processes its body content only if the Boolean condition evaluates 
to true.

Let’s use the book.xml example again to work on the marketing tactics for new Apress
titles! Listing 4-13 shows a JSP page that uses the <x:if> action.
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Listing 4-13. xml_if.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<c:import url="book.xml" var="url" />
<x:parse xml="${url}" var="book" scope="session" />
<x:if select="$book/book/publisher='Apress'">
Another great title from Apress!
<p>
<b><x:out select="$book/book/title"/></b><br>
<x:out select="$book/book/author"/><br>
<x:out select="$book/book/url"/><br>

</x:if>

You can see that the <x:if> action enables you to control whether to output any informa-
tion based on the content of the XML. In this case, if the value of the book’s Publisher attribute
is Apress, you’ll happily publicize the book and generate some content. If the Boolean condi-
tion is false and a different publisher has been used, you won’t generate any information
about the book—sneaky, eh!

According to the book.xml you used earlier, the book has indeed been published by Apress
and so the body of the previous <x:if> action may be processed. Figure 4-14 shows the result.

Figure 4-14. The <x:if> action can produce conditional output.

The <x:choose>, <x:when>, and <x:otherwise> Actions

To complement the <x:if> action mentioned earlier, there are also a set of actions to provide
mutually exclusive, XML-dependent conditional behavior in exactly the same way as the
actions in the Core tag library.

The following JSP page builds on the earlier example and provides you with the ability 
to market books from different publishers with different content:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
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<c:import url="book.xml" var="url" />
<x:parse xml="${url}" var="book" scope="session" />
<x:choose>
<x:when select="$book/book/publisher='Apress'">
Another great title from Apress!

</x:when>

<x:when select="$book/book/publisher='Bloggs Publisher'">
A reasonable title from Bloggs Publisher!

</x:when>

<x:otherwise>
A title from an unknown publisher

</x:otherwise>
</x:choose>
<p>
<b><x:out select="$book/book/title"/></b><br>
<x:out select="$book/book/author"/><br>
<x:out select="$book/book/url"/><br>

By using the <x:choose> action, you can provide different content depending on the value
of an XPath expression, or the value of the <Publisher> element in this case. If the value is
Apress, you provide the flagship introduction but provide books by Bloggs Publisher with a
separate but toned-down introduction. Any titles by other publishers are handled by the
<x:otherwise> action to give a low-key introduction.

The <x:forEach> Action

Of course, XML documents in the real world are likely to be far more complicated than the
simple book.xml example you’ve been using. For one, the file contains the description of only a
single book. Let’s complicate matters slightly by changing the format of the XML to cope with
multiple books, as shown in Listing 4-14.

Listing 4-14. books.xml

<books>
<book>
<title>Professional JSP</title>
<author>Brown et. al</author>
<isbn>1-59059-513-9</isbn>
<published>September 2005</published>
<publisher>Apress</publisher>
<url>www.apress.com/book/bookDisplay.html?bID=200</url>

</book>
<book>
<title>Macbeth</title>
<author>William Shakespeare</author>
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<isbn>1123456789</isbn>
<published>A long time ago</published>
<publisher>Bloggs Publisher</publisher>
<url>http://booksrus.co.uk/titles/1123456789.html</url>

</book>
<book>

<title>Fly Fishing</title>
<author>JR Hartley</author>
<isbn>987654321</isbn>
<published>May 1947</published>
<publisher>ABC Printers Press</publisher>
<url>http://books.com/books.jsp?id=987654321</url>

</book>
</books>

It should be quite obvious that the existing solution for marketing the books as described
by the XML won’t work with multiple titles. You’ve changed the XML structure as well so that
the <books> element now contains several <book> elements. You need another solution.

Thankfully, the JSTL XML library provides an iterating action <x:forEach> that is espe-
cially designed for such a purpose and works in a similar way to the <c:forEach> action from
the Core tag library.

To iterate over the <book> elements, the <x:forEach> action accepts an XPath expression
that points to the <book> element and stores it in a scoped variable as follows:

<x:forEach select="$book/books/book" var="currentBook">
...

</x:forEach>

The first <book> element will be stored in the variable currentBook and may be accessed by
XML actions such as <x:out>, <x:set>, and so on, inside the body of the action. All you need to
do, really, is wrap the existing code from the previous example inside of an <x:forEach> action
and the iteration will be handled automatically; then hopefully all the books in books.xml will
be publicized! 

Listing 4-15 demonstrates this simple functionality. Note that the only other changes that
have occurred are some minor HTML changes to make the generated page look a little more
professional. For now, just concentrate on spotting how the <x:forEach> action encapsulates
all the previous example code you’ve seen so far.

Listing 4-15. xml_forEach.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<c:import url="books.xml" var="url" />
<x:parse xml="${url}" var="book" scope="session" />
<x:forEach select="$book/books/book" var="currentBook"> 
<x:choose>
<x:when select="$currentBook/publisher='Apress'">
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<font color="red">
<h1>Another great title from Apress!</h1>

</font>
</x:when>

<x:when select="$currentBook/publisher='Bloggs Publisher'">
<font color="red">
<h2>A reasonable title from Bloggs Publisher!</h2>

</font>
</x:when>

<x:otherwise>
<font color="red">
<h3>A title from an unknown publisher</h3>

</font>
</x:otherwise>

</x:choose>
<table border="0">
<tr>
<td colspan="2"><b><x:out select="$currentBook/title"/><b></td>

</tr>
<tr>
<td><i>Author :</i></td>
<td><x:out select="$currentBook/author"/></td>

</tr>
<tr>
<td><i>ISBN :</i></td>      
<td><x:out select="$currentBook/isbn"/></td>

</tr>
<tr>
<td><i>Published :</i></td> 
<td><x:out select="$currentBook/published"/></td>

</tr>
<tr>
<td><i>URL :</i></td>       
<td><a href='<x:out select="$currentBook/url"/>'>

<x:out select="$currentBook/title"/></a></td>
</tr>

</table>
<hr>

</x:forEach>

To give you an idea of what the finished article looks like, take a look at Figure 4-15. You’ll
agree that before the JSTL existed, loading, parsing, and building such a page would have been
a nontrivial task, but now it’s really simple!
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Figure 4-15. The <x:forEach> action provides a more powerful capability for conditional
formatting than the <x:if> action.

XML Transformation Actions
The XML standard tag library also includes tags that allow you to transform XML data into
other formats such as HTML or WML.

The <x:transform> Action

Quite simply, the XML transformation actions provided by the JSTL are designed to apply an
XSLT stylesheet to an XML document. Usually, the result of the XSLT transformation is returned
as output, but it’s also possible to store the result inside a scoped variable instead so that it may
be accessed by some of the other XML actions that you’ve already seen.
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To demonstrate the capabilities of the <x:transform> actions, let’s transform the books.xml
file that you saw earlier into a simple HTML table by applying an XSLT transformation. The first
step is to create the XSLT stylesheet; Listing 4-16 shows the stylesheet that we’ll call books.xsl.

Listing 4-16. books.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

<html>
<body>
<h2>Our Current Book List</h2>
<table border="2">
<tr>
<!-- the header -->
<td>title</td>
<td>author</td>
<td>isbn</td>
<td>published</td>
<td>publisher</td>
<td>url</td>

</tr>

<xsl:for-each select="books/book">
<tr>
<td><b><xsl:value-of select="title"/></b></td> 
<td><xsl:value-of select="author"/></td>
<td><xsl:value-of select="isbn"/></td>
<td><xsl:value-of select="published"/></td>
<td><i><xsl:value-of select="publisher"/></i></td>
<td><xsl:value-of select="url"/></td>

</tr>
</xsl:for-each>

</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Although this chapter isn’t intended to be a guide to XSLT transformations, hopefully 
you can follow this code. In a nutshell, the <xsl:for-each select="books/book"> expression
is a simple way of iterating over a series of elements as defined by the XPath expression
books/book (all the <book> elements beneath the root <books> element). The code inside the
<xsl:for-each> expression creates the data for a single row of the HTML table by extracting
the required elements (that is, <xsl:value-of select="title"/> extracts the value of the
<title> element).

CHAPTER 4 ■ JAVASERVER PAGES STANDARD TAG L IBRARY180

513-0 ch04.qxd  11/17/05  8:41 PM  Page 180



To apply this stylesheet (books.xsl) to the XML file (books.xml), you can import the XML
and XSL files and use the <x:transform> action as shown in Listing 4-17.

Listing 4-17. xml_transform.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<c:import url="books.xml" var="books" />
<c:import url="books.xsl" var="xslt" />
<x:transform xml="${books}" xslt="${xslt}"/>

You must agree that this is a very simple page, but thanks to the JSTL actions you now
have a powerful mechanism for producing content from XML files. JSP page authors need not
have any Java skills whatsoever in order to produce rich content. Just consider how much
more difficult (and cluttered, less maintainable, ugly, and so on) this would have been with a
scriptlet-based approach. Thankfully, those days are behind you!

Figure 4-16 shows the outcome of the JSTL-based XSLT transformation.

Figure 4-16. Using the <x:transform> action, XML-formatted data can be transformed into other
formats, such as HTML or WML.

The <x:param> Action

It’s also possible to pass parameters into XSL transformations by nesting <x:param> actions
inside the <x:transform> action. This facility is similar to the <sql:param> and <sql:dateParam>
actions from the SQL tag library, which are used to pass SQL parameters to the various actions
in the SQL library.
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The <x:param> action is simple and has only two attributes:

<x:transform xml="${books}" xslt="${xslt}">
<x:param name="myParam" value="myValue"/>

</x:transform>

As with the SQL parameters, the value of the <x:param> action can be passed either as an
attribute or as the body content of the action itself, as follows:

<x:transform xml="${books}" xslt="${xslt}">
<x:param name="myParam">MyValue</x:param>

</x:transform>

Summary
In this chapter, you’ve learned about the reasons for the creation of the JSTL and about its
dependencies on the Java Servlet and JSP specifications. You’ve taken an in-depth look at the
actions provided by the individual tag libraries that collectively form the JSTL. 

Here’s a quick recap of the topics covered:

• The Servlet/JSP dependencies

• Installation of the JSTL into Tomcat 5

• The JSP 2.1 EL support

• The four tag libraries that are encompassed by the JSTL

After reading this chapter, you should be able to appreciate some of the drawbacks that
developers came across before the release of the JSP 2.1 specification. Cluttering JSP pages
with too much scriptlet code makes them hard to read and less maintainable. Because one of
the primary goals of JSP 2.1 is to make JSP pages easier to write, the JSTL perfectly embodies
this ideology and can be used to provide reusable, easy-to-maintain functionality for many
simple, everyday tasks that JSP page authors are faced with.

After reading this chapter, you should immediately be able to see how you can install and
use the actions provided by the JSTL in your web applications, thereby making them a lot
cleaner, easier to read, and ultimately, of a higher quality.
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JavaServer Faces

JavaServer Faces (JSF), a relatively new technology in the Java EE world, is designed to
further simplify web-application development. JSF makes it easy to build user-interface com-
ponents and pages, and to connect those components to business objects. It also automates
the process of JavaBean usage and page navigation.

JSF is not the first technology to attempt to create a GUI framework for web applications.
Other GUI frameworks include Apache’s Tapestry project (http://jakarta.apache.org/
tapestry), Enhydra’s Barracuda project (http://www.barracudamvc.org/Barracuda), the Sun
Java System Application Framework (http://developers.sun.com/sw/tech/appserver/
framework/), and the Oracle Application Development Framework (ADF) User Interface in
XML (UIX) (http://www.oracle.com/technology/products/jdev/collateral/papers/10g/
ADFFAQ). One of the goals of JSF, as stated in the specification proposal, was to create a stan-
dard for Java server application GUIs and to identify synergies in existing frameworks that 
JSF could take advantage of. The expert group included some of the same organizations that
had been working on other GUI frameworks. Version 1.0 of the specification was finalized in
March 2004. At the time of this writing, version 1.2 of the specification is in Proposed Final
Draft stage.

JSF builds on the experience gained from JSP, Servlet, and the various other web-
application GUI frameworks. In particular, JSF builds on the Apache Struts project. This is 
not surprising considering that the creator of Struts is the lead specification engineer for JSF.
(If you’re a Struts enthusiast, you might want to know that you can even use JSF with Struts.
For more information on Struts, see Chapter 15 and http://struts.apache.org).

You might be wondering why we are focusing on JSF in a book about JSP. Simply put, JSF
complements JSP. In fact, the JSF specification requires that all JSF implementations support
JSP and provide custom actions for JSP corresponding to JSF user-interface components. 

In this chapter, you will learn the following:

• Why JSF was developed and how it helps you to create dynamic user interfaces

• How to install JSF

• How to use custom tags for JSF components in JSP pages

• How to use managed JavaBeans with JSF components

• How to control page navigation

• How to convert data and validate input

• How to handle value change events in your JSF application
183
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Introduction to JSF
The JSF specification lists the following ways that JSF helps web-application developers to 
create user interfaces (UIs):

• Makes it easy to construct a UI from a set of reusable UI components

• Simplifies migration of application data to and from the UI

• Helps manage UI state across server requests

• Provides a simple model for wiring client-generated events to server-side appli-
cation code

• Allows custom UI components to be easily built and reused

UI development is easier because UI components are provided as reusable objects. A
number of classes, corresponding to UI components, are part of the JSF specification and
implementation. Rather than have to worry about the syntax of page layout, you simply drop
the UI components into your application. A custom render kit and rendering process convert
the components into appropriate page-layout code. The JSF implementation comes with a
default render kit for HTML, but the same JSF code can be rendered by other render kits for
other client systems. This means that you can use the same JSF code for a variety of client sys-
tems, and use different render kits to customize the UI for each client system.

Moving application data to and from the UI is simplified by letting the JSF implementa-
tion handle the mechanics of data transfer. You simply specify which data goes where, and 
the JSF implementation handles the process of moving the data from UI objects to business
objects and vice versa. The JSF implementation automatically manages state across user
requests, so you do not need to manage or implement any session handling.

Just as it simplifies data handling, JSF provides an easy way to manage event handling.
You specify the events of interest and the business objects or classes to handle the events, 
and the JSF implementation takes care of calling the appropriate methods to handle any
events that are generated. The JSF event-handling model is similar to those used in other UI
frameworks, such as Java Swing. Specifically, this means that multiple event listeners can
respond to a single event.

Finally, because JSF is based on reusable components, it provides a design that allows you
to easily create and integrate your own components or third-party components into your JSF-
enabled applications. If you are a vendor, JSF allows you to create custom components that
can be marketed to developers and page designers.

As with all the enterprise Java technologies, detailed information about the technology
can be found in the JSF specification, which can be found at http://java.sun.com/j2ee/
javaserverfaces.

The Relationship Between JSF and Other Java EE Technologies
Within the Java Platform, Enterprise Edition 5 (Java EE 5), technologies such as JSP and Servlet
are stand-alone technologies. You could, if you wanted to, create an application using only
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servlets or only JSP pages. JSF is different because it is a supporting technology. You use it in
conjunction with JSP pages, servlets, or other presentation technologies.

The primary design pattern of JSF is the Model-View-Controller (MVC) pattern. As you
saw in Chapter 1, MVC separates an application architecture into three categories of compo-
nents: model, view, and controller. The model is the abstraction of all the domain data in the
system. It is the bank account in a banking application, or a shopping cart in an e-commerce
system. The view is the visualization of the model. In a web application, the view consists of
the HTML pages and the components that create the HTML pages sent to web browsers, the
Wireless Application Protocol (WAP) pages sent to mobile devices, or the UI components sent
to a dedicated client. The controller is the set of components that manage the communica-
tions between model and view.

As you’ve learned in the previous chapters, you can create user interfaces with JSP. In fact,
as you saw, JSP was designed to make the view component of a web application easy to create
and manage. It is also possible, although not as easy, to create UIs with servlets. However,
combining JSF with JSP or Servlet technology makes UI creation—and integration of the
model, view, and controller—easier by far. JSF brings a component-based model to web-
application development that is similar to the model that has been used in stand-alone GUI
applications for years.

To use JSF with servlets, you use the components that make up JSF directly; that is, within
your servlet, you explicitly create and use instances of UI component classes. However, because
this is a book about JSP, we will focus exclusively on using JSF with JSP. The JSF implementation
includes a tag library of custom tags, similar to the JSTL (see Chapter 4), that you can use with
JSP to easily create JSF-enabled applications.

Request-Processing Life Cycle
Regardless of whether you are using JSF with JSP pages, servlets, or some other web technol-
ogy, each request/response flow that involves JSF follows a certain life cycle. Several kinds of
request/response cycles can occur in a JSF-enabled application. You can have a request that
comes from a previously rendered JSF page (a JSF request) and a request that comes from 
a non-JSF page (a non-JSF request). Likewise, you can have a JSF response or a non-JSF
response. We are concerned with these three request/response pairs:

• Non-JSF request generates JSF response

• JSF request generates JSF response

• JSF request generates non-JSF response

Of course, you can also have a non-JSF request that generates a non-JSF response. Because
this does not involve JSF in any way, the JSF life cycle does not apply.

Recall that JSP pages have a relatively simple life cycle. A JSP page source is compiled into
a page implementation class. When a web server receives a request, that request is passed to
the container, which passes the request to the page class. The page class processes the request
and then writes the response back to the client. When other pages are included or the request
is forwarded, or when an exception occurs, the process includes a few more components or
pages, but basically, a small set of classes processes a request and sends back a response.
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When using JSF, the life cycle is more complicated. This is because the core of JSF is the
MVC pattern, which has several implications. User actions in JSF-generated views take place in
a client that does not have a permanent connection to the server. The delivery of user actions
or page events is delayed until a new connection is established. The JSF life cycle must handle
this delay between event and event processing. Also, the JSF life cycle must ensure that the view
is correct before rendering the view. To ensure that the business state is never invalid, the JSF
system includes a phase for validating inputs and another for updating the model only after all
inputs pass validation.

In MVC, the presentation of data (the view) is separate from its representation in the 
system (the model). When the model is updated, the controller sends a message to the view,
telling the view to update its presentation. When the user takes some action with the presenta-
tion, the controller sends a message to the model, telling the model to update its data. In JSF,
the model is composed of business objects that are usually implemented as JavaBeans, the
controller is the JSF implementation, and the UI components are the view.

The JSF life cycle has six phases as defined by the JSF specification:

• Restore View: In this phase, the JSF implementation restores the objects and data
structures that represent the view of the request. Of course, if this is the client’s first visit
to a page, the JSF implementation must create the view. When a JSF implementation
creates and renders a JSF-enabled page, it creates UI objects for each view component.
The components are stored in a component tree, and the state of the UI view is saved
for subsequent requests. If this is a subsequent request, the previously saved UI view is
retrieved for the processing of the current request.

• Apply Request Values: Any data that was sent as part of the request is passed to the
appropriate UI objects that compose the view. Those objects update their state with 
the data values. Data can come from input fields in a web form, from cookies sent as
part of the request, or from request headers. Data for some components, such as com-
ponents that create HTML input fields, is validated at this time. Note that this does not
yet update the business objects that compose the model. It updates only the UI compo-
nents with the new data.

• Process Validations: The data that was submitted with the form is validated (if it was not
validated in the previous phase). As with the previous phase, this does not yet update the
business objects in the application. This is because if the JSF implementation began to
update the business objects as data was validated, and a piece of data failed validation,
the model would be partially updated and in an invalid state.

• Update Model Values: After all validations are complete, the business objects that make
up the application are updated with the validated data from the request. In addition, 
if any of the data needs to be converted to a different format to update the model (for
example, converting a String to a Date object), the conversion occurs in this phase. Con-
version is needed when the data type of a property is not a String or a Java primitive.

• Invoke Application: During this phase, the action method of any command button or
link that was activated is called. In addition, any events that were generated during pre-
vious phases and that have not yet been handled are passed to the web application so
that it can complete any other processing of the request that is required.
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• Render Response: The response UI components are rendered, and the response is sent
to the client. The state of the UI components is saved so that the component tree can
be restored when the client sends another request.

For a JSF-enabled application, the thread of execution for a request/response cycle can
flow through each phase, in the order listed here and as shown in Figure 5-1. However, depend-
ing on the request, and what happens during the processing and response, not every request
will flow through all six phases.

Figure 5-1. When a request is sent to a JSF-enabled application, the request can potentially
encompass all six phases of the JSF life cycle.

In Figure 5-1, you can see a number of optional paths through the life cycle. For example,
if errors occur during any of the phases, the flow of execution transfers immediately to the
Render Response phase, skipping any remaining phases. One way this might occur is if input
data is incorrect or invalid. If data fails validation in either the Apply Request Values or Process
Validations phase, information about the error is saved and processing proceeds directly to
the Render Response phase. Also, if at any point in the life cycle the request processing is com-
plete and a non-JSF response is to be sent to the client, the flow of execution can exit the life
cycle without completing further phases.

Installing JSF
To run the examples in this chapter, you will need to obtain and install a JSF implementation,
and the JSP Standard Tag Library (JSTL) reference implementation. For this chapter, we will use
the JSF reference implementation from Sun. If you have an implementation from some other
vendor, consult the documentation for that implementation for installation instructions.

If you are running Tomcat 5.0 or 5.5, you can download JSF from http://java.sun.com/
j2ee/javaserverfaces/download.html. Instructions on downloading the JSTL were presented
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in Chapter 4. For now, simply unpack each distribution as needed into a directory of your
choice, remembering where that directory is.

There are two ways that you can make the JSF and JSTL libraries available to your web
application running in Tomcat. Both require putting the following eight JAR files, which are
located in the lib directory of each distribution, into a location that can be accessed by the
server or the web application:

• Six JSF JARs: commons-beanutils.jar, commons-collections.jar, commons-digester.jar,
commons-logging.jar, jsf-api.jar, and jsf-impl.jar

• Two JSTL JARs: jstl.jar and standard.jar

As you saw in Chapter 4, one way to make API libraries available to a web application is to
place them into the WEB-INF\lib directory of the web application. Then only that application
will have access to those libraries. If you have another JSF application, that application would
also need access to those files in its own WEB-INF\lib directory.

Alternatively, if you have several JSF applications, you can put the JAR files into a com-
mon location. For Tomcat, that location is %TOMCAT_HOME%\common\lib. When the JAR files are
located in the common directory, then every application in the application server has access
to them. Note that if you copy the JAR files into the common directory while the server is run-
ning, you may need to restart the Tomcat server so the new JAR files can be loaded.

Using JSF with JSP Pages
Now that you’ve had an introduction to JSF, let’s jump right into creating and deploying a
simple JSF application that shows how to use JSF with JSP. Because JSP pages are easy to
implement and deploy, this example will clearly demonstrate how to use JSF in a web appli-
cation. The JSP page holds the template text for the page, and custom tags are used to create
the JSF components for the page. The JSF components generate the dynamic content.

The JSF implementation from Sun comes with two libraries of custom actions that you
can use with JSP pages: HTML custom actions and core custom actions. The HTML custom
actions are for components that vary based on the render kit used. These custom actions are
used to create HTML elements. As shown in Table 5-1, the HTML custom actions fall into five
categories: input, output, selection, commands, and miscellaneous.

Table 5-1. The HTML Custom Actions

Category Elements Purpose

Input Create various kinds of
input elements

Output Create various kinds of
output elements

Selection Create drop-down menus,
list boxes, radio buttons,
and check boxes

<h:selectBooleanCheckbox>,
<h:selectManyCheckbox>, <h:selectManyListbox>,
<h:selectManyMenu>, <h:selectOneListbox>,
<h:selectOneMenu>, <h:selectOneRadio>

<h:message>, <h:messages>, <h:outputFormat>,
<h:outputLabel>, <h:outputLink>,
<h:outputText>

<h:inputHidden>, <h:inputSecret>,
<h:inputText>, <h:inputTextarea>
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Category Elements Purpose

Commands <h:commandButton>, <h:commandLink> Create buttons or links
that cause form
submission

Miscellaneous Create various HTML
elements such as tables,
forms, and panels

The core custom actions create UI elements that are independent of the render kit. These
actions are usually used with the HTML actions listed in Table 5-1 to modify the behavior of
those actions. Table 5-2 shows all the core custom actions, listed by category.

Table 5-2. The Core Custom Actions

Category Elements Purpose

Converters Standard converters

Listeners <f:actionListener>, <f:valueChangeListener> Specify a listener for a
component

Miscellaneous Add attributes or
parameters, load a
resource bundle, and
output verbatim HTML
template text

Selection <f:selectItem>, <f:selectItems> Specify selection items for
HTML selection elements

Validators Standard validators

View <f:facet>, <f:subview>, <f:view> Create a JSF view or 
subview

■Tip If you unpack the JSF implementation to your hard drive, a directory of documentation for the custom
actions will be saved to the hard drive in jsf_home\tlddocs\index.html. This documentation is similar to
the Javadoc documentation created with Java source files. For full details on using custom actions, refer to
this TLD documentation.

In this section, you will see a number of these custom tags in action. We will discuss these
tags as we go along.

Creating a Simple JSF Application
Our example simulates a flight reservation system. Figure 5-2 shows the directory structure of
the sample application.

<f:validateDoubleRange>, <f:validateLength>,
<f:validateLongRange>, <f:validator>

<f:attribute>, <f:loadBundle>, <f:param>,
<f:verbatim>

<f:convertDateTime>, <f:convertNumber>,
<f:converter>

<h:dataTable>, <h:form>, <h:graphicImage>,
<h:panelGrid>, <h:panelGroup>, <h:column>
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Figure 5-2. The directory structure of the Jsf_Ex01 example

Implementing a JavaBean
We’ll start this example by showing the JavaBean class that represents the business layer of the
web application. This JavaBean will be connected to the presentation layer by the JSF system.
The FlightSearch class, shown in Listing 5-1, stores the search parameters entered by the user.
Although various parameters can be used when searching for a flight, for this first example we
have chosen to include the following: origination airport, destination airport, departure date
and time, and arrival date and time.

Listing 5-1. FlightSearch.java

package com.apress.projsp;

public class FlightSearch {
String origination;
String destination;
String departDate;
String departTime;
String returnDate;
String returnTime;

public String getDepartDate() {
return departDate;

}

public void setDepartDate(String departDate) {
this.departDate = departDate;

}

public String getDepartTime() {
return departTime;

}
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public void setDepartTime(String departTime) {
this.departTime = departTime;

}

public String getDestination() {
return destination;

}

public void setDestination(String destination) {
this.destination = destination;

}

public String getOrigination() {
return origination;

}

public void setOrigination(String origination) {
this.origination = origination;

}

public String getReturnDate() {
return returnDate;

}

public void setReturnDate(String returnDate) {
this.returnDate = returnDate;

}

public String getReturnTime() {
return returnTime;

}

public void setReturnTime(String returnTime) {
this.returnTime = returnTime;

}
}

Looking at the class, you can see that it is a standard JavaBean. There is no explicit con-
structor, so the compiler provides a default no-argument constructor. There are fields for all the
parameters we want to store, and methods for getting and setting each of the fields. This means
that all the properties of the class are exposed as read-write properties to the web application.
This will allow one part of the application to set the properties and a different part to read the
properties. We’ll discuss the role of JavaBeans in JSF implementations in more detail later in
this chapter, in the “Using Managed Beans” section.

Before deploying this example, you will need to compile the FlightSearch.java source
into a class file. Because this source file uses classes from only the java.lang package and does
not use any special APIs or classes, you should be able to compile it without needing to reset
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your CLASSPATH in any way. Use your IDE, your favorite build system, or use javac from the
command line to compile the class.

Implementing the View Components
The next part of our example is a web page to accept the user’s inputs for searching for a
flight. This will be a JSP page with input fields for the origination, destination, departure date
and time, and return date and time. Listing 5-2 shows the initial page in our application,
searchForm.jsp. If you created any of the examples in Chapter 3, you will recall that those
examples also used input fields in an HTML page generated by using the expression language
(EL) in a JSP page. The searchForm.jsp page also uses input fields, but as you will see, they
are slightly different from the HTML input fields we used in Chapter 3.

Listing 5-2. searchForm.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>

</head>
<body>
<h:form>
<h2>Search Flights</h2>
<table>
<tr><td colspan="4">Where and when do you want to travel?</td></tr>
<tr>
<td colspan="2">Leaving from:</td>
<td colspan="2">Going to:</td>

</tr>
<tr>
<td colspan="2">
<h:inputText value="#{flight.origination}" size="35"/>

</td>
<td colspan="2">
<h:inputText value="#{flight.destination}" size="35"/>

</td>
</tr>
<tr>
<td colspan="2">Departing:</td>
<td colspan="2">Returning:</td>

</tr>
<tr>
<td>
<h:inputText value="#{flight.departDate}"/>

</td>
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<td>
<h:inputText value="#{flight.departTime}"/>

</td>
<td>
<h:inputText value="#{flight.returnDate}"/>

</td>
<td>
<h:inputText value="#{flight.returnTime}"/>

</td>
</tr>

</table>
<p>
<h:commandButton value="Search" action="submit"/>
</p>

</h:form>
</body>
</f:view>

</html>

Throughout Chapters 3 and 4, we talked about ways to remove Java code from JSP pages.
And as we stated at the beginning of this chapter, JSF provides another way to do this. Looking
at Listing 5-2, you can see there is not a single declaration or scriptlet within the page. There
are only two taglib directives, some standard HTML tags, and some tags that look like tags for
custom actions. The tags that begin with f: or h: come from the tag libraries defined in the
taglib directives.

As you might guess from the taglib directive, the tags that use the prefix f: provide the
core JSF functionality for the page, and tags that use the prefix h: provide HTML elements for
the page. There is one JSF core tag in the page: the <view> tag. Any page that includes JSF ele-
ments must have the <view> tag as the outermost JSF tag. The rest of the JSF tags in the page
create HTML elements in the page. The <form> tag creates an HTML form. The <input> tags
create input text fields in the form. The <commandButton> tag creates a button in the form.

If you are familiar with HTML forms, you know that every HTML form requires an action
attribute and can include an optional method attribute. The action attribute tells the web
browser where to submit the form data. The method attribute tells the browser whether to
submit a GET request or a POST request. The JSF tag does not use either of these attributes. 
The JSF specification requires that all JSF forms post to the same URL from which they were
served. (If form data is submitted to the same page, how then does the application process
the data and move between pages in the application? This question will be answered in 
Listing 5-4 and in detail in the “Controlling Page Navigation” section later in this chapter.)
The specification also requires that all JSF forms use the POST method for submitting form
data to web applications. Because both the method and action have mandatory values that
the programmer cannot change, they do not need to be specified in the JSF tag.

Also note that the <input> tags have a different syntax than standard HTML for the value
attribute. If you read the coverage of the EL in Chapter 3, you will recognize the #{} syntax as EL
syntax. With EL, an expression such as #{flight.origination} is used when the JSP page wants
to access a property of an object in the page. In Listing 5-1, you can see a property named
origination with associated set and get methods. When this JavaBean is made available to a
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JSP page, that page can read or write the property when we use the #{flight.origination}
expression in the page. The searchForm.jsp page uses the expression with input fields. When
we submit this page to the application, the values entered into the fields will be used to set the
property in the JavaBean.

In a real web application that provided an online flight reservation system, the system
would search for and display flights after the user submits a request. In this example, however,
we will start by simply echoing the search parameters back to the user. This is accomplished 
in the searchResults.jsp page, shown in Listing 5-3.

Listing 5-3. searchResults.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head>

<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>
<h3>You entered these search parameters</h3>
<p>Origination: <h:outputText value="#{flight.origination}"/>
<p>Depart date: <h:outputText value="#{flight.departDate}"/>
<p>Depart time: <h:outputText value="#{flight.departTime}"/>
<p>Destination: <h:outputText value="#{flight.destination}"/>
<p>Return date: <h:outputText value="#{flight.returnDate}"/>
<p>Return time: <h:outputText value="#{flight.returnTime}"/>
<p>Trip type  : <h:outputText value="#{flight.tripType}"/>

</body>      
</f:view>

</html>

As with searchForm.jsp, the outermost JSF tag is the <f:view> tag. Within the view, the
page uses <h:outputText> tags. The <outputText> tags are obviously used to output text to the
page. As with the <inputText> tags, they use the #{object.property} syntax to access a property
of an object in the page. In this case, the object is a JavaBean identified by the name flight.
This is the same object used in searchForm.jsp. Notice that the EL expression used to access
the object’s properties is the same in both the searchForm.jsp and searchResults.jsp. In other
words, the syntax of the value expression is the same regardless of whether the page is reading
or writing a property. In the searchResults.jsp page, the <outputText> tag reads the property
from the object and displays it in the web page generated by this JSP page.

So, now you’ve seen the three main parts of the web application: an input page, an output
page, and a JavaBean to hold the business data. In terms of the MVC pattern, FlightSearch is
the model, and searchForm.jsp and searchResults.jsp are the view. What we haven’t shown
yet is the controller. We also haven’t explained how the controller knows where to find the
model or the view, and how the controller knows the logic flow through the web application.
In the listings presented here, you can see that searchForm.jsp and searchResults.jsp do not
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have any information that indicates how control is transferred from page to page. Now let’s
see how this control is managed.

Directing Traffic in the JSF Application
Information about the view components in the web application and information about how
control flows through the application is contained in a special configuration file named 
faces-config.xml, shown in Listing 5-4. Although faces-config.xml can contain a lot of infor-
mation about a web application, for this example we need it to do only two things: identify the
flow of control from searchForm.jsp to searchResults.jsp, and identify the JavaBean used by
the application.

Listing 5-4. faces-config.xml

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
version="1.2">

<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>

<from-outcome>submit</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
<redirect/>

</navigation-case>
</navigation-rule>

<managed-bean> 
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.projsp.FlightSearch</managed-bean-class> 
<managed-bean-scope>session</managed-bean-scope> 

</managed-bean>
</faces-config>

The faces-config.xml file identifies the JavaBeans used by the web application in the
<managed-bean> element. You will have a <managed-bean> element for every JavaBean used by
your web application. The <managed-bean> element in Listing 5-4 contains three subelements:

• The first subelement is the name used to identify the JavaBean in a JSP page. In Listing 5-4
the name is given as flight; this is why both searchForm.jsp and searchResults.jsp
can access an instance of the JavaBean by using the expression #{flight...}.

• The second element is the fully qualified class name of the JavaBean class. This name
tells the JSP container which class to load and instantiate to create an instance of the
JavaBean.
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• The third element identifies the scope of the object. Session scope means that the
object exists for the entire interaction between the user and the application. The con-
tainer must persist the object across multiple request/response cycles, until the user’s
session is terminated. We will discuss this in more detail in the “Using Managed Beans”
section later in this chapter.

The faces-config.xml file is also used to tell the controller how to navigate through the
application. Navigation flow is specified in <navigation-rule> elements. Our example needs
only one element. In general, a <navigation-rule> element identifies the start page, a condi-
tion, and the page to navigate to when the condition occurs.

In our example, the start page is searchForm.jsp. If the page request is submitted with 
an outcome of submit, control is transferred to searchResults.jsp. Looking at Listing 5-2, you
can see that the <commandButton> element has an action of submit; when the button is clicked
and the form is submitted, this action matches the <from-outcome> of the <navigation-rule>.

The <navigation-rule> element also includes an empty <redirect> element. With this
element, the response is created by causing the browser to redirect to the searchResults.jsp
page, which also updates the address bar in the browser. Without this element, the response 
is still created correctly and sent to the browser, but the address bar of the browser will not be
updated and will still display the address for the originating page. We will look at navigation in
more detail in the “Controlling Page Navigation” section later in this chapter.

We need just one final piece for our web application. In many of the examples in Chapters
3 and 4, we identified a default page to be served to users when they first access the web appli-
cation. In this example, our default page will be a standard HTML page that redirects to the
correct URL for a JSF application. Listing 5-5 shows index.html.

Listing 5-5. index.html

<html>
<head>

<meta http-equiv="Refresh" content= "0; URL=searchForm.faces"/>
</head>

</html>

You can see that that the redirect URL is searchForm.faces. However, there is no compo-
nent in our application named searchForm.faces. How then does the web application know
which page to serve? All requests that are JSF requests are directed to the controller for the
application, which is a servlet supplied as part of the JSF reference implementation. As you
will see when we deploy this example, we will specify that all URLs of the form *.faces should
be sent to the controller servlet. This servlet then converts the searchForm.faces request to
searchForm.jsp, processes the JSP page, and sends the response to the browser.

Deploying the Application to the Tomcat Server
To deploy the application to the Tomcat server, start by creating an application structure like
that shown in Figure 5-2. You will also need to write the web.xml deployment descriptor, shown
in Listing 5-6.
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Listing 5-6. web.xml

<?xml version="1.0"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<display-name>Jsf_Ex01 - Simple JSF Application</display-name>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>   

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.faces</url-pattern>

</servlet-mapping>  

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>
</web-app>

The deployment descriptor identifies the controller servlet (Faces Servlet) for the appli-
cation, specifies a servlet mapping indicating which requests should be sent to the controller
servlet, and designates the welcome file for the application.

As explained in the “Installing JSF” section earlier in this chapter, you need to copy the JSF
and JSTL JAR files into the application’s WEB-INF\lib directory or into the Tomcat common\lib
directory. Copy the entire application directory into the Tomcat webapps directory, and deploy-
ment is complete.

Alternatively, after creating the directory structure, you can package all the application
files into a WAR file by using the Java jar command. After the WAR file has been created, copy
it into the Tomcat webapps directory. Tomcat will automatically unpack the WAR file and start
the application.

Running the Application
After you have successfully deployed the application to the server, open a web browser to the
address http://localhost:8080/Jsf_Ex01. (As always, replace localhost and 8080 with the
correct values for your installation, and replace Jsf_Ex01 with the correct application context
name, if you created and deployed your JSF application with a different context name.)
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The application starts by loading the index.html page, which immediately redirects to
searchForm.faces. Because of the servlet mapping in web.xml, this request is directed to the
Faces Servlet controller. The controller knows that searchForm.faces is a request for the
searchForm.jsp component. If this is the first request for searchForm.jsp, it is compiled by 
the server and then sent to the browser, as shown in Figure 5-3.

Figure 5-3. The searchForm.jsp as sent to the browser

If you examine the source for the page, you can see that the JSF <form> tag has been trans-
lated to an HTML <form> tag. As mentioned earlier, the method for the form is POST and the
action is the URL for searchForm.jsp. Even though it appears that the form submits to the
same JSP page, the controller servlet will use the navigation rules in the faces-config.xml file
to ensure page navigation occurs correctly. Also, each JSF input tag has been translated into 
an HTML input tag. Here is an extract from the HTML source showing these points:

<form id="_id0" method="post" action="/Jsf_Ex01/searchForm.faces" 
enctype="application/x-www-form-urlencoded">

<h2>Search Flights</h2>
<table>
<tr><td colspan="4">Where and when do you want to travel?
</td></tr>
<tr>
<td colspan="2">Leaving from:</td>
<td colspan="2">Going to:</td>

</tr>
<tr>
<td colspan="2">
<input type="text" name="_id0:_id1" size="35" />
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Try out the search form by entering values for each of the input fields. Because each prop-
erty of the FlightSearch JavaBean is of the String type, you can enter anything you want into
each text field. After you have finished entering values, click the Search button. The request is
passed to the server, and the response generated by searchResults.jsp is sent back to the
browser, as shown in Figure 5-4.

Figure 5-4. The searchResults.jsp response from submitting the form in searchForm.jsp

Reviewing the JSF Life Cycle for the Sample Application
The JSF_Ex01 application (Listings 5-1 through 5-6) provides examples of two different
request/response processes. First, index.html causes a non-JSF request to generate a JSF
response when searchForm.jsp is displayed. Then, when searchForm.jsp is submitted, this
causes a JSF request to generate a JSF response.

The first request from the browser comes from a standard HTML page and does not
contain any data. In the Restore View phase, rather than restoring an existing view, a new
component tree is created with the components from the view. This will consist of objects 
that represent the form and each of the input fields. These objects are stored in the compo-
nent tree. Because no other processing is required, control passes to the Render Response
phase. The UI components are rendered into HTML, and the response is sent to the client.

The life cycle of the request and response from searchForm.jsp to searchResults.jsp
follows the phases illustrated in Figure 5-1. The request from searchForm.jsp causes the com-
ponent tree to be restored in the Restore View phase. Next, the data passed in the form is used
to update the state of the view components in the Apply Request Values phase. The Process
Validations phase is next, but because the values are all String types, no conversion is needed,
and no validation occurs. Next, the JavaBean is updated with the values from the view in the
Update Model Values phase. Nothing occurs in the Invoke Application phase. Finally, in the
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Render Response phase, the view components from searchResults.jsp are translated into
HTML, using the data from the JavaBean model, and the response is returned to the client.

Using Managed Beans
As noted earlier in this chapter, the primary design pattern of JSF is the MVC pattern. As you
saw in the previous example, JSF custom actions and JSP pages form the view in the MVC
architecture. The Faces Servlet provided by a JSF implementation is the controller. However,
JSF by itself is not enough to create a working application, because you need the third leg of
MVC: the model. JavaBeans provide that part of the MVC pattern. In the example, FlightSearch
was the model.

JavaBeans are Java components that can be dropped into Java applications. They are
simply Java classes that conform to a certain coding style (documented in the JavaBeans
specification at http://java.sun.com/products/javabeans/). For our purposes, there are two
aspects of the JavaBeans specification that are important:

• The JavaBean used in the web application must have a no-argument constructor. This
allows the container to construct an instance of the JavaBean.

• Any property to be exposed must have a get or set method. If only a get method is
present, the property is read-only. If only a set method is used, the property is write-
only. If both are present, the property is read-write. The format of the set method name
is the word set followed by the name of the property, with the first letter of the property
name capitalized. The get method format is the word get followed by the name of the
property, again with the first letter of the property name capitalized. For Boolean prop-
erties, the method is the word is followed by the name of the property.

Because JavaBeans follow a particular design, they can be used programmatically, with-
out a developer needing to explicitly write code that uses the JavaBeans. As you saw in the
previous example, by simply identifying the JavaBean to the JSF application in the JSP pages
and in the configuration file, the JSF implementation was able to use the JavaBean, setting and
reading its properties—you didn’t need to write any explicit code.

Within the JSF implementation, JavaBean instances that are used by a JSF-enabled appli-
cation are referred to as managed beans, because the JSF implementation manages the creation
and use of JavaBean objects.

Within a JSF-enabled application, managed beans appear in two contexts:

• The information needed to create and initialize the managed bean is identified within
the configuration files of the application.

• The properties and methods of managed beans are referenced in JSP pages by using
value-binding expressions or method-binding expressions.

Configuring Managed Beans
You saw one method for identifying the managed bean parameters to the application in List-
ing 5-4, where we used a file named faces-config.xml located in the WEB-INF directory of the
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application. However, the JSF specification identifies several other files that can contain man-
aged bean configuration information. The specification states that configuration files will be
searched for as follows:

• The JSF implementation looks for and processes files named META-INF\faces-config.xml.
This is primarily for JSF components packaged as JAR files that are part of the application.

• The JSF implementation checks the web.xml deployment descriptor for a context
parameter named javax.faces.CONFIG_FILES. If the parameter exists, the value of the
parameter must be a comma-delimited list of filenames that will be processed as JSF
configuration files. The filenames must be relative paths from the application root to
the file, such as WEB-INF\my-config.xml.

• Finally, the JSF implementation processes the file WEB-INF\faces-config.xml, if it exists.

The configuration files are used to identify the managed beans, provide initialization
parameters for the beans, and identify the navigation rules for the application (as described 
in the “Controlling Page Navigation” section later in this chapter). This information can be
placed in a single file, as in Listing 5-4, or it can be split among multiple files. For example, you
could put all the JavaBean information into one configuration file and all the navigation infor-
mation into another configuration file. These multiple files would then be listed in the web.xml
deployment descriptor.

Identifying Managed Beans
A configuration file provides managed bean information to the application in the element
named <managed-bean> of the configuration file. The <managed-bean> element declares a
JavaBean that is created and populated by the JSF implementation. When an expression in a
JSP page attempts to use a JavaBean, by accessing one of its properties for example, the JSF
implementation attempts to find the object in request, session, and then application scope,
in that order. If an object with the given <managed-bean-name> (see the first bulleted item that
follows) is found, then the JSF implementation uses that object. If an object with the given
name is not found in one of the three scopes, an instance of the JavaBean is created and
stored in the appropriate scope (see the third bulleted item).

The <managed-bean> element has three required subelements:

• <managed-bean-name>: The string used to identify the bean instance in any JSF compo-
nent. For example, in Listing 5-4, the bean name was given as flight. In Listings 5-2
and 5-3, we referenced the bean instance by using this name.

• <managed-bean-class>: The fully qualified class name of the class that provides the
implementation for the bean.

• <managed-bean-scope>: The scope of the bean instance. We will discuss scope in more
depth in the “Identifying Bean Scopes” section a little later in this chapter.

The <managed-bean> element has a number of optional elements, including <description>,
<display-name>, <icon>, and <managed-property>. The usage of the first three should be rela-
tively obvious, so we will just look at <managed-property>, which is used to initialize the
properties of a managed bean.
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Initializing Bean Properties
Like <managed-bean>, <managed-property> can have an optional <description>, <display-name>,
and <icon>. It must have a nested <property-name> element that identifies the name of an
instance variable (property) of the class with a set and get method. It can have an optional
<property-class> element that provides the fully qualified class name of the data type of the
property. If the data type is not provided, the JSF implementation will attempt to infer the type
from the bean class. Finally, it must have one of several elements that initialize the value of the
property: <value>, <null-value>, <list-entries>, or <map-entries>. For example, if the prop-
erty of the bean is a Java primitive or a String, you can use the <value> element like this:

<property-name>myProperty</property-name>
<value>3</value>

If the type of the property is a Java object and not a primitive, you can also set the value to
null, using this form:

<property-name>myProperty</property-name>
<null-value/>

If the type of the property is some other managed bean, you can initialize the property
by referencing the other bean by the name of the bean instance. So, for example, if you have 
a managed bean of type Flight, and you create an instance with the name flight1, you can
initialize a property of type Flight by using a value-binding expression that is the name of
the bean:

<managed-bean> 
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.projsp.FlightSearch</managed-bean-class> 
<managed-bean-scope>session</managed-bean-scope> 
<managed-property>
<property-name>matchingFlight</property-name>
<value-class>com.apress.projsp.Flight</value-class>
<value>#{flight1}</value>

</managed-property>
</managed-bean>
<managed-bean>
<managed-bean-name>flight1</managed-bean-name>
<managed-bean-class>com.apress.projsp.Flight</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>

</managed-bean>

In this snippet, the bean flight has a property named matchingFlight. The type of
matchingFlight is com.apress.projsp.Flight. The value of matchingFlight is initialized by
referencing the name of the Flight object in the value-binding expression #{flight1}. (We’ll
discuss value-binding expressions in more detail in the “Using Value-Binding Expressions in
JSP Pages” section a little later in this chapter.) You can see that an object with this name is
specified in the second <managed-bean> element.

Finally, if the type of the property is List or a subtype of List, or Map or a subtype of Map,
you can initialize the List or Map in the configuration file. For example, in Listing 5-1, suppose
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we wanted to restrict the departTime and arriveTime properties to the values Morning,
Afternoon, or Evening. We could create an additional property, like this:

public class FlightSearch {
List times;
//...

}

We could then initialize the list, like this:

<managed-bean> 
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.projsp.FlightSearch</managed-bean-class> 
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>times</property-name>
<list-entries>
<value>Morning</value>
<value>Afternoon</value>
<value>Evening</value>

</list-entries>
</managed-property>

</managed-bean>

The <list-entries> element can have an optional <value-class> element that provides
the fully qualified class name of the objects stored in the list. If used, it appears before the
<value> elements. When <value-class> is used, the JSF implementation will attempt to create
objects of that type, initialize those objects with the given values, and store them in the List.
You can also use the <null-value> element to store null values in the list.

Initializing a Map is similar. Given a property of type Map:

public class FlightSearch {
Map airportNames;
//...

}

you initialize the Map like this:

<managed-bean> 
<managed-bean-name>flight</managed-bean-name>
<managed-bean-class>com.apress.projsp.FlightSearch</managed-bean-class> 
<managed-bean-scope>session</managed-bean-scope>
<managed-property>

<property-name>airportNames</property-name>
<map-entries>
<key-class>java.lang.String</key-class>
<value-class>java.lang.String</value-class>
<map-entry>
<key>BOS</key>
<value>Logan International Airport</value>
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</map-entry>
<!-- and so on -->

</map-entries>
</managed-property>

</managed-bean>

In the element, both <key-class> and <value-class> are optional. The JSF implementa-
tion will choose appropriate classes if you do not provide either element. There can be zero or
more <map-entry> elements, and each <map-entry> that appears must have a <key> and either
a <value> or <null-value>.

Identifying Bean Scopes
When you configure a JavaBean to be used in a JSF page, you can configure it with one of four
scopes:

• None: Objects with this scope are not visible in any JSF page. When used in the configu-
ration file, they indicate managed beans that are used by other managed beans in the
application. Objects with none scope can use other objects with none scope.

• Request: Objects with this scope are visible from the start of the request until the end 
of the request. Request scope starts at the beginning of a request and ends when the
response has been sent to the client. If the request is forwarded, the objects are visible
in the forwarded page, because that page is still part of the same request/response
cycle. Objects with request scope can use other objects with none, request, session, 
or application scope.

• Session: An object with session scope is visible for any request/response cycle that
belongs to a session. Objects with this scope have their state persisted between
requests and last until the object or the session is invalidated. Objects with session
scope can use other objects with none, session, or application scope.

• Application: An object with application scope is visible in all request/response cycles
for all clients using the application, for as long as the application is active. Objects with
application scope can use other objects with none or application scope.

You may recall from Chapter 1 that when you use the <useBean> standard action, you can
specify similar scopes for the JavaBean. The difference is that JSP scope includes an additional
scope named page. Because JSF requests often involve navigation between pages, objects with
page scope have no value in a JSF application. For example, in the initial example in this chap-
ter, the properties of a JavaBean were set in one JSP page, and those values were displayed in
another page. If the FlightSearch JavaBean had been given page scope, the searchResults.jsp
page would not have access to the FlightSearch JavaBean, and so would not have been able to
display the data stored in the JavaBean.

Most often, you will define your managed beans to have session scope. However, in some
cases, you may have a managed bean that encapsulates global data. For example, you may
have a managed bean that holds information common to every page in the application; in
that case, you would define the managed bean to have application scope. Managed beans that
you use only within a single request/response will have request scope.
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Using Value-Binding Expressions in JSP Pages
When using JSF custom actions in your JSP pages, the JSF implementation can set or get the
value of JavaBean properties, based on the tag usage. For example, Listing 5-2 includes this tag:

<h:inputText value="#{flight.origination}" size="35"/>

■Tip The syntax in the preceding example is sufficient for Java primitive and String values. However, if
the property is some other data type, you will probably need to supply a converter as well. See the “Convert-
ing Data” section later in this chapter for details.

This is also referred to as a value-binding expression because it binds the value of some
bean property (using an EL statement in the form #{object.property}) to an attribute or prop-
erty of some JSF element. The expression to the left of the dot is some object accessible to the
page, and the expression to the right of the dot is some property of the object. You can also
chain expressions, like this:

object1.object2.object3.property

Each expression in the chain, reading from left to right, is evaluated as an object reference,
and the final expression is a property of the last object.

Another syntax you can use to write a value-binding expression uses brackets to denote
the property. We refer to this syntax as bracket notation:

flight["origination"]
flight['origination']

You would use the form with double quotes when using single quotes to delimit attribute
values, and use single quotes when double quotes are used to delimit the attribute values. So,
the preceding inputText element could be written in either of these ways:

<h:inputText value="#{flight['origination']}" size="35"/>
<h:inputText value='#{flight["origination"]}' size="35"/>

When creating chained expressions, you can freely mix dot and bracket notation. In fact,
as you will see shortly, when creating an expression to access a List or Map, mixed notation
can be used to create dynamic expressions.

Getting and Setting Bean Properties
When the searchForm.jsp page is rendered, the JSP page implementation class calls the get
method for the origination property of the FlightSearch class to get the value of the property.
This value is then included in the rendering of the page. The JSP page class does this for all the
properties that are referenced in the page. When the page is first loaded, the properties of the
FlightSearch object have no values, so the page is rendered with empty text fields.

During the processing of the request from searchForm.jsp, the values entered into the
form are saved by the UI components that correspond to the UI widgets on the page. After
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these values are converted as necessary and validated, the JSF implementation updates the
model (the FlightSearch object) by calling the set method for the property.

After the model is updated, the life cycle advances to the render phase, and the
searchResults.jsp page (Listing 5-3) is rendered. At this point, the FlightSearch object has
some data, and so when the page is rendered, the JSF implementation calls the get methods
for the properties that the page displays, and these values are used in the rendering and dis-
play of the page.

Notice that by using the same simple #{flight.origination} syntax, the JSF implementa-
tion calls different code depending on the current phase of the JSF life cycle. Note also that the
action does not depend on the tag type. The action taken for the <h:inputText> tag can be
either a get or set method of the property, regardless of the fact that the <h:inputText> tag
renders as an HTML <input> tag.

Accessing List, Array, and Map Property Types
You can also easily access bean properties that are of type List, array, and Map. You can access
an element of the List or array by using a value-binding expression. For example, earlier we
presented a possible List property added to FlightSearch:

public class FlightSearch {
List times;
//...

}

After the bean is initialized, we could access the first value in the list by using any of the
following expressions:

#{flight.times["1"]}
#{flight.times['1']}
#{flight.times[1]}
#{flight.times["var"]}
#{flight.times.var}
#{flight.times[var]}

■Note For a complete list of valid expression forms, see Section 5.1.2 of the JSF specification.

As mentioned earlier, you can chain expressions together to create a value-binding
expression. The last expression following the dot, or inside the brackets, must evaluate to an
integer or must be convertible to an integer. When updating the model, the JSF implementa-
tion will attempt to set the element at the given index. If the given index does not exist, a
PropertyNotFoundException will occur. When reading from the model, the implementation
will call the get method to get the element at the given index. Again, if the index does not exist,
a PropertyNotFoundException will occur.

One difference between value-binding expressions for List and Map objects is that you
can use bracket notation to create dynamic value-binding expressions. Suppose you had an
object with some intProperty that evaluates to an integer and you tried this syntax:
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flight.times.object.intProperty

The expression would cause an evaluation error. The JSF implementation expects object
to be a property of times, which is not the case. However, you can use a mixed form with both
dot and bracket notation:

flight.times[object.intProperty]

When this expression is evaluated, the object.intProperty expression evaluates to an
integer, which is then used to access the value stored in the List at that index. The same syn-
tax can be used when accessing Map entries.

Given the Map property of FlightSearch:

public class FlightSearch {
Map airportNames;
//...

}

any of the following expressions will cause the Map methods get(key) or set(key, value) to be
called, depending on which life-cycle phase is currently being processed:

flight.airportNames.key
flight.airportNames[key]
flight.airportNames["key"]

Using Method-Binding Expressions in JSP Pages
Just as you can bind managed bean properties to expressions in the JSP page, you can also
bind managed bean methods to expressions. You use method binding when setting the attri-
bute values for actions, validators, action listeners, and value change listeners.

The syntax for method-binding expressions is the same as the syntax for value-binding
expressions. You can use either dot or bracket notation. As with value-binding expressions,
every expression in the chain, except the last expression, is evaluated as an object reference.
The last expression in the chain must be a method name of a method. The method signature
must follow a specific pattern, which depends on whether the method binding is used for an
action, a validator, an action listener, or a value change listener.

You will see how to use method-binding expressions for actions in the “Controlling Page
Navigation” section later in this chapter. You will also look at using method-binding expres-
sions for validators in the “Validating Input” section. Value change listeners and action
listeners are covered in the “Event Handling” section later in the chapter.

Expanding the JSF Sample Application
Let’s update the first example in this chapter (Listings 5-1 through 5-6) to demonstrate some
of the concepts we just discussed. For this version, we’ll change the search form so that a user
is required to select either a one-way trip or a round-trip. We’ll also constrain the departure
time and return time to be Morning, Afternoon, or Evening, as shown in Figure 5-5.
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Figure 5-5. The search form now has radio buttons for one-way or round-trip and drop-down
boxes for departure and return times.

When the user enters the search parameters, the search results page will still echo the
search parameters, but will also list two matching flights (imaginary flights, since we will hard-
code them into the application).

The directory structure for the Jsf_Ex02 example, shown in Figure 5-6, is similar to the
one we used for the first example. The new files are FlightTypes.java, FlightTimes.java, and
Flight.java.

Figure 5-6. The directory structure for Jsf_Ex02
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Listing 5-7 shows FlightTypes.java. This class is basically a data holder class with no opera-
tions. It holds the two values Roundtrip and One Way in an array of type javax.faces.SelectItem.
This data type is used as part of the list-creation capability of JSF, which you will explore later
when you look at the new searchForm.jsp (Listing 5-12). You will need to add jsf-api.jar to
your CLASSPATH to compile this file.

Listing 5-7. FlightTypes.java

package com.apress.projsp;

import javax.faces.model.SelectItem;

public class FlightTypes {
static SelectItem[] tripTypes = new SelectItem[] {

new SelectItem("Roundtrip", "Roundtrip"),
new SelectItem("One way", "One way") };

public SelectItem[] getTripTypes() {
return tripTypes;

}
public void setTripTypes(SelectItem[] tripTypes) {
FlightTypes.tripTypes = tripTypes;

}
}

Listing 5-8 shows FlightTimes.java. It is also a data holder class, this time for the depar-
ture and return time values. This source file also requires jsf-api.jar to be compiled.

Listing 5-8. FlightTimes.java

package com.apress.projsp;

import javax.faces.model.SelectItem;

public class FlightTimes {
static SelectItem[] times = new SelectItem[] {

new SelectItem("Anytime", "Anytime"),
new SelectItem("Morning", "Morning"),
new SelectItem("Afternoon", "Afternoon"),
new SelectItem("Evening", "Evening") };

public SelectItem[] getTimes() {
return times;

}
public void setTimes(SelectItem[] times) {
FlightTimes.times = times;

}
}
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Listing 5-9 shows a new version of FlightSearch.java (Listing 5-1). This new class has
two additional fields: one for trip type and one for matching flights (flights that supposedly
match the search parameters). In the process of creating the FlightSearch managed bean, 
the matchingFlights field will be filled with two Flight objects. We will do this in the 
faces-config.xml file. Because we are not going to actually search for flights, each set
method in this class will also update the appropriate fields in the Flight objects.

Listing 5-9. FlightSearch.java

package com.apress.projsp;

import java.util.List;
import java.util.ArrayList;

public class FlightSearch {
String origination;
String destination;
String departDate;
String departTime;
String returnDate;
String returnTime;
String tripType;
ArrayList matchingFlights = new ArrayList();

public String getDepartDate() {
return departDate;

}
public void setDepartDate(String departDate) {
this.departDate = departDate;
((Flight) matchingFlights.get(0)).setDepartDate(departDate);
((Flight) matchingFlights.get(1)).setDepartDate(departDate);

}
public String getDepartTime() {
return departTime;

}
public void setDepartTime(String departTime) {
this.departTime = departTime;
((Flight) matchingFlights.get(0)).setDepartTime(departTime);
((Flight) matchingFlights.get(1)).setDepartTime(departTime);

}
public String getDestination() {
return destination; 

}
public void setDestination(String destination) {
this.destination = destination;
((Flight) matchingFlights.get(0)).setDestination(destination);
((Flight) matchingFlights.get(1)).setDestination(destination);
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((Flight) matchingFlights.get(0)).setFlightNum("133");
((Flight) matchingFlights.get(1)).setFlightNum("233");

}
public String getOrigination() {
return origination;

}
public void setOrigination(String origination) {
this.origination = origination;
((Flight) matchingFlights.get(0)).setOrigination(origination);
((Flight) matchingFlights.get(1)).setOrigination(origination);

}
public String getReturnDate() {
return returnDate;

}
public void setReturnDate(String returnDate) {
this.returnDate = returnDate;
((Flight) matchingFlights.get(0)).setReturnDate(returnDate);
((Flight) matchingFlights.get(1)).setReturnDate(returnDate);

}
public String getReturnTime() {
return returnTime;

}
public void setReturnTime(String returnTime) {
this.returnTime = returnTime;
((Flight) matchingFlights.get(0)).setReturnTime(returnTime);
((Flight) matchingFlights.get(1)).setReturnTime(returnTime);

}
public String getTripType() {
return tripType;

}
public void setTripType(String tripType) {
this.tripType = tripType;

}
public List getMatchingFlights() {
return matchingFlights;

}
public void setMatchingFlights(List matchingFlights) {
this.matchingFlights.addAll(matchingFlights);

}
}

Listing 5-10 shows the Flight.java code. If you inspect the code in Listing 5-10, you 
will notice that many of the properties of the Flight class are identical to the fields of the
FlightSearch class. Again, for this example, Flight is simply a data holder class with no sig-
nificant behavior. It does, however, have a toString() method. This method is called by the
JSF implementation when the matching flights are displayed in the search results page.
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Listing 5-10. Flight.java

package com.apress.projsp;

public class Flight {
String flightNum;
String origination;
String destination;
String departDate;
String departTime;
String returnDate;
String returnTime;

public String getFlightNum() {
return flightNum;

}
public void setFlightNum(String flightNum) {
this.flightNum = flightNum;

}
public String getDepartDate() {
return departDate;

}
public void setDepartDate(String departDate) {
this.departDate = departDate;

}
public String getDepartTime() {
return departTime;

}
public void setDepartTime(String departTime) {
this.departTime = departTime;

}
public String getDestination() {
return destination;

}
public void setDestination(String destination) {
this.destination = destination;

}
public String getOrigination() {
return origination;

}
public void setOrigination(String origination) {
this.origination = origination;

}
public String getReturnDate() {
return returnDate;

}
public void setReturnDate(String returnDate) {
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this.returnDate = returnDate;
}
public String getReturnTime() {
return returnTime;

}
public void setReturnTime(String returnTime) {
this.returnTime = returnTime;

}
public String toString() {
return "Flight " + flightNum + " departing " + origination + " at "

+ departTime + " arriving " + destination + " 2 hours later";
}

}

The index.html welcome page and web.xml deployment descriptor remain essentially
unchanged for this example, so you can reuse Listing 5-5 and Listing 5-6 (if needed) for these
two files. You may, however, want to change the <display-name> element in the deployment
descriptor so that it is correct for this example.

Let’s next look at the faces-config.xml file, shown in Listing 5-11. The navigation rule is
unchanged. When the user clicks the Search button, the application will navigate to the search
results form. The first significant change is in the <managed-bean> entry for the FlightSearch
bean. The configuration file now includes an initializer for the new matchingFlight property 
of the FlightSearch bean. The matchingFlight list is initialized with two objects, given by 
the names flight1 and flight2. Note that the beans flight1 and flight2 are created farther
down in the configuration file, with a scope of none. The none scope is appropriate because
these two beans are not referenced directly in any page of the application. The configuration
file also initializes instances of FlightTypes and FlightTimes.

Listing 5-11. faces-config.xml

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
version="1.2">

<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>

<from-outcome>submit</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
<redirect/>

</navigation-case>
</navigation-rule>

<managed-bean> 
<managed-bean-name>flight</managed-bean-name>
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<managed-bean-class>com.apress.projsp.FlightSearch</managed-bean-class> 
<managed-bean-scope>session</managed-bean-scope> 
<managed-property>
<property-name>matchingFlights</property-name>
<list-entries>
<value-class>com.apress.projsp.Flight</value-class>
<value>#{flight1}</value>
<value>#{flight2}</value>

</list-entries>      
</managed-property>

</managed-bean>
<managed-bean> 

<managed-bean-name>times</managed-bean-name>
<managed-bean-class>com.apress.projsp.FlightTimes</managed-bean-class> 
<managed-bean-scope>session</managed-bean-scope> 

</managed-bean>
<managed-bean> 

<managed-bean-name>types</managed-bean-name>
<managed-bean-class>com.apress.projsp.FlightTypes</managed-bean-class> 
<managed-bean-scope>session</managed-bean-scope> 

</managed-bean>
<managed-bean>
<managed-bean-name>flight1</managed-bean-name>
<managed-bean-class>com.apress.projsp.Flight</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>

</managed-bean>
<managed-bean>
<managed-bean-name>flight2</managed-bean-name>
<managed-bean-class>com.apress.projsp.Flight</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>

</managed-bean>
</faces-config>

Listing 5-12 shows the searchForm.jsp page. This page includes some new features. Instead
of using just text fields for input, the form includes elements for creating radio buttons and
drop-down menu lists: <h:selectOneRadio> and <h:selectOneMenu>. There are two ways to
identify the items in these two elements. First, you can explicitly code a <selectItem> element
for each element in the list. The code for that would look like this:

<h:selectOneRadio value="#{foo.bar}">
<f:selectItem itemValue="Item 1"/>
<f:selectItem itemValue="item 2"/>

</h:selectOneRadio>

In this code snippet, the JSF implementation creates a set of radio buttons, with one radio
button for each <f:selectItem> element. The value of the itemValue attribute of the selected
radio button is used to set the value attribute of the <h:selectOneRadio> element.
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The second way to create a set of selection elements is to use a <selectItems> element.
This is the technique we use in Listing 5-12. The <selectItems> element has an attribute
named value, which is set by a value-binding expression that returns an array of SelectItems.
For example, in the value-binding expression #{types.tripTypes}, the name types refers to a
bean of type FlightTypes (see Listing 5-7). This object has a property named tripTypes of type
SelectItem[]. When the page is rendered, the array of SelectItems is converted into a selec-
tion element, with one element for each item in the array. The same occurs for the two
selectOneMenu elements.

Listing 5-12. searchForm.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>

</head>
<body>
<h:form>
<h2>Search Flights</h2>
What type of flight do you need?
<h:selectOneRadio layout="lineDirection"

value="#{flight.tripType}">
<f:selectItems value="#{types.tripTypes}"/>

</h:selectOneRadio>
<p/>            
<table>
<tr><td colspan="4">Where and when do you want to travel?</td></tr>
<tr>
<td colspan="2">Leaving from:</td>
<td colspan="2">Going to:</td>

</tr>
<tr>
<td colspan="2">
<h:inputText value="#{flight.origination}" size="35"/>

</td>
<td colspan="2">
<h:inputText value="#{flight.destination}" size="35"/>

</td>
</tr>
<tr>
<td colspan="2">Departing:</td>
<td colspan="2">Returning:</td>

</tr>
<tr>
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<td>
<h:inputText value="#{flight.departDate}"/>

</td>
<td>
<h:selectOneMenu value="#{flight.departTime}">
<f:selectItems value="#{times.times}"/>

</h:selectOneMenu>
</td>
<td>
<h:inputText value="#{flight.returnDate}"/>

</td>
<td>
<h:selectOneMenu value="#{flight.returnTime}">
<f:selectItems value="#{times.times}"/>

</h:selectOneMenu>
</td>

</tr>
</table>
<p>
<h:commandButton value="Search" action="submit"/>
</p>

</h:form>
</body>
</f:view>

</html>

Finally, Listing 5-13 shows an updated search results page. The only additions to this file
are the new <outputText> element for trip type and the <outputText> elements for the match-
ing flights. Note that the matching flights are displayed using the two variations of bracket
notation for value-binding expressions.

Listing 5-13. searchResults.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head>

<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>

<h3>You entered these search parameters</h3>
<br/>Trip Type  : <h:outputText value="#{flight.tripType}"/>
<br/>Origination: <h:outputText value="#{flight.origination}"/>
<br/>Depart date: <h:outputText value="#{flight.departDate}"/>
<br/>Depart time: <h:outputText value="#{flight.departTime}"/>
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<br/>Destination: <h:outputText value="#{flight.destination}"/>
<br/>Return date: <h:outputText value="#{flight.returnDate}"/>
<br/>Return time: <h:outputText value="#{flight.returnTime}"/>
<p/>Matching Flights
<p/><h:outputText value="#{flight.matchingFlights[0]}"/>
<p/><h:outputText value="#{flight.matchingFlights['1']}"/>

</body>      
</f:view>

</html>

After entering all the code and compiling the Java files into classes, deploy the application
to your web container. When you load the search form page (see Figure 5-5), you should see
the new radio buttons and drop-down menu boxes. After entering some data and clicking the
Search button, you should see a results page similar to Figure 5-7.

Figure 5-7. The search results page now shows two “matching” flights.

Controlling Page Navigation
As you saw in Listing 5-11, page navigation in your JSF application is handled by providing
navigation rules in a configuration file. The navigation can specify which web component 
initiates the request, which web component handles the response, and which value causes
navigation to follow the flow. So far, you have seen only navigation based on the hard-coded
string value of an action attribute. You can also control navigation by using value-binding
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expressions and method-binding expressions. Navigation then depends on the value of the
expression.

Static and Dynamic Navigation
When you control navigation through string values of the action attribute, the path of naviga-
tion is known when the application is deployed. We call this static navigation, because the
flow is statically determined and does not change. It is the same for every request.

When using static navigation, you explicitly code a value into the action attribute of a JSF
custom tag. You then define navigation rules in a configuration file. The rule specifies naviga-
tion flow when the <from-outcome> of a page matches the value of the action attribute. When
that occurs, navigation flows to the specified <to-view-id>. These elements are part of a navi-
gation rule element in a configuration file, such as faces-config.xml (see Listing 5-11).

When you control navigation through value-binding expressions or method-binding
expressions, the path of navigation is not known when the application is deployed. In fact,
navigation flow can vary from request to request depending on the value of the expression. 
We call this dynamic navigation.

For dynamic navigation, you use a value-binding expression or method-binding expres-
sion as the value of the action attribute. With value-binding expressions, the value of the
property must be of type String. With method-binding expressions, the method must take 
no parameters and return a value of type String:

public String search();

The String value returned by the method is compared to the value specified in the navi-
gation rule to determine where control flow should go.

Navigation Rules
Two JSF custom tags are used to control page navigation in conjunction with navigation rules:
<commandButton> and <commandLink>.

You specify navigation rules in a configuration file. In this chapter, we have done this in
the faces-config.xml file. However, navigation rules can be in their own configuration file,
which is then identified in the deployment descriptor web.xml.

The general syntax of navigation rules is as follows:

<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-outcome>search</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>

</navigation-case>
</navigation-rule>

The <from-view-id> element is optional; it contains the path to the page from which navi-
gation starts. In the configuration file, you use the correct name of the file, searchForm.jsp, 
as we do in Listing 5-11, rather than searchForm.faces. Note also that the path to the
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resource begins with a leading forward slash (/) and is the full path to the resource. So, if
searchResults.jsp were in the WEB-INF\pages\results directory, you would use the path 
/WEB-INF/pages/results/searchForm.jsp. The <from-outcome> element is the string value that
is compared to the value of the action attribute.

You need to specify the <from-view-id> only one time. This allows you to define multiple
<navigation-case> elements that apply to one page. You use this when a page has multiple
command buttons or command links.

If you have an action that applies to every page in the application, you can use a
<navigation-rule> element without a <from-view-id>. For example, suppose every page in
your application had a link to your privacy policy. Because the following navigation rule does
not have a <from-view-id>, it applies to every page in the application:

<navigation-rule>
<navigation-case>
<from-outcome>privacy-policy</from-outcome>
<to-view-id>/WEB-INF/privacy.jsp</to-view-id>

</navigation-case>
</navigation-rule>

In some cases, you may have a rule that applies to some pages, but not all pages, in 
your application. If the pages are in a common location, you can use a wildcard to select the 
<from-view-id>:

<navigation-rule>
<from-view-id>/products/*</from-view-id>
<navigation-case>
.  .  .

</navigation-case>
</navigation-rule>

In this rule, the navigation case applies to every page that is served from the products
directory.

There are a number of optional elements you can use with <navigation-case>. Three of
them, <description>, <display-name>, and <icon>, we will not cover here. The three optional
elements we will look at are <from-outcome>, <from-action>, and <redirect>.

The <from-outcome> element is used to match an outcome string. The outcome string
can be a literal string specified in the action attribute of a command element (see the
<h:commandButton> element in Listing 5-12, for example). The outcome string can also be
returned from the execution of an application action method. Action methods are called
when a tag specifies a JavaBean method in its action attribute by using a method-binding
expression. If <from-outcome> is used, the navigation case will be followed only if the out-
come string matches the element’s value. If not used, this case will be followed no matter
what the outcome value is.

The <from-action> element is used in the <navigation-case> element. If you have a sin-
gle page with multiple command actions or command links, and the command actions or
links have the same value (the same <from-outcome>) for the action attribute, you use the
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<from-action> element to distinguish between the actions. Suppose we give the FlightSearch
bean two methods named search() and save(). Both methods will return the value success
when used in a method-binding expression. Because each returns the value success, we need
some way to distinguish between a success from search() and a success from save(). You do
this with the <from-action> element:

<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-action>#{flight.search}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>

</navigation-case>
<navigation-case>
<from-action>#{flight.save}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/searchForm.jsp</to-view-id>

</navigation-case>
</navigation-rule>

Because the outcome values are the same, the case that is matched is the one with the
matching action reference. If <from-action> is not used, the case will be matched no matter
which action reference was executed (or if no action reference was executed).

The final optional element is <redirect>. When you submit a request from a JSF form,
the request is sent to the originating page. When you do not use <redirect>, the origination
page forwards the request to the response page during the Render Response phase, so when
your browser receives the response, it displays the URL of the originating page. When you use
<redirect>, the originating page sends a redirect to the browser, which causes the browser to
make a request for the response page, and updates the browser’s address bar to the address
of the responding page. With the <redirect> in place, both of the earlier examples show
searchResults.jsp in the address bar when the response is received; without <redirect>, 
the address bar would continue to display searchForm.jsp.

Adding Dynamic Navigation to the Sample JSF Application
We can now modify the Flight Search example we have been building in this chapter to use
dynamic navigation. The directory structure for this example, Jsf_Ex03, is shown in Figure 5-8.
We will modify the example to simulate searching for flights that match the search criteria. In
the example, the matching flights will actually be hard-coded into a JavaBean.

Figure 5-9 shows the search results page for this example. Notice that the page no longer
echoes the search parameters. Instead, it lists flights that match the search parameters and
has links for selecting each flight.

When a link is clicked, the response page shows which flight was selected, as shown in
Figure 5-10.
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Figure 5-8. Directory structure for Jsf_Ex03

Figure 5-9. The search results page for Jsf_Ex03 has a link to select a matching flight.

Figure 5-10. The flight selection page shows which flight was selected.
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In this example, the files index.html (Listing 5-5), web.xml (Listing 5-6), FlightTypes.java
(Listing 5-7), FlightTimes.java (Listing 5-8), and Flight.java (Listing 5-10) remain unchanged
from the Jsf_Ex02 example, so we will not repeat that code here.

You need to make only a single change to searchForm.jsp. Listing 5-14 shows the one line
that is changed in the JSP page. In the <commandButton> element, we change the action attri-
bute to refer to the method-binding expression #{flight.search}. This method does not exist
yet; we will add it to the FlightSearch class (Listing 5-19) shortly.

Listing 5-14. searchForm.jsp

...
<h:commandButton value="Search" action="#{flight.search}"/>

...

The rest of the searchForm.jsp page remains the same as in Listing 5-12. When you click
the Search button on the searchForm.jsp page, it will submit the search parameters to the
searchResults.jsp page shown in Listing 5-15.

Listing 5-15. searchResults.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head> 

<title>Freedom Airlines Online Flight Reservation System</title>
</head>
<body>
<h3>Select a Flight</h3>
<h:form>
<p/><h:outputText value="#{flight.matchingFlights[0]}"/>
<h:commandLink action="#{flight.select}" 

value="Select this flight">
<f:param name="flightNum" 

value="#{flight.matchingFlights[0].flightNum}" />
</h:commandLink>
<p/><h:outputText value="#{flight.matchingFlights[1]}"/>
<h:commandLink action="#{flight.select}"

value="Select this flight">
<f:param name="flightNum" 

value="#{flight.matchingFlights[1].flightNum}" />
</h:commandLink>
<p/>
<h:commandButton value="New Search" action="#{flight.reset}"/>
</h:form>

</body> 
</f:view>

</html>
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In this new search results page, we have removed the lines that echo the search parame-
ters. Instead, there are two similar blocks of code that print out a line of text and a link. 
The <outputText> elements use a value-binding expression to print out an element of the
matchingFlights List property of the FlightSearch object. Following the outputText element
is a <commandLink> element. When the link created by the <commandLink> element is clicked, 
the JSF implementation calls the select() method of the FlightSearch class, which is speci-
fied by the method-binding expression #{flight.select}. Like the search() method, select()
is a new method. Nested within the <commandLink> element is a <param> element. It creates a
name-value pair that is passed as a request parameter when the link is clicked. When you look
at the select() method of the FlightSearch class, you will see how a class in the application is
able to read the request parameter. Also notice in Listing 5-15 how the value-binding expres-
sion to access the flightNum property of the Flight object (#{flight.matchingFlights[0].
flightNum}) is a chained expression. As mentioned earlier in this chapter, you can use both
dot notation and bracket notation to create chained value-binding expressions.

In this example, we need a page that will display which flight was selected by the user on
the search result page. This page is selectedFlight.jsp, shown in Listing 5-16.

Listing 5-16. selectedFlight.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>

</head>
<body>
<h3>Flight Reservation</h3>
<h:form>
<p/>You selected this flight: 
<p/><h:outputText value="#{flight.matchingFlight}"/>
<p/><h:commandButton value="New Search" action="#{flight.reset}"/>

</h:form>
</body>  
</f:view>

</html>

The last page we need to implement is the page that tells the user that no flights were
found that match the search parameters. This is the noFlights.jsp page, shown in Listing 5-17.

Listing 5-17. noFlights.jsp

<html>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
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<head> 
<title>Freedom Airlines Online Flight Reservation System</title>

</head>
<body>
<h3>Search Results</h3>
<h:form>
<p/>No flights that match your search parameters were found.
<p/><h:commandButton value="New Search" action="#{flight.reset}"/>
</h:form>

</body> 
</f:view>

</html>

Each of these pages, except for the first search form page, has a New Search button, which
allows the user to reset the search parameters and go back to the search form page. We need to
update the faces-config.xml file to specify this navigation rule and the rules for moving from
the search form to the other pages. Listing 5-18 shows the necessary additions and changes.
Note that the managed bean entries in the file are the same as in Listing 5-11, so we do not
show them here.

Listing 5-18. faces-config.xml

<?xml version="1.0"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
version="1.2">

<navigation-rule>
<from-view-id>/searchForm.jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/searchResults.jsp</to-view-id>
<redirect/>

</navigation-case>
<navigation-case>
<from-outcome>no flights</from-outcome>
<to-view-id>/noFlights.jsp</to-view-id>
<redirect/>

</navigation-case>
</navigation-rule>

<navigation-rule>
<from-view-id>/searchResults.jsp</from-view-id>
<navigation-case>
<from-outcome>select</from-outcome>
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<to-view-id>/selectedFlight.jsp</to-view-id>
<redirect/>

</navigation-case>
</navigation-rule>

<navigation-rule>
<navigation-case>
<from-action>#{flight.reset}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/searchForm.jsp</to-view-id>
<redirect/>

</navigation-case>
</navigation-rule>

<!-- managed beans are the same as in Listing 5-11 and are not shown -->

</faces-config>

The navigation rule for searchForm.jsp now has an additional element: the Search button
on the page calls the FlightSearch search() method. This returns two possible values: success
or no flights. The rule specifies which page sends the response for each return value. There 
is a new rule for the search results page. When a link on that page is clicked, its action value
causes the navigation to transfer to selectedFlight.jsp. Finally, there is a rule that applies 
to all pages, because it has no <from-view-id> element. This applies anytime the New Search
button is clicked.

The final piece, presented in Listing 5-19, is FlightSearch.java. Much of this class is the
same as in Listing 5-9, so we show only the new properties and methods.

Listing 5-19. FlightSearch.java

package com.apress.projsp;

import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import javax.faces.context.FacesContext;

public class FlightSearch {
//properties:
//origination, destination, departDate, departTime same as Listing 5-9
//returnDate, returnTime, tripType, matchingFlights same as Listing 5-9
String flightNum;
Flight matchingFlight;

//methods from Listing 5-9 not shown here

//new methods are reset(), search(), and 
//get and set methods for flightNum and matchingFlight 
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public String reset() {
this.setDepartDate("");
this.setDepartTime("");
this.setDestination("");
this.setOrigination("");
this.setReturnDate("");
this.setReturnTime("");
this.setTripType("");
return "success";

}
public String search() {
if (origination.equals("BOS") && destination.equals("ORD")) {
return "success";

} else {
return "no flights";

}
}
public Flight getMatchingFlight() {
for (int i = 0; i < matchingFlights.size(); i++) {
matchingFlight = (Flight) matchingFlights.get(i);
if (matchingFlight.flightNum.equals(flightNum)) {
break;

}
matchingFlight = null;

}
return matchingFlight;

}
public void setMatchingFlight(Flight flight) {
matchingFlight = flight;

}
public String getFlightNum() {
return flightNum;

}
public void setFlightNum(String string) {
flightNum = string;

}
public String select() {
FacesContext context = FacesContext.getCurrentInstance();
Map requestParams =
context.getExternalContext().getRequestParameterMap();

flightNum = (String) requestParams.get("flightNum");
return "select";

}
}

CHAPTER 5 ■ JAVASERVER FACES226

513-0 ch05.qxd  11/1/05  7:18 PM  Page 226



The reset() method simply resets all the properties to be empty strings and returns the
value success. The matchingFlights List contains entries for two flights that both originate in
Boston (BOS) and fly to Chicago (ORD). If the origination and destination match these values,
the search() method returns success; otherwise, it returns no flights.

The <commandLink> element on the searchResults.jsp page causes the select() method
to be called. Within this method, the code gets a reference to the context for the application,
and then uses the context to get a reference to the map that holds all the request parameters.
From this Map, the code accesses the request parameter with the name flightNum. Referring
back to Listing 5-15, you can see that the page created a request parameter with that name.
The code sets the flightNum property of the instance and returns the value select. The
flightNum property becomes important for the getMatchingFlight() method.

Although most of the get methods simply return the current value of a property, the
getMatchingFlight() method iterates through the matchingFlights list to find the flight with
the same flight number as the flightNum property. In other words, get and set are not con-
strained to simply access or modify the value of properties, but can perform processing 
when they are called. The matchingFlight property is set to this object, and is also the return
value from this method. This method is called because of the value-binding expression
#{flight.matchingFlight} in the selectedFlight.jsp page.

Compile the classes and deploy the application to your server. When you load the welcome
page at http://localhost:8080/Jsf_Ex03 (replacing the host, port, or name as necessary), the
search form page will load, as shown earlier in Figure 5-5. If you enter BOS in the Leaving From
text field and ORD in the Going To text field, and then click the Search button, the search results
page will display as shown in Figure 5-9. On the search results page, clicking either link will
display the selectedFlight.jsp page (see Figure 5-10). If you enter any other data in either 
the Leaving From field or Going To field and click the Search button, you should see the
noFlights.jsp page, as shown in Figure 5-11.

Figure 5-11. The noFlights.jsp page is served when no flights are found.
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Accessing Context Data in Beans
Although JSF makes it easy for you to connect the view with the model without writing any
code, at times you may need direct access to the request data or other data of your web appli-
cation. We saw such a situation in Listing 5-19. In that listing, a request parameter had been
set in the JSF page, and the FlightSearch JavaBean needed to access that request parameter.

JSF provides access to the request data and other data through the FacesContext object.
As the Javadoc states, “FacesContext contains all of the per-request state information related
to the processing of a single JavaServer Faces request, and the rendering of the corresponding
response . . . . A FacesContext instance is associated with a particular request at the beginning
of request processing.” Because a FacesContext instance, and the objects it contains, are asso-
ciated with the thread processing a particular request, any references to the FacesContext
instance or its contained objects must not be passed to another thread or stored for subse-
quent requests.

As you saw in Listing 5-19, you access the FacesContext object like this:

FacesContext context = FacesContext.getCurrentInstance();

After you have a reference to the FacesContext for the request, you can access all the
request and application data through the ExternalContext object. The reference to the
ExternalContext object is obtained through the call to the getExternalContext() method.

Table 5-3 shows the methods of ExternalContext that return collections of request and
application data. You can use these methods to access request data, session data, request
header data, cookie data, and other sets of data in the application.

Table 5-3. Request and Application Data Available Through ExternalContext

Method Description

Map getApplicationMap() Returns a mutable Map representing the application
scope attributes for the current application

Returns the value of the specified application
initialization parameter (if any)

Map getInitParameterMap() Returns an immutable Map whose keys are the set of
application initialization parameter names configured
for this application, and whose values are the
corresponding parameter values

String getRemoteUser() Returns the login name of the user making the current
request if any; otherwise, returns null

Map getRequestCookieMap() Returns an immutable Map whose keys are the set of
cookie names included in the current request, and
whose values (of type javax.servlet.http.Cookie) are
the first (or only) cookie for each cookie name returned
by the underlying request

Map getRequestHeaderMap() Returns an immutable Map whose keys are the set of
request header names included in the current request,
and whose values (of type String) are the first (or only)
value for each header name returned by the underlying
request

String getInitParameter
(java.lang.String name)
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Method Description

Map getRequestHeaderValuesMap() Returns an immutable Map whose keys are the set of
request header names included in the current request,
and whose values (of type String[]) are all of the value
for each header name returned by the underlying
request

Map getRequestMap() Returns a mutable Map representing the request scope
attributes for the current application

Map getRequestParameterMap() Returns an immutable Map whose keys are the set of
request parameter names included in the current
request, and whose values (of type String) are the first
(or only) value for each parameter name returned by
the underlying request

Iterator getRequestParameterNames() Returns an Iterator over the names of all request
parameters included in the current request

Map getRequestParameterValuesMap() Returns an immutable Map whose keys are the set of
request parameter names included in the current
request, and whose values (of type String[]) are all of
the values for each parameter name returned by the
underlying request

Map getSessionMap() Returns a mutable Map representing the session scope
attributes for the current application

Most likely, if you are accessing request or application data in a managed bean, you will
be accessing request data or session data. As you can see in Table 5-3, you access request data
through the getRequestParameterMap() or getRequestParameterValuesMap() method. You can
access session data through the getSessionMap() method.

Converting Data
Looking at the FlightSearch and Flight objects, we notice that it would probably make more
sense for the departDate and returnDate fields to be actual Date objects rather than String
objects. (To be honest, we noticed this much earlier, but did not want to address that issue
until this point in the chapter.)

Modify the FlightSearch and Flight objects so that the departDate and returnDate fields
are java.util.Date objects and redeploy the application. Now, bring up the search page, enter
data into the fields, and click the Search button. If the application works correctly, you should
see the search page again.

At this point, you should be wondering why the search page was redisplayed, especially if
you entered valid data into all the input fields. The redisplay of the search page indicates that
there was an error in the data.

When an error occurs in a JSF page, the JSF implementation redisplays the originating
page. In this case, the problem is that the JSF implementation does not know how to convert a
string into a Date object, which is what is required for the FlightSearch object. Unfortunately,
with the sample JSP pages we have deployed so far, we did not include any code to inform you
of what the error is. Let’s take care of that now.
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Modify the searchResults.jsp page by adding an id attribute to the inputText elements
and a message element following each inputText element. These changes are shown here:

<h:inputText id="departDate" value="#{flight.departDate}"/>
<h:message for="departDate"/>
. . .
<h:inputText id="returnDate" value="#{flight.returnDate}"/>
<h:message for="returnDate"/>

The id attribute allows you to use the value of the attribute to refer to the JSF custom tag
from other tags. The <message> element obtains a message from the component identified by
the for attribute. If that component does not have a message, the <message> element keeps an
empty string as its value. If the message component has a nonempty string value, that string is
displayed when the page is rendered.

Deploy the search page with the new source, enter some data, and click the Search button
again. This time, the search page is redisplayed with a message indicating the error. For exam-
ple, if you enter 11/30/2005 for the depart or return date, you get the message “Conversion
Error setting value ‘11/30/2005’ for ‘null Converter’,” as shown in Figure 5-12.

Figure 5-12. The message element displays an error message when a UI component has an error.

In cases where the bean property is a Java primitive (int, float, boolean, and so on), a
Java BigInteger, a Java BigDecimal, or a Java String, the JSF implementation will automatically
convert the input data to the correct type. This is done with standard converters. When the
bean property is a Java Date, there is a standard converter, but you need to explicitly tell the
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JSF implementation to perform the conversion. When the bean property is some other data
type, you need to provide a converter for the data.

Using Standard Converters
The JSF implementation comes with two standard converters, one for numbers and one for
dates and times: 

• <convertNumber>: Converts strings to numbers, and vice versa. You can include optional
attributes to format the numbers in various ways including as currency, as integers, and
as floating-point numbers.

• <convertDateTime>: Converts strings to dates or times, and vice versa. You can include
optional attributes to format by using various styles and time zones.

To use one of these converters, you nest the converter tag inside the <inputText> tag. In
general, you can nest a converter inside any of the input or output custom tags. The converter
will be called by the JSF implementation in the Update Model Values and Render Response
phases of the JSF life cycle. If the conversion succeeds, the life cycle continues. If the conver-
sion fails, the life cycle transitions to the Render Response phase, where the originating page 
is rendered, and the error message displayed (if the page contains message tags).

■Note You do not need to use a converter if the type of the property is a primitive type (int, double, and
so on), a Boolean, a BigInteger, a BigDecimal, or a String. You do need to use a converter if the type of
the property is any other object, including Date.

The JSF implementation will automatically convert input values to numbers when the
bean property is some primitive numeric type. If automatic conversion will not convert the
number properly, you can explicitly control conversion through the standard <convertNumber>
converter tag. For example, the <convertNumber> tag has attributes that allow you to convert
the input value to a currency value.

The other standard converter is the <convertDateTime> tag. By using various attributes of
this tag, you can convert dates or times, in various formats, to Date or Time properties in the
managed bean. Let’s modify the searchForm.jsp page to use the <convertDateTime> tag. The
new <inputText> tags look like this:

<h:inputText id="departDate" value="#{flight.departDate}">
<f:convertDateTime pattern="MM/dd/yy"/>

</h:inputText>
<h:message for="departDate"/>
. . .
<h:inputText id="returnDate" value="#{flight.returnDate}">
<f:convertDateTime pattern="MM/dd/yy"/>

</h:inputText>
<h:message for="returnDate"/>
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The <convertDateTime> tag is nested in the <inputText> tag. The <convertDateTime> tag
has several attributes that control the date conversion. We’ve used the pattern attribute to
identify the pattern of the date string that will be converted. The symbols that you can use in
pattern strings are the same symbols recognized by the java.text.SimpleDateFormat class.
(Can you guess what the JSF implementation uses to do the conversion?) We’ve identified that
the input value will consist of the two-digit month, followed by the two-digit day, followed by
the two-digit year, with forward slashes delimiting each value. Now when you click the Search
button, the JSF implementation will convert the date (assuming it follows the MM/dd/yy for-
mat), and the search results page will be sent to the browser.

Using Custom Converters
If you could use only the <convertNumber> and <convertDateTime> tags, your ability to create
feature-rich web applications would be limited. Fortunately, as you might guess from the title
of this section, you can create and use custom converters in your JSF applications.

To create a custom converter, you write a class that implements the javax.faces.convert.
Converter interface. This interface has two methods:

Object getAsObject(javax.faces.context.FacesContext context,
javax.faces.component.UIComponent component, java.lang.String value)

String getAsString(javax.faces.context.FacesContext context,
javax.faces.component.UIComponent component, java.lang.Object value)

The getAsObject() method converts the String value (which can be null) to an instance of
the supported type and returns the new instance. This method throws a ConverterException if
the conversion fails. The getAsString() method converts the provided value of the supported
type (which can again be null) to a String instance and returns the new instance. This method
also throws a ConverterException if the conversion fails.

If you check the JSF Javadoc, you will see that the JSF implementation includes a number
of implementations of the javax.faces.convert.Converter interface. These are the standard
converters that handle converting input and output values to the primitive types.

Let’s create an Airport object that will be used as the data type for the origination and
destination fields of the FlightSearch class. We will write a converter that converts between
String and Airport objects.

Listing 5-20 shows the Airport object. It is a simple object that holds an airport code and
the name of the airport.

Listing 5-20. Airport.java

package com.apress.projsp;

public class Airport {
String code;
String name;
public Airport(String code, String name) {
this.code = code;
this.name = name;

}
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public String toString() {
return code;

}
}

The converter, shown in Listing 5-21, will create an Airport object when given a string
with the airport code.

Listing 5-21. AirportConverter.java

package com.apress.projsp;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

public class AirportConverter implements Converter {
public Object getAsObject(FacesContext ctxt, UIComponent comp,
String value) {
Airport airport = null;
if ("BOS".equalsIgnoreCase(value)) {
airport = new Airport("BOS", "Logan International Airport");

}
if ("ORD".equalsIgnoreCase(value)) {
airport = new Airport("ORD", "O'Hare International Airport");

}
if (airport == null) {
FacesMessage message =
new FacesMessage(
FacesMessage.SEVERITY_ERROR,
"UnrecognizedAirportCode",
"Airport code " + value + " is not recognized");

throw new ConverterException(message);
}
return airport;

}
public String getAsString(FacesContext ctxt, UIComponent comp,
Object obj) {
if (obj != null) return obj.toString();
return "";

}
}

This converter is very simple. When converting from a string to an object (the
getAsObject() method), the code looks for a value that matches either the string "BOS" or
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"ORD". If either of those values is found, an Airport object is created. (In a real-world appli-
cation, we would obviously use a more robust lookup such as a database search, which
would recognize all possible airport codes.) If neither string is found, the converter throws a
ConverterException that holds a FacesMessage object. The FacesMessage object holds a sum-
mary string and a detail string, which is displayed by the <message> tag when an error occurs.

To convert an object to a String, the getAsString() method simply calls the toString()
method of the object passed to the method. Since this object should be an instance of Airport,
the toString() method of Airport will be called, and that will return the airport code string.

If more involved processing is needed, each method has access to the FacesContext of 
the application and the UIComponent of the component instance in the page that the object or
string is associated with. As you saw earlier, the FacesContext instance can be used to access
various maps that hold parameters from the page and request being processed.

We will add these two classes to the Flight Search application. Figure 5-13 shows the
directory structure for this example. We will add the classes to the WEB-INF directory. After
adding the classes, we need to tell the JSF implementation when to call the converter.

Figure 5-13. Directory structure for Jsf_Ex04

One way to identify a converter to the JSF implementation is to specify a unique
converter-id for the converter in a configuration file, and then use that ID in the JSP page.
To do this, we would add this <converter> element to the faces-config.xml file:

<converter>
<converter-id>airport.converter</converter-id>
<converter-class>com.apress.projsp.AirportConverter</converter-class>

</converter>
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Then, in the JSP page, we would use the ID in a <converter> tag, like this:

<h:inputText value="#{flight.origination}">
<f:converter converterId="airport.converter"/>

</h:inputText>

or this:

<h:inputText value="#{flight.origination}" converter="airport.converter"/>

Another way to identify a converter is to define a default converter for all properties of
type Airport. This <converter> element in the faces-config.xml file does that:

<converter>
<converter-for-class>com.apress.projsp.Airport</converter-for-class>
<converter-class>com.apress.projsp.AirportConverter</converter-class>

</converter>

With this entry, every time you use an input or output tag that references a property of
type Airport, like this:

<h:inputText value="#{flight.origination}"/>

the JSF implementation detects that origination is of type Airport and calls the
AirportConverter for this element. If you use the technique of defining a default converter,
you must be sure that the converter works for all possible input strings. This is the technique
we will use. Add the preceding <converter> element to the faces-config.xml file for this
example, Jsf_Ex04.

■Note A third way to identify the converter involves creating an object known as a “backing bean.” Inter-
ested readers should check the JSF specification for details on using backing beans.

If you have not yet done so, enter the Airport.java and AirportConverter.java source
code (Listings 5-20 and 5-21) and save them in the correct directory.

In the Flight.java source file, change the data type of origination and destination to
Airport, and change the set and get methods appropriately.

In the FlightSearch.java file, change the data type of origination and destination to
Airport, and change the set and get methods appropriately. Change the reset() method to
set the origination and destination to null. Also, change the search() method:

public String search() {
if (origination.code.equals("BOS") && 

destination.code.equals("ORD")) {
return "success";

} else {
return "no flights";

}
}
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Finally, make this change to the inputText fields for origination and destination in the
searchForm.jsp page:

<h:inputText id="origination" 
value="#{flight.origination}" size="35"/>

<h:message for="origination"/>
</td>
<td colspan="2">
<h:inputText id="destination"

value="#{flight.destination}" size="35"/>
<h:message for="destination"/>

All the other files in the example remain the same as in the previous example, Jsf_Ex03.
Compile the classes and deploy the application to the server. Unlike the previous addition of
the date converter, this addition to the application will change the application’s behavior. If
you enter any airport code other than BOS or ORD in the Origination or Destination fields in
the search form, the application responds with a conversion error and displays the detail
string from the message generated by the converter. If you enter BOS as the origination and
ORD as the destination, the application will find the matching flights. If you enter ORD as the
origination and BOS as the destination, the application will return the noFlights.jsp page.
Previously, you could enter any airport codes, and the application returned noFlights.jsp if
the codes did not match BOS and ORD. Now, the only way to see the noFlights.jsp page is to
enter ORD as the origination and BOS or ORD as the destination.

Validating Input
If you’ve worked with web applications before, you know that a lot of effort is involved in
ensuring that the data entered by the user of your application is correct. JSF provides a means
to simplify data validation, through the use of standard and custom validators.

Using Standard Validators
JSF provides three standard validators as part of the JSF implementation through the following
custom tags:

• <validateDoubleRange>: Validates that a value is a double. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

• <validateLongRange>: Validates that a value is a long. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

• <validateLength>: Validates a string value for length. You can include the optional
attributes minimum and maximum to set minimum and maximum values.

With all three validators, both of the attributes are optional. This means you could add a
validator tag without either a minimum or maximum attribute. In that case, no validation will be
performed. When you provide only a minimum, the validator checks that the value is greater
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than or equal to the minimum. When you provide only a maximum, the validator checks that
the value is less than or equal to the maximum. When you provide both a minimum and a
maximum, the validator checks that the value is greater than or equal to the minimum and
less than or equal to the maximum.

One other validation you can perform in your JSF application is to require a value. The
<input> and <output> tags include an optional attribute: required. For example, the following
tag would require that you enter a value in the text field:

<h:inputText id="origination" 
value="#{flight.origination}" size="35" required="true"/>

If you do not enter a value, the JSF implementation will return the originating page with a
message that you did not enter a required value (assuming there is a <message> tag for the id
origination).

Using Custom Validators
You create a custom validator by creating a class that implements the javax.faces.validator.
Validator interface. All validators must implement this interface. The Validator interface has
a single method that your class must implement:

void validate(javax.faces.context.FacesContext context,
javax.faces.component.UIComponent component, java.lang.Object value)

In the validate() method, if the value argument passes the validation check, you can sim-
ply return from the method. This signals to the JSF implementation that the value passed the
validation check. If it does not pass the validation check, you throw a javax.faces.validator.
ValidatorException. The ValidatorException instance includes a FacesMessage instance with
summary and detail messages describing the validation error.

If you check the JSF Javadoc, you will see that the JSF implementation includes a number
of implementations of the javax.faces.validator.Validator interface. These are the standard
validators that handle validating doubles, longs, and string lengths.

Suppose we wanted to create a date validator to ensure that dates entered by the user of
our Flight Search application are greater than or equal to the day after the current date, and
less than one year from the current date. Listing 5-22 shows the code for this validator.

Listing 5-22. DateValidator.java

package com.apress.projsp;

import java.util.Calendar;
import java.util.Date;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;
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public class DateValidator implements Validator {
public void validate(FacesContext arg0, UIComponent arg1, Object arg2)
throws ValidatorException {
Calendar date = Calendar.getInstance();
date.setTime((Date) arg2);

Calendar tomorrow = Calendar.getInstance();
tomorrow.set(Calendar.HOUR, 0);
tomorrow.set(Calendar.MINUTE, 0);
tomorrow.set(Calendar.SECOND, 0);

Calendar oneYear = Calendar.getInstance();
oneYear.set(Calendar.HOUR, 0);
oneYear.set(Calendar.MINUTE, 0);
oneYear.set(Calendar.SECOND, 0);
oneYear.add(Calendar.YEAR, 1);

if (date.before(tomorrow) || date.after(oneYear)) {
FacesMessage message =
new FacesMessage(
FacesMessage.SEVERITY_ERROR,
"Date Error",
"Date must be between tomorrow and one year from today");

throw new ValidatorException(message);
}

}
}

The code in the validate() method creates two Calendar objects: tomorrow corresponds
to the day after the current date, and oneYear corresponds to one year from the current date.
Then the code compares the argument passed to the validate() method to see if it is between
the dates represented by those two Calendar objects. If the argument is not between those two
Calendar objects, a ValidatorException is thrown; if it is between those two dates, the method
simply returns.

The validator is registered with the JSF implementation with the <validator> element in a
configuration file. The <validator> element has two required subelements:

• <validator-id>: Used to create an ID string that you can use in the <validator> tag to
specify a validator instance. This ID must be unique within the application.

• <validator-class>: The fully qualified class name of the validator class. 

Here is an example of the element you could place in the faces-config.xml configuration
file for this validator:

<validator>
<validator-id>date.validator</validator-id>
<validator-class>com.apress.projsp.DateValidator</validator-class>

</validator>
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And in the searchForm.jsp, you could nest this <validator> tag in an inputText tag:

<h:inputText id="departDate" value="#{flight.departDate}">
<f:convertDateTime pattern="MM/dd/yy"/>
<f:validator validatorId="date.validator"/>

</h:inputText> 

Notice that the value of the validatorId in the <f:validator> tag is the same string used
in the <validator-id> element.

To use this validator with the application, enter and compile Listing 5-22 and save it with
the web application. Then make the changes to faces-config.xml and searchForm.jsp shown
in the preceding code. Now, the application will accept only dates that occur between the 
day after the current day and one year from the current day. If you enter an invalid date, you
should see the page shown in Figure 5-14.

Figure 5-14. When an entered date does not pass validation, an error message is displayed 
by the application.

Bypassing Validation
Validation is an important aspect of your web application, because it ensures that all input
values are valid before the model is updated, thereby enforcing model integrity. However, at
times you will not want validation to occur.

For example, various pages of the Flight Search application have a New Search button. If
this button occurred on a page that also specified validators for any fields, we could have a
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problem. In the normal JSF life cycle, the validators would be executed before the New Search
button was processed. Validators are executed during the Process Validations phase, whereas
command buttons are processed after the Invoke Application phase, which occurs after the
Process Validations phase. By providing a New Search button, we are acknowledging that the
user might want to throw away whatever values are in the page and start a new search. Thus,
we would not want validations to occur when the user clicks the New Search button.

We can tell the JSF implementation to process the event from the button click after the
Apply Request Values phase (before the Process Validations phase) by adding an attribute
named immediate to the <action> tag. So, for example, if we wanted the New Search button 
to bypass validations in a page, the tag would look like this:

<h:commandButton value="New Search" action="#{flight.reset}" 
immediate="true"/>

Event Handling
There’s one final improvement we want to make to the Flight Search application. You may
have noticed that when you select either Roundtrip or One Way as the trip type, no change is
made to the display. In other words, when the user selects One Way, the search form still dis-
plays labels and fields for the return trip. In a real web application, the presentation would
likely change in response to picking a one-way trip. There’s no sense in displaying fields for
return trip date and time if the user doesn’t want a return ticket.

There are many ways we could deal with this situation. However, since we still need to
discuss event handling in a JSF application, we will deal with it by creating an event handler.
There are two basic types of event handlers in JSF: value change listeners and action listeners.

Value Change Listeners
Value change listeners are attached to input elements such as text fields, radio buttons and
check boxes, and menus. When you want your application to respond to a value change event,
you attach a value change listener to the input element:

<h:selectOneRadio layout="lineDirection"
value="#{flight.tripType}"
valueChangeListener="#{flight.typeChanged}"
onclick="submit()"
immediate="true">

<f:selectItems value="#{flight.tripTypes}"/>
</h:selectOneRadio>

The preceding code snippet shows the <selectOneRadio> element from the searchForm.jsp
page. As you can see, you use the valueChangeListener attribute with a method-binding
expression to specify which method should be called when a value change event occurs. The
FlightSearch class does not yet have a typeChanged() method; you will look at it later in this
section. Additionally, input elements do not cause a form submission on their own, so you
need to include an onclick event handler as well. Finally, because we do not want to validate
inputs when the user changes flight types, the code uses the immediate attribute.
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Listing 5-23 shows the typeChanged() method of the FlightSearch class. In Listing 5-23,
we show only the new method, and the import needed for the class to compile. Because you
tell the JSF implementation which method to call by using a method-binding expression, the
value changed method can have any name you want to give it. The only requirements for the
method signature are that the method must be public, must return void, and must accept a
ValueChangeEvent as the only parameter.

Listing 5-23. typeChanged() method of Flight Search.java

...
import javax.faces.event.ValueChangeEvent;
...
public class FlightSearch {
...
public FlightSearch() {
setTripType("Roundtrip");

}
...
public void typeChanged(ValueChangeEvent event) {
if ("Roundtrip".equals(event.getNewValue().toString())) {
setTripType("Roundtrip");

} else {
setTripType("One Way");

}
FacesContext.getCurrentInstance().renderResponse();

}
}

Within the method, you can perform any processing you need to handle the event. In the
typeChanged() method in Listing 5-23, we set the trip type property of the bean. However, you
can do whatever is needed to handle the event. The last thing that the method does is call the
renderResponse() method. If the typeChanged() method did not do this, the JSF implementa-
tion would proceed through the normal JSF life cycle. However, we do not want this to
happen. If you have selected a trip type before entering any other search parameters, proceed-
ing through the normal life cycle would cause a validation error. Calling renderResponse()
transitions the JSF processing directly to the Render Response stage, bypassing validation. 
If you want to validate the form data normally, your code would not call renderResponse().

So now that the FlightSearch class changes state in response to the user selecting
Roundtrip or One Way, what can we do with this information? Well, as we mentioned, we
would like the presentation of the search form to change so that return trip information is not
displayed to the user. Listing 5-24 shows the new searchForm.jsp. Notice that we have used
the JSTL <c:if> action to control whether the input fields for the return trip are displayed.
When the test for the <c:if> action is true, HTML comment markers are included as part of
the template text, causing some the fields between the markers to be hidden. When the test is
false, the comment markers are not rendered, so the fields are displayed.
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Listing 5-24. searchForm.jsp

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<html>
<f:view>
<head>
<title>Freedom Airlines Online Flight Reservation System</title>

</head>
<body>
<h:form>
<h2>Search Flights</h2>
<h:outputText value="What type of flight do you need?"/>
<h:selectOneRadio layout="lineDirection"

value="#{flight.tripType}"
valueChangeListener="#{flight.typeChanged}"
onclick="submit()"
immediate="true">

<f:selectItems value="#{types.tripTypes}"/>
</h:selectOneRadio>
<p/>            
<table>
<tr><td colspan="4">Where and when do you want to travel?</td></tr>
<tr>
<td colspan="2">Leaving from:</td>
<td colspan="2">Going to:</td>

</tr>
<tr>
<td colspan="2">
<h:inputText id="origination" 

value="#{flight.origination}" size="35"/>
<h:message for="origination"/>

</td>
<td colspan="2">
<h:inputText id="destination"

value="#{flight.destination}" size="35"/>
<h:message for="destination"/>

</td>
</tr>
<tr>
<td colspan="2">Departing:</td>
<td colspan="2">
<c:if test="${flight.tripType == 'One Way'}">
<!--

</c:if>
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<h:outputText value="Returning:"/>
<c:if test="${flight.tripType == 'One Way'}">
-->

</c:if>
</td>

</tr>
<tr>
<td>
<h:inputText id="departDate" value="#{flight.departDate}">
<f:convertDateTime pattern="MM/dd/yy"/>
<f:validator validatorId="date.validator"/>

</h:inputText>
<h:message for="departDate"/>

</td>
<td>
<h:selectOneMenu value="#{flight.departTime}" id="departTimes">
<f:selectItems value="#{times.times}"/>

</h:selectOneMenu>
</td>
<td>
<c:if test="${flight.tripType == 'One Way'}">
<!--

</c:if>
<h:inputText id="returnDate" value="#{flight.returnDate}">
<f:convertDateTime pattern="MM/dd/yy"/>
<f:validator validatorId="date.validator"/>

</h:inputText>
<h:message for="returnDate"/>

</td>
<c:if test="${flight.tripType == 'One Way'}">
-->

</c:if>

<td>
<c:if test="${flight.tripType == 'One Way'}">
<!--

</c:if>
<h:selectOneMenu value="#{flight.returnTime}" id="returnTimes">
<f:selectItems value="#{times.times}"/>

</h:selectOneMenu>
<c:if test="${flight.tripType == 'One Way'}">
-->

</c:if>
</td>

</tr>
</table>
<p>
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<h:commandButton value="Search" 
action="#{flight.search}"/>

</p>
</h:form>
</body>
</f:view>

</html>

All of the other parts of the application remain unchanged. When you first access the
search page of the application, you will see the same page as in previous versions of the appli-
cation. However, if you click the One Way radio button, the page is submitted, the value
change event is handled, and the page is redisplayed without the return trip date and time
fields, as shown in Figure 5-15.

Figure 5-15. When the One Way radio button is selected, the page displays without the return trip
date and time fields.

Action Listeners 
Action listeners are provided by JSF to make it easier to handle action events. JSF already pro-
vides some event handling. For example, in Listing 5-24, clicking a button on the search page
(an event) causes the search() method of the FlightSearch class to be called. However, that
event handler is limited in what it can do, because it has no access to the state of the user
interface. Action listeners do receive information about the user interface, and thus can be
used for more robust event handling.

Action listeners are attached to the two JSF command elements: command buttons and
command links. Action events are handled in a manner very similar to value change events.
You attach a listener to a command element with the actionListener attribute. For example,
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the searchForm.jsp page has a command button. You can attach an action listener to it by
using this syntax:

<h:commandButton value="Search" 
actionListener="#{flight.confirm}"
action="#{flight.search}"/>

When the button is clicked, the JSF implementation calls the action listener during the
Invoke Application phase. The action listener method then has a chance to perform any pro-
cessing related to the command element selected by the user. You can perform any processing
you need to inside the method. The method can have any name, must be public, return void,
and accept an ActionEvent as its only parameter.

After the action listener method is called, the method bound by the action attribute will
be called, and the JSF implementation will determine where to navigate next.

Because the action listener method is called before the action method, the action listener
method is able to modify the response that the action method returns. For example, the Flight
Search application could have some links that direct the user to searches for lodging, trans-
portation, or other services. Without action listeners, you would need to write a different action
method for each link, because the action method cannot have parameters and thus does not
know what part of the user interface was clicked. As the number of links increased, so would
the number of action methods. However, the action listener does have access to the user inter-
face through the ActionEvent, and could determine which link was clicked. It could store that
information as a bean property that the action method could access. With this technique, a sin-
gle action listener method and a single action method could handle any number of links.

Calling Multiple Listeners
There may be situations in which you want multiple value change listeners or multiple action
listeners to respond to an event. In that case, you need a slightly different syntax to attach the
listeners to the JSF element.

In the preceding examples, we attached a value change listener or an action listener to a
JSF element by using the valueChangeListener or actionListener attributes. When using the
attribute syntax, you use a method-binding expression to bind a method as a listener. How-
ever, this works only when attaching a single listener.

When you need to attach multiple listeners, there is a JSF tag for value change listeners
and one for action listeners that can be used to attach one or more listeners to an element.
When using the tag syntax, you will be specifying a class that implements a listener interface.

For value change listeners, the tag is <f:valueChangeListener>, with an attribute named
type that is the class name of the listener. The interface that the listener must implement is
javax.faces.event.ValueChangeListener. It has a single method that must be implemented:

void processValueChangeEvent(ValueChangeEvent);

So, if we assume that the FlightSearch and FlightTypes classes both implement
ValueChangeListener, we could attach both of them to an element like this:

<h:selectOneRadio layout="lineDirection"
value="#{flight.tripType}"
onclick="submit()"
immediate="true">
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<f:valueChangeListener type="com.apress.projsp.FlightSearch"/>
<f:valueChangeListener type="com.apress.projsp.FlightTypes"/>
<f:selectItems value="#{types.tripTypes}"/>

</h:selectOneRadio>

For action listeners, the tag is <f:actionListener>, with an attribute named type that is
the class name of the listener. The interface that the listener must implement is javax.faces.
event.ActionListener. It has a single method that must be implemented:

void processAction(ActionEvent);

If we assume that the FlightSearch and FlightTypes classes both implement
ActionListener, we could attach both of them to an element, like this:

<h:commandButton value="Search" 
action="#{flight.search}">

<f:actionListener type="com.apress.projsp.FlightSearch"/>
<f:actionListener type="com.apress.projsp.FlightTypes"/>

</h:commandButton>

In either of the two preceding examples, both listeners will be called at the appropriate
time to respond to the event. If any listeners are attached by using attribute syntax, they will
be called first. Then any listeners attached by using tag syntax will be called, in order of
declaration.

Using Message Bundles
With the global nature of the Web, many web applications must be internationalized. JSF
provides a facility to make it easy to internationalize your web application. The features of JSF
that are used for internationalization build on the internationalization capability provided in
the Java core libraries.

To provide an internationalized version of your web application, all the text strings used in
your application must be collected into a properties file that your application can load and use.
Listing 5-25 shows a properties file of messages that you could use with the searchForm.jsp
page we have developed in this chapter as part of the Flight Search application. This file holds
the English language strings for the application.

Listing 5-25. messages.properties

title=Freedom Airlines Online Flight Reservation System
head=Search Flights
type=What type of flight do you need?
searchLabel=Where and when do you want to travel?
departAirport=Depart:
arriveAirport=Arrive:
departLabel=Depart Date:
returnLabel=Return Date:
searchButton=Search
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Save this file somewhere in the CLASSPATH for your application. In the Flight Search
example, we could save it in the com\apress\projsp directory. When we cause the properties
file to be loaded, we will reference it by a name that includes the CLASSPATH.

The properties file is included in a JSP page with the <loadBundle> custom action:

<f:loadBundle basename="com.apress.projsp.messages" var="msgs"/>

The <loadBundle> custom action has two required attributes: basename and var. The 
basename attribute is the CLASSPATH qualified base name of the properties file. We reference
the messages.properties file by using the same package qualified name as if it were a Java
class file. Notice that we do not need to provide the .properties extension of the file. When
combined with locale information, the basename is the initial part of the name of the file to be
loaded. A locale code is appended with an underscore, followed by the .properties extension,
to create the full filename. With no locale information, the basename shown in the preceding
example tells the JSF implementation to look for the file messages.properties in the directory
com\apress\projsp of the application. The var attribute is the name that you will use in the JSP
page to access the messages stored in the messages.properties file.

You can use these strings in your application by using a value-binding expression. For
example, to add the page header to the searchForm.jsp page, you would replace the original
page header element:

<h2>Search Flights</h2>

with the following <outputText> element:

<h2><h:outputText value="#{msgs.head}"/></h2>

In elements such as <commandButton>, you can use the value-binding expression directly
in the value attribute of the <commandButton> element:

<h:commandButton value="#{msgs.searchButton}" action="#{flight.search}"/>

This provides two big advantages. First, if you want to change the text used in the web
application, you need to change only the messages.properties message bundle. Second, and
the big reason for message bundles, is that you can easily internationalize your application by
providing additional message bundles for other languages. For example, you can create a sec-
ond message bundle named messages_es.properties, as shown in Listing 5-26. This file holds
the Spanish versions of all the strings.

Listing 5-26. messages_es.properties

title=Freedom Airlines Online Flight Reservation System
head=Busque los Vuelos
type=¿Qué tipo del vuelo necesita usted?
searchLabel=¿Dónde y cuándo usted quiere viajar?
departAirport=Salida:
arriveAirport=Llegada:
departLabel= Fecha de salida:
returnLabel= Fecha de regreso:
searchButton=Buscar
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■Tip If you want to include Unicode characters with an ASCII code greater than 127, you need to encode
them as escape sequences in the form \uxxxx. This provides the ability to support non-Western languages.
And you don’t need to type in these sequences by hand. The Java utility native2ascii can convert native
characters to escape sequences for you.

You add an entry to the faces-config.xml file that identifies which languages your
application supports. For our Flight Search application, you would add this entry to the
faces-config.xml file:

<application>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>es</supported-locale>

</locale-config>
</application>

You need to add a <supported-locale> element with a locale code for every language that
your application supports. The two-letter and three-letter locale codes are listed at http://
www.loc.gov/standards/iso639-2/englangn.html.

When a user accesses your application, and the user’s browser is set to accept Spanish as
the default language, your application will access strings from the messages_es.properties
file, as shown in Figure 5-16. Note that you do not need to change the <loadBundle> tag in your
JSP pages. The browser sends a header parameter that it accepts Spanish as its default lan-
guage. The JSF implementation uses that parameter to determine the locale code, and then
combines the basename attribute with the locale code es to determine which message bundle
to load.

Figure 5-16. The search form page with Spanish text
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Adding this language bundle to the Flight Search example is left as an exercise for the
reader. To see the Flight Search application with other languages, you will also need to set the
language preferences of your browser. For Microsoft Internet Explorer, click Tools ➤ Internet
Options, and then click the Languages button. If you have a different browser, you should be
able to set the language preference in a similar fashion.

■Tip Although we left this as the last topic for the chapter, in the real world you would not want to leave
the message bundle setup for last. Initially writing your web application with internationalization is much
easier than attempting to retrofit your application with internationalization. This does not mean that you must
write message bundles for every possible language up front. You should write a default message bundle and
then add other languages as needed.

Summary
After completing this chapter, you should know the following:

• JSF was developed to make it easier to create customizable UIs for web applications
using a component-based system. JSF provides a set of UI components that can easily
be added to web applications and connected to business objects. The components are
converted into user interfaces through the use of a render kit.

• The JSF implementation comes with a set of custom actions in two tag libraries that
allow you to easily integrate JSF with JSP pages. All JSF implementations must support
JSP pages.

• JavaBeans are the business objects in your JSF application. JSF makes it easy to connect
JavaBeans with UI components. The JSF implementation handles all the work of mov-
ing data from the UI into the bean, and moving data from the bean to the UI.

• Page navigation in a JSF application is handled by adding navigation rules to a configu-
ration file. Navigation can be controlled through value-binding expressions or
method-binding expressions.

• Data conversion and validation is handled by converters and validators. The JSF imple-
mentation provides two standard converters: one for numbers and one for dates. The
JSF implementation provides three standard validators for validating the ranges of dou-
bles or longs and validating the length of strings.

• You can implement your own converters or validators to perform custom conversion
and validation.

• JSF applications can be designed to respond to events and actions by using value
change listeners and action listeners.

• Message bundles provide an easy facility for internationalizing and customizing the
pages in your web application.
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Tag Files and Simple Tags

Prior to this chapter, we showed how to write JSP pages by using several mechanisms that
allow dynamic content to be created.

First, we presented scriptlets in the page, which provide an easy way to get started with
JSP, particularly because they allow existing Java code to be easily migrated into a JSP-based
environment. We also showed how JavaBeans could be integrated with JSP, making it easier to
maintain and manipulate information residing within these reusable components. Chapter 3
covered the JSP expression language (EL), which provides a way to create dynamic content
through scripting expressions.

In Chapter 4, we presented the JSP Standard Tag Library (JSTL), which contains useful,
prebuilt tags that achieve tasks such as iterating over collections. In addition to helping you
perform these common tasks easily, the tags contained within the JSTL are extremely valuable
for improving the readability and maintainability of the page. In Chapter 5, we showed how to
create dynamic user interfaces with JavaServer Faces (JSF). The JSF reference implementation
includes a set of custom tags that encapsulate the JSF API and make it available to use within
JSP pages.

JSP also provides the capability for you to encapsulate reusable functionality into your
own custom tags. Custom tags, also known as tag extensions, were first introduced in JSP 1.1
and carried forward into JSP 1.2. These custom tags are known as classic tags. Classic tags get
their behavior from a Java class known as a tag handler. When a JSP page is translated, the cus-
tom tag in the page is translated into a call to the tag handler class.

JSP 2.0 introduced two major additions to the tag extension mechanism: tag files and 
simple tags. Tag files are custom tags written entirely as JSP pages. Simple tags are similar to
classic tags because they get their behavior from a tag handler class. However, as you will see
when you get to Chapter 7, simple tags are simpler to implement.

This chapter covers tag files and simple tags. You’ll also look at the differences between
tag files, simple tags, and classic tags. Specifically you’ll be looking at the following:

• What custom tags are and why they are useful

• Tag terminology

• The differences between simple tags and classic tags

• How to create and use tag files

• How to create and use simple tags
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In Chapter 7, we will cover the topic of classic tags. Then in Chapter 8, we will finish the
discussion of custom tags by looking at some advanced topics, such as writing cooperating
tags, validating tag usage, and deploying tag libraries.

Understanding JSP Custom Tags
Custom tags, also known as JSP tag extensions (because they extend the set of built-in JSP
tags), provide a way of encapsulating reusable functionality on JSP pages. One of the major
drawbacks of scripting environments such as JSP is that it’s easy to quickly put together an
application without thinking about how it will be maintained and grown in the future. For
example, the ability to generate dynamic content by using Java code embedded in the page is
a very powerful feature of the JSP specification. Custom tags allow such functionality to be
encapsulated into reusable components. As you’ve already seen with the JSTL, custom tags
provide a great way for the logic behind common and recurring tasks to be wrapped up in an
easy-to-use package. However, one question still remains: why should you go to all the trouble
and effort of building custom tags when you can simply write code inside the JSP pages?

In this section, you’ll learn why and how custom tags are used. You’ll also learn about 
the differences between JavaBeans and custom tags, and the differences between simple and
classic tags.

The Need for Custom Tags
Among the best practices that have been established around JSP, one of the most important
suggests that there should be as little Java code embedded inside a JSP page as possible. Expe-
rience has shown us that three key factors benefit from this practice:

• Reusability

• Readability

• Maintainability

We covered these in detail in Chapter 1, so we’ll just review them here.

Reusability
Reuse is a common goal associated with any programming language. Because you can embed
Java code inside JSP pages, you may be tempted to reuse code on a source-code level between
JSP pages. This kind of reuse brings with it a dramatic decrease in maintainability as changes
and bugs slowly creep in and around the system. Ideally, you’re looking for reusability at the
class or component level.

The way that JSP allows you to reuse code is through custom tags and tag libraries. A tag
library is simply a collection of one or more custom tags. A tag library can be reused on a sin-
gle page, on several pages in an application, or across different applications. Obviously, the
best option is to reuse tag libraries across applications.
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Readability
Custom tags improve readability by encapsulating Java code away from the page. As you may
have noticed while developing JSP pages, the more you intermix scriptlets with template text,
the harder it is to read the page. Encapsulating the Java code in a custom tag removes this
code from the page, making the page cleaner, shorter, and more readable. Choosing appropri-
ate names for your custom tags can also make a page easier for page designers to read.

Maintainability
An important concept in maintainability is removing duplication from your code. If you have
50 copies of the same method scattered throughout a Java application, you have 50 places to
make corrections when an error is found. If, however, you extract that method and have 50 calls
to that one method, the bug needs to be fixed in only one place. The same is true of JSP pages.
If you can encapsulate some bit of functionality in a custom tag, changes or fixes to that 
functionality are made only to the custom tag, and then every JSP page that uses the tag auto-
matically gets the fix.

There are several signs that help identify whether a system will be easy or difficult to
maintain. Good use of custom tags is one of those signs for a JSP application.

Tag Terminology and Concepts
Now that you know why using custom tags is a good idea, let’s quickly look at some of key tag
concepts and the principles behind how tags work.

Tags and Tag Libraries
A tag library (commonly known as a taglib) is a collection of individual custom tags that are
typically related to each other. For example, the JSTL Core tag library contains all of those tags
that help you solve some of the common problems that you encounter when building JSP
pages, such as iterating over collections and performing simple conditional logic on the page.
Another example, again from JSTL, is the Internationalization and Formatting tag library that
contains tags related to the formatting of information on the page. As you’ll see throughout
this chapter, and as you’ve already seen in preceding chapters, there are several ways that tags
can be built and deployed.

Importing and Using Tags
A defined and deployed tag library must be made available to a JSP page if it’s to be used. As
you saw when using the JSTL and JSF tag libraries, this is done by importing the tag library
through the JSP taglib directive, and by giving that tag library a namespace (or prefix) on the
page to differentiate it from other tag libraries—in the same way that you place classes inside
packages. After the tag library has been imported, the tags within that library can be used with
XML syntax. For example, if the tag library contained a tag called copyright, you simply use
the tag as follows:

<tags:copyright></tags:copyright>
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Here, you simply use the tag as an XML tag on the page, with the start and end tags being
explicitly stated. In this example, there is no content between the start and end tags, although
this is possible, too, and is written as follows:

<tags:copyright>2005</tags:copyright>

Alternatively, if an XML tag has nothing between its start and end tags, that tag can be
used in its shortened format as follows:

<tags:copyright/>

Semantically, this shortened usage is identical to using the tag in its longer, more verbose
syntax.

Body Content
Body content is defined as anything that falls between the start and end tags. When first
introduced, three types of body content were defined: empty, tagdependent, and JSP. JSP 2.1
supports the same three categories of body content, and an additional category named
scriptless (introduced in JSP 2.0). Table 6-1 defines the four categories. As you’ll see later in
this chapter, these options enable you to define the type of content that you’ll permit within
your tags.

Table 6-1. Valid Body-Content Values for Tag Extensions

Category Definition

empty As you’ve seen, a tag has empty body content when there is nothing
between the start and end tags. If start and end tags are used (as
opposed to shortened format) then nothing at all, not even whitespace,
can appear between the tags when the body content is empty. 

JSP JSP body content is defined as anything that can usually appear within
JSP pages. This includes content such as HTML, Java scriptlets, other
custom tags, and so on:
<prefix:myTag>Here is some <b>HTML content</b></prefix:myTag>

scriptless This body content is effectively the same as JSP body content with 
the restriction that it cannot contain any Java code wrapped up as
scriptlets. As you’ve seen, moving Java code off the page and into
reusable components is one of the best practices associated with JSP
development, and using a body content of scriptless provides a way
to enforce this. At translation time, the JSP container looks at the body
content and will throw a fatal translation error if scriptlets are found.
For new developments, a body content type of scriptless is
recommended over JSP.

tagdependent With tagdependent body content, the custom tag has complete 
control over how its body content is included or evaluated in the page.
Essentially, the body content is treated as plain text, meaning that JSP
constructs and expressions simply aren’t evaluated. Although seem-
ingly useless at first glance, there are a few good uses of this type of
body content, including, for example, a tag that interprets its body con-
tent as another language. A custom tag could be written and used as a
container for another language such as ColdFusion or another scripting
language. The tag could then take its body content and pass it on to a
parser that would execute the code.
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Attributes
The final key concept related to how custom tags are used on the page is that of attributes. 

As you’ll see later in the chapter, custom tags can be customized through the use of attributes
in the same way that methods can be customized through the use of parameters. If you are
familiar with HTML or XML tags, you will immediately recognize that custom tag attributes
are the same concept as HTML or XML tag attributes. Attributes are written as name=value
pairs within the tag itself, as shown here:

<prefix:myTag attributeName="attribute value"/>

In this example, the tag has a single attribute called attributeName, with a value of attri-
bute value. A tag may have one or more attributes, and as you’ll see later, you have full control
over some of the attribute characteristics such as the type and whether it’s required.

JavaBeans vs. Custom Tags
Now that you understand the purpose of custom tags and how they are used, you need to know
when to use tags as opposed to JavaBeans for wrapping up reusable functionality. After all,
JavaBeans are reusable components and the JSP specification provides a built-in mechanism
for integrating and utilizing the features provided by JavaBeans. Although both technologies
can be used to achieve the same goal, that of encapsulating and abstracting data away from the
JSP page, there are significant differences between the two.

JavaBeans are good general-purpose objects that encapsulate state in a portable “bucket.”
We will continue to use these in our examples because they make great business objects.

Tags are a web-specific technology. Tags are primarily for generating presentation ele-
ments, and as such they primarily encapsulate behavior. In addition, custom tags are aware
of the environment in which they are running. For example, custom tags have access to the
same implicit objects as the ones available when developing JSP pages: pageContext, request,
response, session, and so on. JavaBeans, however, are components that can be reused within
any Java environment; hence, they don’t know about such JSP specifics. Therefore, custom
tags are a much better choice for encapsulating reusable functionality that will be used on
JSP pages. You’ll look more closely at this in the discussion of custom tag best practices in
Chapter 8, but for the moment, keep in mind the following rules:

• Use JavaBeans for representing and storing information and state. An example is build-
ing JavaBeans to represent the business objects in your application.

• Use custom tags to represent and implement actions that occur on those JavaBeans, as
well as logic related to the presentation of information. An example from JSTL is iterat-
ing over a collection of objects or conditional logic.

Differences Between Simple and Classic Tags
From a tag developer’s perspective, there are several important differences between simple
and classic tags.

To build classic tags, you write the functionality provided by the custom tag as a Java class
that implements the javax.servlet.jsp.tagext.Tag interface. This class containing the func-
tionality provided by the tag is called the tag handler. One of the biggest problems with building
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tags in this way is that the Tag interface, the tag life cycle, and the semantics of its usage in the
container are rather complex.

Through feedback and the Java Community Process (JCP, http://www.jcp.org), two new
ways for building custom tags have been introduced: tag files and simple tags. Both are the
subject of this chapter and as you’ll see shortly, tag files and simple tags allow the functionality
of custom tags to be implemented by using JSP fragments and Java code, respectively. Although
they use different paradigms, they both greatly simplify the way in which custom tags can be
built and have changed the way that JSP-based web applications are built.

Other changes to custom tags introduced in JSP 2.0 include the ability of a custom tag to
take any number of undefined (dynamic) attributes, and the ability to use the JSP EL with cus-
tom tags. Although these changes were introduced in JSP 2.0, both changes affect classic tags
and simple tags. We’ll see examples using EL statements in the examples in this chapter. We
will look at dynamic attributes in Chapter 7.

Using Tag Files
Tag files provide a very simple way for content and functionality to be abstracted away from
JSP pages and into reusable components. So, what is a tag file?

In short, a tag file is simply a JSP fragment containing some content or JSP code that you
would like to use over and over again. This fragment is accessed by using a custom tag. In the
past, you’ve typically achieved the same thing by taking JSP code out of a JSP page, placing it
in a separate JSP file, and including it wherever necessary. So why do you need tag files? Let’s
answer this question with an example showing how you can reuse content between JSP pages.

Reusing Content
On many websites, small pieces of content are abstracted away from the main pages and into
smaller JSP pages that are included wherever necessary. Typical examples include header
pages that contain references to cascading style sheets (CSS) and common JavaScript func-
tions, or alternatively, footer pages that may include a brief copyright and usage notice about
the website. We’ll recap how this is done with the JSP include directive, and then we’ll look at
how to accomplish the same result with tag files.

Reusing Content with Included JSP Files
If you take an example where footer information is abstracted away from the main page, the
following sample could be placed into a separate JSP file:

Copyright 2005, Apress

As you can see, there isn’t a great deal of content within this JSP file. Although it seems
trivial, the copyright text is a good example of the kind of information that you would want to
abstract out of a JSP page. It is common to most or all of the pages in a website. Abstracting
common information into reusable custom tags increases the maintainability of the web
application. If you need to add to or change the copyright notice, moving it into a separate file
means that you have to change the content in only a single place.
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There are a couple of ways to include such pages, although with static content the include
directive is generally used:

<%@ include file="copyright.jsp" %>

At translation time, the text contained within the referenced file simply gets inlined into
the resulting JSP page. This is a common technique for including static content, so why do you
need tag files and how can you reuse content with them?

Reusing Content with Tag Files
One of the real problems with including files is that with many include directives on the page,
the content of each included file can sometimes be cryptic. The content of copyright.jsp may
seem clear, but other included files may not be as obvious. In addition, there is no standard
method for distributing included files for reuse in other web applications. Tag files can help
address both of these drawbacks.

Defining Content in a Tag File

Building a tag file is almost the same as building the included JSP file—you simply copy out
the content that you would like to reuse and place it in a file ending with a .tag extension, as
shown in Listing 6-1.

Listing 6-1. copyright.tag

Copyright 2005, Apress

As this example shows, there is, in fact, no difference between the content of this tag file
and the content of the included JSP page. There is a minor difference in the name of the file.
The key difference is in how tag files are deployed and used.

To promote the use of custom tags to page authors and people who might not understand
the Java programming side of JSP, the expert group behind JSP provided a very simple approach
to defining tag files. Through a convention defined in the specification, tag files should be
saved with a .tag file extension in a directory called tags (or a subdirectory of this) underneath
the WEB-INF directory of your web application.

Using the Tag File

Tag files are used from within a JSP page as a custom tag in the same way that you’ve seen the
custom tags in the JSTL used. Before using tag files on the page, you have to indicate that the
tag file is a tag and import the tag library containing that tag.

For this example, let’s say that the tag file that we just defined is saved in our web applica-
tion as WEB-INF\tags\copyright.tag along with any other tag files that may be defined in that
directory. Because the individual tags are being placed within the tags directory, it could be
said that the tags directory represents a collection of tags, or a tag library. For this reason, and
to use the tags, you can import the tag library that corresponds to this directory by using a
taglib directive. Listing 6-2 shows a JSP page that uses the tag file in Listing 6-1.

CHAPTER 6 ■ TAG FILES AND SIMPLE TAGS 257

513-0 ch06.qxd  11/17/05  8:41 PM  Page 257



Listing 6-2. tagfile.jsp

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>
<tags:copyright/>

Behind the scenes, the container looks for all files that have a .tag extension in the direc-
tory specified by the tagdir attribute and makes them available to the page as custom tags
with the specified prefix. The mechanics behind how each tag file is made available as a cus-
tom tag is up to the container, but the convention is that the name of the file is used as the
name of the tag. For example, the copyright.tag file will become known as a custom tag called
copyright. The process of importing the tag library by using the taglib directive makes the tag
files within that directory available to use on the page, meaning that the <copyright> tag can
be used just like standard actions or JSTL tags.

As this example shows, the <copyright> tag is used in the same way as any other tag—by
specifying the prefix and the name of the tag. Compared to the original included JSP file, the
actual usage of this tag isn’t all that different. What is important here is that we now have a
standard way to reuse this content. In addition, as you’ll see in Chapter 8, using tag files pro-
vides a standard way to deploy and distribute the tag file to other project members, project
teams, and organizations.

This, of course, is just a simple example to introduce the concept of tag files. To really
appreciate the power and flexibility that they can provide page authors, let’s look at a more
complicated example that uses templating—again, it’s something that often crops up in real-
world projects.

Customizing Templates by Using Attributes
Many e-commerce websites have blocks on their home pages that stand out and inform
potential customers of new products that have recently become available, or of special offers
that are currently running (see Figure 6-1).

Figure 6-1. Tag files can be used to create custom user interfaces for your web application. This
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As Figure 6-1 illustrates, often there will be more than one of these blocks, each of which
may have the same look and feel with only the content changing between them. One way to
implement this is to write the HTML code for the first block and simply copy it, modifying the
content as necessary. For static websites this is very common. However, when building such a
page by using JSP, there are several other options available, all of which increase the reusability
of common code, and therefore the readability, quality, and maintainability.

Templating with Included JSP Files
One option is to take the common code (in this case HTML code) and place it in its own JSP
file. Because we want to parameterize each usage of the template, this rules out using the
static include directive that you saw in the previous example. Instead, you have to use the
<jsp:include> tag so that you can dynamically include this JSP file at runtime, substituting 
the content as appropriate. 

Defining a Template
Listing 6-3 shows how you could write a JSP page to represent the template to be dynamically
included. The tag file in Listing 6-3 is used to create the blocks in the web page in Figure 6-1.

Listing 6-3. box.jsp

<table width="320" bordercolor="${param.color}" border="1" cellpadding="4" 
cellspacing="0">

<tr bgcolor="${param.color}" color="#ffffff">
<td class="boxHeader" nowrap>
${param.title}

</td>
</tr>
<tr>
<td valign="top" class="boxText">
${param.body}

</td>
</tr>

</table>

This example contains three factors that we would like page authors to customize: the title
of the box, the content displayed within the box, and the color of the box. We have enabled
these to be specified at runtime by using parameters, the values of which are simply inserted
into the appropriate place in the template by using JSP EL expressions.

■Note You may notice that Listing 6-3 (and other listings in this chapter and the book) has elements that
include an attribute named class (for example, <td class="boxHeader" nowrap>). The class attribute
references elements from a cascading style sheet. Because these tag files are meant to be included in
another JSP page, the stylesheet reference exists in the enclosing JSP (for example, the index.jsp shown
in Figure 6-1). The stylesheet is not listed in this chapter but is available with the code download for the
book, at the Source Code area of the Apress website (http://www.apress.com/book/download.html).
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Using a Template
With the JSP page in Listing 6-3 saved as part of a web application, it can be used with the
<jsp:include> tag as follows:

<jsp:include page="box.jsp">
<jsp:param name="color" value="#314289"/>
<jsp:param name="title" value="Professional JSP 2.1"/>
<jsp:param name="body" value=" Professional JSP 2.1 is now out. It covers all 
of the new features of the JSP 2.1 specification, backed up by real-world 
examples that you can take and adapt to your own projects.
<br><br>
[
<a href=\"projsp21.html\">More information...</a>

]"/>
</jsp:include>

Note that the value of the page attribute is the appropriate absolute or relative path to
the included file. In the preceding snippet, the page that included box.jsp is located in the
same directory as box.jsp. If box.jsp is not located in the same directory as the JSP page that
includes it, you would need to change the path so that box.jsp could be located.

As this sample shows, templating is a great way to separate content and the presentation
of that content. However, from a page author’s perspective, using a fairly low-level construct
can look a little raw. Another point to note is that as you’re passing the customized content as
parameters to the included JSP, you have to ensure that you properly escape any special char-
acters such as double quotes. Although this has worked in the past and will continue to work
in the future, there is now a better way to achieve the same outcome. That better way is a fea-
ture called tag files.

Templating with Tag Files
As you’ve seen, tag files are small snippets of content that have been abstracted out of the
main page and wrapped up for reuse. In addition, tag files can be customized by attributes at
runtime. We will first look at how to create tag files, and then later in the chapter we will look
at various ways to use attributes.

Defining a Customizable Template
Using Listing 6-3 as a starting point, Listing 6-4 shows how to implement a tag file to repre-
sent the same template.

Listing 6-4. box.tag

<%@ attribute name="color" required="true" rtexprvalue="false" %>
<%@ attribute name="title" required="true" rtexprvalue="false" %>
<table width="320" bordercolor="${color}" border="1" cellpadding="4"  

cellspacing="0">
<tr bgcolor="${color}" color="#ffffff">
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<td class="boxHeader" nowrap>
${title}

</td>
</tr>
<tr>
<td valign="top" class="boxText">
<jsp:doBody/> 

</td>
</tr>

</table>

Although the actual content and intent of the tag file is the same as that of box.jsp, there
are three subtle differences.

The first is the way that attributes are defined. Rather than obtaining values through the
normal request implicit object, the attributes for a tag file are declared at the top of the file by
using the attribute directive, a directive that is valid only in tag files. Using this directive in a
tag file indicates to the JSP container that the custom tag used to access the tag file can accept
an attribute with the specified name:

<%@ attribute name="color" required="true" rtexprvalue="false" %>
<%@ attribute name="title" required="true" rtexprvalue="false" %>

There are some other directives that are valid only within tag files. Like the JSP page direc-
tive, these directives allow aspects of the tag file to be configured. For more information about
these directives, see Chapter 1.

In this example, we’ve declared two required attributes—one for the color of the box, and
one for the title. Because we want the user to specify the values of the attributes when writing
the page, we prevent the use of request-time expressions by setting the value of rtexprvalue to
false. This means that the values for the color and title attributes can be only static strings,
such as #000000 and My title, respectively, rather than JSP expressions.

The second difference is in the way that the attributes are accessed within the tag file. To
access an attribute in a tag file, all that is needed is a simple EL expression. For example, to
access the value of the color attribute, we use the expression ${color}, with the result being
that the value of the color attribute is substituted at runtime. Notice that we don’t need to look
up the value as a parameter with the ${param.color} syntax as we did in Listing 6-3:

<tr bgcolor="${color}" color="#ffffff">

The final difference is that you no longer have to declare an attribute for actual content
that is to be displayed in the box. Instead, you’ll use the body content of the custom tag to sin-
gle out this content, which is specified between the start and end tags. To access the content,
you use the new <jsp:doBody> tag that is again only valid in tag files:

<td valign="top" class="boxText">
<jsp:doBody/>

</td>

All that the <jsp:doBody> tag does is ask the JSP container to invoke (or evaluate) the body
content that was passed to the tag and in this case write it out to the page. An additional benefit
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of passing the text as the body of the tag is that you can write the body content as is, without
having to escape characters as we did in the code snippet in the “Using a Template” section
earlier.

Using a Customizable Template
With the template defined, you can now use the tag file in the same way that you saw previ-
ously. That is, you import the tag library corresponding to the directory in which you saved the
tag file. For this example, enter and save Listing 6-4 as box.tag in the WEB-INF\tags directory.
You then import the tag library that corresponds to this directory by using the following
taglib directive:

<%@ taglib prefix="tags" tagdir="/WEB-INF/tags" %>

As previously discussed, the container looks for all files that have a .tag extension in the
specified tagdir directory and makes them available to the page as custom tags with the spec-
ified prefix. Once imported through the taglib directive, the tag can be used as follows:

<tags:box>
<jsp:attribute name="color">#314289</jsp:attribute>
<jsp:attribute name="title">Professional JSP 2.1</jsp:attribute>
<jsp:body>
Professional JSP 2.1 is now out. It covers all of the new features of the JSP 
2.1 specification, backed up by real-world examples that you can take and 
adapt to your own projects.
<br><br>
[
<a href="projsp21.html">More information...</a>

]
</jsp:body>

</tags:box>

As this example shows, the <box> tag is used in the same way as any other tag—by specify-
ing the prefix and the name of the tag. In a similar way to how the parameters were passed to
the included JSP page, the attributes for this tag are passed using the <jsp:attribute> tags,
nested within the start and end <box> tags. As for the content that is being displayed within
the box, it’s passed as a section of JSP code and wrapped inside the <jsp:body> tags, which are
again nested between the start and end <box> tags. At runtime, these attributes and the body
content are passed to the tag and substituted into the template, as you would expect.

Compared to the original included JSP fragment (Listing 6-3), the actual usage of this tag
isn’t all that different. After all, you have the same structure, with attributes being passed in a
rather verbose way. You could certainly use include directives or actions to create the same
view, but using tag files provides a much better way to create dynamic presentations.

A minor example of the difference between using an <include> action and a tag file is 
that tag files can use attributes to pass data to the tag code:

<tags:box color="#314289" title="Professional JSP 2.1">
Professional JSP 2.1 is now out. It covers all of the new features of the JSP 
2.1 specification, backed up by real-world examples that you can take and adapt 
to your own projects.

CHAPTER 6 ■ TAG FILES AND SIMPLE TAGS262

513-0 ch06.qxd  11/17/05  8:41 PM  Page 262



<br><br>
[
<a href="projsp21.html">More information...</a>

]
</tags:box>

In this example, the attributes are passed through as true attributes of the XML tag rather
than as nested elements. This usage is cleaner and more concise, which makes it easier to
understand what is happening on the page. Also, because the attributes are being passed in
this way, the content to be displayed no longer needs to be wrapped inside a <jsp:body> tag;
the content is now truly the body of the tag.

Both methods of passing attributes are permitted by the JSP specification, although some
syntax rules exist. If the attributes are passed by using the <jsp:attribute> tag, any body con-
tent must be wrapped inside a <jsp:body> tag. The reason behind this is that with the extra
<jsp:attribute> tags, the JSP container can’t guess what you want the body content of the tag
to be, and therefore you have to explicitly demarcate it. If, on the other hand, you specify all
attributes as attributes of the XML tag, the body content of the tag is implicitly taken to be
anything that falls between the start and end tags.

Attributes
As earlier examples of the JSTL tags have demonstrated, it’s possible to customize the use of the
custom tag by using attributes. Without this ability, you would have to build a separate JSP file,
or a separate tag for every different piece of content that you wanted to put in the template.

Prior to the JSP 2.0 specification, there was only a single way to specify attributes: inside
the opening tag as a normal tag attribute. In JSP 2.1, however, you can specify attributes by
using nested tags.

Specifying Attributes Within the Tag
This is the traditional way of specifying attributes for custom tags, and as you’ve seen in the
JSTL examples, it means that those attributes are written in the same way that attributes for
other XML tags are written, for example:

<tags:box title="My Title"/>

Here, an attribute called title has been provided for the tag as a name and value pair and
is written inside the tag itself. As with XML attributes in general, the value of an attribute must
be wrapped inside quotation characters. This example uses double quotes, but there’s nothing
stopping you from using single quotes instead. This flexibility is particularly useful if the value
of the attribute contains characters that need to be escaped, such as double quote characters.

Specifying Attributes as Nested Tags
The other mechanism for specifying attributes is the <jsp:attribute> tag. Using the same
example, this can now be written in one of the following ways:

<tags:box>
<jsp:attribute name="title" value="My Title"/>

</tags:box>
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or

<tags:box>
<jsp:attribute name="title">My Title</jsp:attribute>

</tags:box>

One of the biggest problems with passing attributes to XML tags is that often attributes
with large values make the tag awkward to read. Therefore, the new syntax can be used instead.
Both syntaxes are equivalent, and although the traditional syntax is certainly the most concise,
the newer syntax improves the readability with particularly long attribute values.

Required or Optional
The core elements of any attribute are its name and its value. However, when using custom
tags, various characteristics can be configured. The first is to define whether an attribute is
required or optional. In other words, this allows you to state whether an attribute and its value
must be specified for any given custom tag. This is useful in many situations because it forces
you to specify values for attributes.

Looking at the template example, you may decide that all boxes should have a title. This
isn’t something that you can achieve easily with dynamically included JSP files, but with cus-
tom tags it’s trivial. When an attribute is marked as required and is omitted, a fatal translation
error will occur, indicating that the attribute hasn’t been specified. By using custom tags, you
can force users to specify a title in this example.

Static or Dynamic (Request-Time Expressions)
Another characteristic that is commonly defined for attributes is whether their values can be
the result of a request-time expression. In the JSTL examples, the value of many of the attri-
butes was simply a static string passed to the tag. For example, looking at the JSTL <forEach>
tag that provides iteration over a collection, you can see that the name of the variable with
which you’ll access each item in the collection (myVar) is supplied to the tag as a static string
through the var attribute:

<c:forEach var="myVar" items="${myItems}">
<c:out value="${myVar.name}"/>

</c:forEach>

This is known as a static attribute because its value is statically defined in the JSP page. 
A dynamic attribute, or a request-time expression as it’s formally known, is written using one
of the following methods:

• The JSP EL, such as ${myItems}

• Java code, such as <%= pageContext.findAttribute("myItems") %>

In either case, if an attribute is marked as supporting request-time expressions, it means
that expressions can be used to specify the value of the attribute. In the previous JSTL example,
the actual collection over which the tag should iterate is being passed to the tag at request-time
(runtime) by using an EL expression.

Now let’s look at how you can build a tag file equivalent to the dynamically included JSP
file you saw earlier.
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Why Use Tag Files?
As these examples have demonstrated, it’s possible to wrap up content and reuse it elsewhere.
Because this has always been possible with included JSP files, you might be asking why tag
files have been introduced into the JSP specification and what their benefits are.

First of all, there are the technical aspects. Tag files provide a much cleaner way to build
and subsequently use templates on JSP pages. However, there are some other, softer, benefits
that arise from using tag files over JSP include directives. Essentially, using custom tags gives
you the ability to provide a natural interface to the content and functionality that you would
like people to use and reuse. Having a custom tag called box, with the appropriate attributes, 
is much more understandable than having a generic JSP include. Also, naming custom tags
appropriately provides page authors and developers maintaining the page with a much better
idea of a tag’s intent, which in turn makes it easier to use, read, understand, and maintain.

Using tag files to build templates is a great way to separate the content from the presenta-
tion of that content, and this makes it a natural progression from simply mixing the two together
in JSP pages. However, there will be times when you want to encapsulate more than just pure
presentation into a custom tag. Perhaps you have some Java code that you would like to wrap
up and make reusable. Generally, any code that can appear in a JSP page can appear in a tag
file. However, the best practices about keeping Java code out of JSP pages are also applicable
to tag files. To wrap up logic that contains more code than content, simple tags are the answer.

Using Simple Tags
Previous versions of the JSP specification have supported the notion of building custom tags
with Java code for some time. The JSP 2.1 specification simplifies this process greatly through
the use of simple tags. When using tag files, the content and logic that you would like to reuse is
defined using normal JSP syntax, thereby providing an easy way to wrap up reusable function-
ality and make the process of building tags available to those people who may not necessarily
know how to program in Java. However, with simple tags, the reusable functionality is encapsu-
lated within a Java class that implements a specific interface. As we said earlier, this class is
called the tag handler.

The characteristics of the tag, such as its name and a list of any attributes that it takes, are
then defined in a tag library descriptor (TLD) file. When the tag is finally used on the page, an
instance of the tag handler class is created and its methods are called to execute the reusable
functionality.

Ultimately, this method of writing tags is more complex than building tag files, but it does
provide a much greater level of flexibility and control over the functionality that a tag file can
provide. Before you look at how to build a simple tag, take a look at the interface that a simple
tag handler must implement.

The SimpleTag Interface
The SimpleTag interface defines the basic contract between simple tags and the JSP page on
which they are used. The interface itself serves two purposes:

• It provides the simple tag with information about its execution environment.

• It provides a method for executing the functionality encapsulated by the simple tag
handler.
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Listing 6-5 shows the SimpleTag interface.

Listing 6-5. SimpleTag.java

package javax.servlet.jsp.tagext;
public interface SimpleTag extends JspTag {
public void doTag() throws JspException, IOException;
public JspTag getParent();
public void setJspBody(JspFragment jspBody);
public void setJspContext(JspContext jspContext);
public void setParent(JspTag parent);

}

The Basic Tag Life Cycle
Although the SimpleTag interface supplies the contract that a simple tag must provide, inter-
faces in Java cannot specify the order in which operations are called. This information is
instead specified within the JSP specification. Figure 6-2 shows the order in which the tag
methods are called when a tag is evaluated.

Figure 6-2. This UML sequence diagram shows how a page implementation class calls the 
methods of a tag handler class.

aJSP:
JspPage Create

aSimpleTag:
Simple Tag

setJspContext(JspContext)

setParent(JspTag)

doTag()

setJspBody(JspFragment)

X
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With classic tags, one of the most complex pieces of the tag life cycle is how tag handler
instances can be pooled by the container and reused. Although this tends to increase perfor-
mance and reduce the number of object instantiations that occur, the semantics for reusing
tag handlers often causes confusion and hence side effects from misunderstanding the tag life
cycle. Therefore, simple tags are used once and only once before the tag handler reference is
discarded. In other words, each simple tag invocation causes the creation of a new tag handler
instance, therefore greatly simplifying the programming model.

Creating a Tag Handler Instance
When a custom tag is used on a JSP page, the first thing that the JSP container must do is cre-
ate a new instance of the tag handler class. Later you’ll see just how the JSP container locates
the correct tag handler class for any given custom tag, but for now you should assume that
this has been found and an instance is created.

Setting the Context
Next, the tag handler instance is made aware of the environment in which it’s running through
the setJspContext() method. This just involves passing a reference to the current JspContext
into the tag handler.

One of the useful classes available to JSP developers is PageContext from the javax.
servlet.jsp package. This is available from a JSP page as an implicit object called pageContext.
It’s effectively provided as a convenient way to access various objects that are used during JSP
development. For example, the PageContext class provides an easy way to access attributes
that are bound to any of the available scopes (request, page, session, and application). It can
also get a reference to the current output JspWriter and programmatically include and for-
ward requests. Although these features are available through the standard JSP actions or the
JSP EL, the power behind the PageContext class is that it can be used within custom tags.

One of the changes to the JSP API that occurred with JSP 2.0 is that some of the functional-
ity previously provided by the PageContext class has been abstracted away into a new class
called JspContext, which PageContext now extends. This new base class provides all the func-
tionality that is not directly related to the Java Servlet API, including the methods that allow you
to retrieve and set scoped attributes and obtain a reference to the current JspWriter. From a tag
developer perspective, having access to this sort of information and the execution environment
means that you can write tags utilizing values from the request, page, session, or application
and write output from the tags directly back to the JSP page. You’ll see some examples of how to
use the JspContext and PageContext classes throughout this and the following chapters.

Setting the Parent
During our discussion of body content types, you saw that it’s possible for the body content of
custom tags to contain regular JSP syntax between the start and end tags. This body content
can include custom tags, which means that custom tags can be nested. The following block 
of code shows an example of nesting custom tags with JSTL. Here, the outer <forEach> tag 
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iterates over each item in the specified collection, while the inner <out> tag outputs the name
of each item:

<c:forEach var="myVar" items="${myItems}">
<c:out value="${myVar.name}"/>

</c:forEach>

As you’ll see in Chapter 8, it’s possible for custom tag handlers to cooperate and communi-
cate with one another. Therefore, part of the information about a tag’s execution environment
includes a reference to the closest enclosing tag handler, which is set by calling the setParent()
method. That reference is of type JspTag (the superinterface for all tag handlers), but can be
null if the tag isn’t nested within another tag.

Setting the Body Content
After the context has been set, an object representing the body content of the tag is passed 
to it. At runtime, the JSP container wraps up the body content between the start and end tags,
creates a JspFragment object to represent it, and passes this JspFragment instance to the tag by
calling the setJspBody() method. If there is no body content between the start and end tags, a
null reference is passed to this method instead.

As you’ll see later in this chapter, having a reference to the body content opens up a whole
new way that custom tags can be implemented.

Executing the Functionality
Finally, with the context and body content set, the only thing left to do is execute the function-
ality that the tag handler embodies. This is achieved by calling the doTag() method, and it’s
this method that contains the Java code responsible for the actions performed by the tag.

The SimpleTagSupport Class
Although implementing the SimpleTag interface is not a complex task, for convenience, the
JSP specification provides the javax.servlet.jsp.tagext.SimpleTagSupport class, which pro-
vides default implementations for all the methods previously described. This class can be
used as a starting point for building your own simple tags if you extend it and override the
doTag() method. This, as you’ll see throughout this chapter, is the most common way to build
simple tags.

Now that you understand the mechanics behind simple tags, you are now in a position to
write one.

A Simple Example
As an example of the type of functionality that might be encapsulated within a custom tag,
let’s display the current date and time on the page. You could use Java code written inside a
scriptlet or an EL function. Instead, you’ll use a custom tag because it provides flexibility when
you later need to add functionality. 
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Writing the Tag Handler
Now that you’ve decided that you’re going to build a custom tag, the first step is to write the tag
handler, which is the Java class that will embody the functionality that the custom tag will pro-
vide. Listing 6-6 shows the tag handler DateTimeTag.java, which extends the SimpleTagSupport
class. Because we want to focus on the syntax of creating simple tag handlers, and not the
semantics or use of tag handlers, we’ve deliberately chosen a simplistic example for our first 
tag handler.

Listing 6-6. DateTimeTag.java

package com.apress.projsp;
import java.io.IOException;
import java.text.DateFormat;
import java.util.Date;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.SimpleTagSupport;
public class DateTimeTag extends SimpleTagSupport {
public void doTag() throws JspException, IOException {
DateFormat df = DateFormat.getDateTimeInstance(

DateFormat.MEDIUM, DateFormat.MEDIUM);
// now write out the formatted date to the page
getJspContext().getOut().write(df.format(new Date()));

}
}

As you can see, the actual code for the tag handler is pretty straightforward. The SimpleTag
interface provides the doTag() method, and as defined by the simple tag life cycle, this method
is called to execute the functionality encapsulated within the tag. In this example, a DateFormat
object is created and used to format the current date. This string is then output back to the
page by using the JspContext object. The getOut() method on the JspContext object returns a
reference to the JspWriter instance that is being used to render the JSP page. This is one of the
reasons why a tag needs to know about the environment in which it’s running. If it didn’t, the
tag would never be able to output content directly back to the page.

At this point, you may be saying to yourself, “Why would I want to write a 14-line Java
class file (and a 21-line descriptor in the upcoming Listing 6-7) to do the same work that can
be accomplished in a 2-line JSP scriptlet?” There are several reasons, which we’ve touched on
in other parts of the book, and which we’ll repeat here.

First, page developers are often not Java developers. By abstracting Java code out of the
page, page developers can focus on what they do best. You may find it trivial to write a 2-line
scriptlet that uses DateFormat and Date objects, but the page developer may not find it so trivial.

Second, by encapsulating this behavior in a tag, you can guarantee that every use of the
tag will produce the same presentation, something you can’t guarantee with cut-and-paste
reuse of scriptlets.

Third, you increase the maintainability of your JSPs. If a change or fix is made, you have to
edit only the tag handler class, and every page automatically is changed. With scriptlets, some-
one would need to locate and fix every scriptlet.
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Finally, this simplistic example hides the true power of tag handlers. Because tag handlers
are Java classes, they can use all the features of Java to provide extremely rich and powerful
behavior. For example, the tag handler could connect to a database and retrieve some data,
then use that data to access a web service, and then use the results of the web service to per-
form some other action. This same behavior implemented as scriptlets would result in a JSP
page that had scriptlet code mixed with template text in a source file that would be hard to
read and hard to maintain.

Compiling the Tag Handler
Compiling tag handlers is a straightforward task and requires that the JSP API JAR file is 
present in your CLASSPATH. The JSP library you need is jsp-api.jar, which contains classes
that make up the core JSP and tag APIs, including classes and interfaces such as SimpleTag,
SimpleTagSupport, and JspContext. In Tomcat 5, this JAR file can be found in the TOMCAT_HOME\
common\lib directory.

■Tip If you are using a different container, check your container documentation to find the JAR file that
contains the JSP API classes.

Writing the Tag Library Descriptor File
With the tag handler written and compiled, the next step is to write the TLD file, which is 
an XML file that describes the tag, how it will be used on the page, the type of body content,
whether the tag accepts any attributes, and so on. Listing 6-7 shows the TLD file for this
example.

Listing 6-7. ch06.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">
<description>
Tag library for Professional JSP 2.1, Chapter 6.

</description>
<jsp-version>2.1</jsp-version>
<tlib-version>1.0</tlib-version>
<short-name>ch06</short-name>
<uri>http://www.apress.com/projsp/ch06</uri>
<tag>
<name>datetime</name>
<tag-class>com.apress.projsp.DateTimeTag</tag-class>
<body-content>empty</body-content>
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<description>
Outputs the current date and time to the page.

</description>
</tag>

</taglib>

At first glance this file looks fairly complicated, but in fact only a small portion of it is
applicable to the custom tag that you’re building. The first thing you notice is the standard
XML header that indicates which version of XML you’re using:

<?xml version="1.0" encoding="UTF-8" ?>

Next is the root element, along with the details of the XML schema to which this docu-
ment must conform:

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">
... body of XML document ...

</taglib>

■Note For backward compatibility, JSP containers must still support the DTD-based (Document Type Defi-
nition) TLDs that were a part of the earlier JSP 1.1 and JSP 1.2 specifications. This means that TLDs can still
be defined using these older mechanisms. This is particularly useful for tag library developers who are tar-
geting older versions of the specification, or for those developers who want to reach the widest audience.

The next set of elements within the TLD file, nested between the start and end <taglib>
elements, describes the tag library. Rather than bundle custom tags individually, all tags must
be part of a tag library. Implementing this requires grouping the tags and defining them within
the same TLD file. Using those tags requires importing the tag library with the taglib directive.

For this example, you’ll bundle all the tags that you’ve built in this chapter into their own
tag library, the definition of which is as follows:

<description>
Tag library for Professional JSP 2.1, Chapter 6.

</description>
<jsp-version>2.1</jsp-version>
<tlib-version>1.0</tlib-version>
<short-name>ch06</short-name>
<uri>http://www.apress.com/projsp/ch06</uri>

First is a short textual description of the tag library, followed by the jsp-version and 
tlib-version elements, which allow you to define the required JSP and tag library versions,
respectively.
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Next is a short name for the tag library, used for identification purposes in JSP authoring
or web-application management tools. For example, it could be used in a menu that lists the
tag libraries available to the user.

Finally, you have the uri element. This causes the most confusion when writing tag
libraries. Although the value of this element should be a valid URI, this simply represents a
unique identifier for the tag library. The example uses the absolute URI http://www.apress.com/
projsp/ch06, even though there’s nothing to stop a relative URI such as /ch06 or even /myTaglibs/
chapter06 from being used instead. What is important here is that the URI is unique among
the tag libraries that you’ll be using. The URI doesn’t have to exist in the real world; if you go to
http://www.apress.com/projsp/ch06 you’ll find nothing there—it’s simply a unique, symbolic
identifier.

The final part of the TLD file has the tag description itself:

<tag>
<name>datetime</name>
<tag-class>com.apress.projsp.DateTimeTag</tag-class>
<body-content>empty</body-content>
<description>
Outputs the current date and time to the page.

</description>
</tag>

A definition of a custom tag falls between the start and end <tag> tags and in this example
has four characteristics that are being defined. First is the name of the tag. This doesn’t have to
reflect the actual class name of the tag handler, but rather the name that you would like to use
for the tag on the page. Following this is the fully qualified class name of the tag handler.

■Caution One of the common pitfalls encountered when building custom tags is that the tag handler
classes are often placed in the default package—that is, the package statement is omitted from the source
code. Because of the way that JSP pages are translated into Java servlets, attempting to use unpackaged
tag handler classes almost always results in exceptions, such as ClassNotFoundException, when the tag
is used on the page. To ensure that this doesn’t happen, you should always place your tag handler classes
within a package.

Next, you have a definition of the type of body content for the tag. Earlier in this chapter,
you looked at the various types of body content that a custom tag can have, and it’s here that
this is defined for a custom tag. For the <datetime> tag, the body content is stated to be empty,
meaning that no content is required or permitted between the start and end tags. Because the
<datetime> tag simply outputs the current date and time to the page, it’s not necessary for this
tag to have any body content. The <body-content> element was optional prior to JSP 2.0. It is
now required when writing TLD files.

Finally, there’s a short description about the tag itself. Again, this is optional but it’s useful
for anybody reading the TLD file, whether it’s somebody on your own team using the tag on
your project, or somebody on the other side of the world who is reusing your tag library on
their own project.
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With the tag handler class and TLD file written, the next step is to deploy the tag. There are
a couple of ways that tag libraries can be deployed and used—one in which the tag library is
unpackaged and one in which it’s packaged and ready to be reused easily. The former method is
typically how many developers deploy their tag libraries in a development environment, so let’s
take a look at that one and leave the other until Chapter 8, where you’ll examine deployment in
more depth.

Deploying the Tag Library
The first step is to ensure that the class files for the tag handlers in the tag library have been
compiled and are available within the class path of your web application. In other words, you
should ensure that your class files reside in either the WEB-INF\classes directory of your web
application, or within a JAR file that has been copied into the WEB-INF\lib directory of your
web application. If your tag handlers reference any other classes that you or a third party has
written, don’t forget that these must also be made available in one of these two ways.

With the classes residing within the web-application directory structure, the next step 
is to place the TLD file within the web-application directory structure too. By convention, 
the JSP specification suggests that all TLD files be placed within the WEB-INF\tlds directory.
Although this isn’t mandatory, placing all TLD files here provides a central place for people 
to find them at a later date. For this example, we will place the TLD named ch06.tld in the 
WEB-INF\tlds directory. With these steps complete, you can now use the tag library.

As you saw with the JSTL examples in Chapter 4 and the tag file example in this chapter,
using a tag library requires that the tag library be imported via the taglib directive. This allows
you to specify the prefix that references the tags within that tag library. With the TLD file for
our example located at WEB-INF\tlds\ch06.tld, you can directly import this on a JSP page by
using the following directive:

<%@ taglib uri="/WEB-INF/tlds/ch06.tld" prefix="ch06" %>

Here, you’re using the uri attribute of the taglib directive to explicitly specify the location
of the TLD that represents the tag library that you would like to use. The prefix attribute
allows you to specify the prefix of the tags in the tag library. Figure 6-3 shows the output you
might see when the <datetime> tag is used on a page as follows:

The current date and time is <ch06:datetime/>

Figure 6-3. Simple tags can provide powerful functionality for customizing JSP pages.
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Of the many ways to deploy and use custom tags, this method is one of the most common.
This is primarily because it allows you to save the TLD file straight into the web-application
directory structure (that is, underneath the WEB-INF directory) and to explicitly specify the tag
library that you would like to import. This, therefore, makes it easy to quickly create and deploy
a tag library in a development environment where the build and deploy and test cycles gener-
ally tend to be shorter than usual.

However, although it works, this method doesn’t really take into account the ability that
tag libraries have to be reusable. After all, tag libraries can be reused over the pages in a single
project, over the pages of multiple projects, and within multiple organizations. Adopting this
method for all of those projects means copying the tag handler classes and the TLD files into
every web application. Therefore, the JSP specification provides an alternative mechanism for
packaging and then using and reusing tag libraries (see Chapter 8).

As this example illustrates, simple tags enable you to wrap up reusable functionality that
is typically written using Java code. This is different from the template examples that you saw
earlier in the chapter; whereas they were about parameterizing and reusing content, these are
about reusing functionality. Of course, reusing the same functionality again and again is use-
ful only up to a certain point. Fortunately, functionality—like content—can be parameterized
and customized through the use of attributes.

Customizing Functionality with Attributes
Now that you understand the basics behind developing simple tags such as the tag handler
class and the TLD file, you are now in a position to look at some of the more advanced fea-
tures. Like tag files, simple tags can also be customized by using attributes. The difference is in
how the attributes are implemented. With simple tags, attributes are implemented on the tag
handler class.

As you saw in the tag file examples, attributes are defined within the tag file by using the
attribute directive, and it’s here where you can specify the name and whether the attribute is
required. When using simple tags, this information is defined within the TLD file.

The Tag Life Cycle with Attributes
Introducing attributes into a custom tag does change the tag life cycle slightly because before
the functionality of the tag can be executed (the doTag() method in the case of simple tags),
the attributes must be passed to the tag handler so that they can be used by the tag.

The way that the JSP specification allows this is through properties and setter methods of
the tag handler class. A tag handler must have a property and a setter method for every attri-
bute that it supports.

■Note The necessity for the tag handler to have a property and setter method for every supported attri-
bute is a requirement of previous versions of the JSP specification. But with the introduction of dynamic
attributes, this is not strictly true anymore. You’ll look at dynamic attributes in the next chapter.
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These setter methods must conform to the standard JavaBeans naming convention,
meaning that to support an attribute called name of type String, the tag handler must declare 
a setter method with the following signature:

public void setName(String s)

In this example, at request time, the value of the name attribute will be passed to the 
setName() method. With this in mind, you can now see how supporting attributes alters the
tag life cycle. As an example, consider the following custom tag usage:

<prefix:myTag attribute1="abc" attributeN="def"/>

Here, the tag has two attributes that are being specified. By looking at the tag life cycle in
Figure 6-4, you can see what happens behind the scenes.

Figure 6-4. The life cycle of a simple tag with parameters

As this diagram shows, the setter methods for the attributes are called before the doTag()
method is executed, and in the same order that the attributes appear within the usage of the
tag, from left to right. When it comes to implementing attributes in tag handler classes, attri-
bute setter methods typically store a copy of the attribute away in an instance variable, ready
for the doTag() method to use.

aJSP:
JspPage Create

aSimpleTag:
Simple Tag

setJspContext(JspContext)

setParent(JspTag)

doTag()

setJspBody(JspFragment)

setAttribute1()
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X
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Attribute Types
The examples you’ve seen so far have used static strings to represent the values of attributes.
However, these values can be Boolean values, numbers, and characters through an automatic
conversion mechanism provided by the JSP container. In fact, even objects can be the values
of tag attributes. The JSP implementation will automatically convert the string attribute in
the page to the required type based on the signature of the corresponding setter method.
Table 6-2 shows the conversions that are possible. Note that for each method signature shown
in Table 6-2, the substring PropertyName in setPropertyName() would be replaced by the actual
property name, for example setPath or setSuffix for properties named path and suffix.

Table 6-2. Automatic Conversions of String Attributes to Built-In Java Types

Java Type Method Signature Notes

String public void setPropertyName(String s)

char public void setPropertyName(char s) First letter of string attribute is
used to set the char property.

Character public void setPropertyName(Character c) First letter of string attribute is
used to set the Character
property.

boolean public void setPropertyName(boolean b) If attribute equals true (ignoring
case), the property is true;
otherwise, the property is set to
false.

Boolean public void setPropertyName(Boolean b) If attribute equals true (ignoring
case), the property is true;
otherwise, the property is set to
false.

byte public void setPropertyName(byte b) The conversion of strings to any
numeric type follows the normal
Java rules for conversion of
strings to numbers.

Byte public void setPropertyName(Byte b)

short public void setPropertyName(short s)

Short public void setPropertyName(Short s)

int public void setPropertyName(int i)

Integer public void setPropertyName(Integer i)

long public void setPropertyName(long l)

Long public void setPropertyName(Long l)

float public void setPropertyName(float f)

Float public void setPropertyName(Float f)

double public void setPropertyName(double d)

Double public void setPropertyName(Double d)
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Object Attributes
We’ve said that the JSP container can automatically convert the string values supplied to attri-
butes into a specific type such as a primitive int. However, because the JSP page is written
(behind the scenes) as a Java class, and the tag handlers are also Java classes, there is nothing
to stop objects from being passed as the values of attributes.

To achieve this, a reference to an object needs to be specified as the value of the attribute,
and this is typically done by using a request-time expression or an EL expression as follows:

<prefix:myTag x="${myObject}"/>
<prefix:myTag x="<%= myObject %>"/>

Assuming that myObject is of type MyObjectType, then the corresponding setter method
would be as follows:

public void setPropertyName(MyObjectType o)

When called, the JSP implementation class would set the property of the tag handler to
the value of the object reference used in the JSP page. In the tag handler, the setter method for
the attribute can be defined to take any arbitrary object type, regardless of whether it’s a part
of the Java APIs or a user-defined type. You’ll see examples of this in the next chapter.

JspFragment Attributes
One type of object that gets special support in JSP is JspFragment. A JspFragment object is
essentially a class that wraps up a particular section (or fragment) of JSP code. At runtime,
JspFragment objects can be invoked, meaning that the JSP code that they wrap up is translated
and executed as if it were included in a regular JSP page.

If an attribute is defined as taking a JspFragment, this means that scriptless content can be
passed as a JSP fragment into the tag handler. The only caveat here is in the way that the value
of such an attribute can be specified: it can be passed only by using the body content of the
<jsp:attribute> tag:

<prefix:myTag>
<jsp:attribute name="x">Hello ${name}</jsp:attribute>

</prefix:myTag>

At runtime, the JSP container wraps up the value of the attribute and passes it as a
JspFragment instance to the tag handler. During the execution of that tag, the tag handler 
can invoke and evaluate the fragment to have the results included whenever necessary.

Now you’ll see an example of how to use attributes.

Displaying Thumbnails with a Tag
Imagine that you’ve been asked to write a JSP page presenting a list of thumbnail images to
the user. There are several ways to do this. First, you could statically code the page, writing
the appropriate HTML tags to present a thumbnail of all images in a particular directory. 
The downside to this approach is that when the images change, your page will also have 
to change. Therefore, instead of taking this approach you’ll perform this dynamically, and
rather than write a whole load of Java code into the JSP, you’ll build a custom tag that you
could reuse elsewhere.
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The functionality provided by the custom tag will, given a directory name, look in that
directory and generate the appropriate HTML to display the thumbnails. Figure 6-5 shows an
example of how the finished page might look.

Figure 6-5. In this web page, a simple tag generates HTML based on input parameters.

For the custom tag that is used to help generate this page, rather than hard-coding the
directory in which the tag handler should look for images, you’ll pass this as an attribute. In
doing so, the ability to customize this tag opens it up for reuse elsewhere. In addition, you’ll
want to be able to specify the types of files that are displayed and do it by filtering only those
files with a specific file extension. For example, you might want to display only .jpg files.

Building the Thumbnail Tag Handler
From an implementation perspective, the code for the tag is fairly straightforward, as you 
can once again use the SimpleTagSupport class as a starting point. Listing 6-8 shows the class,
ThumbnailTag.java, which has two properties that allow it to create a customized thumbnail
web page.

Listing 6-8. ThumbnailTag.java

package com.apress.projsp;
import java.io.IOException;
import java.util.*;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.SimpleTagSupport;
public class ThumbnailTag extends SimpleTagSupport {
private String path;
private String suffix;
public void setPath(String s) {
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this.path = s;
}
public void setSuffix(String s) {
this.suffix = s;

}
public void doTag() throws JspException, IOException {
// first of all, find the names of the files
Collection files = findFiles();
if (files != null && !files.isEmpty()) {
String filename;
// now that the names have been found, iterate over each of them
// and generate the appropriate HTML
Iterator it = files.iterator();
while (it.hasNext()) {
filename = (String)it.next();
getJspContext().getOut().write("<img src=\".");
getJspContext().getOut().write(filename);
getJspContext().getOut().write("\" width=\"128\" height=\"96\"> ");

}
}

}
private Collection findFiles() {
PageContext pageContext = (PageContext)getJspContext();
Collection resources =
pageContext.getServletContext().getResourcePaths(path);

List filteredResources = new ArrayList();
if (resources == null || resources.isEmpty()) {
return filteredResources;

}
Iterator it = resources.iterator();
String uri;
String testSuffix;
if (this.suffix != null) {
testSuffix = this.suffix;

} else {
testSuffix = ".jpg";

}
// now filter out those files that don't end in the suffix
while (it.hasNext()) {

uri = (String)it.next();
if (uri.endsWith(testSuffix)) {

filteredResources.add(uri);
}

}
return filteredResources;

}
}
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The two properties that store the values of your two attributes are suffix and path. The
class includes the setter methods for those attributes.

Finally, the class has the doTag() method, which contains the functionality that your tag
provides. For simplicity, a private helper method has been created to locate the files in a spe-
cific directory, while the doTag() method is responsible for outputting the information.

Although there’s a fair amount of code, all this tag does is look for all the files within a
specified directory, and then filter these to include only those that end with the specified suffix
or file extension. With this list, the doTag() method then iterates over each in turn and gener-
ates an HTML <img> tag to display the image on the page.

However, to list all the files in a directory, the class needs access to the PageContext object,
which is a servlet resource. To access the PageContext object, the class performs a widening
conversion on the JspContext object. One of the aims in keeping simple tags simple to use is
that they, unlike classic tags, don’t rely directly on features provided by the servlet API. A bene-
fit of this is that simple tags can be used within other technologies in the future. The price of
this, however, is that you must now explicitly cast the JspContext to PageContext in order to
access any of the servlet-specific features such as the current servlet context.

Describing the Thumbnail Tag
With the tag handler class written, the next step is to write the TLD file describing the tag 
and its characteristics. For this example, you’ll use the same TLD file as before, shown in 
Listing 6-9. For brevity, the descriptions of the tag library and the <datetime> tag have been
omitted.

Listing 6-9. ch06.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the <datetime> tag ...
<tag>
<name>thumbnail</name>
<tag-class>com.apress.projsp.ThumbnailTag</tag-class>
<body-content>empty</body-content>
<description>
Given a path, this tag generates HTML to display thumbnail images.

</description>
<attribute>
<name>path</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>suffix</name>

CHAPTER 6 ■ TAG FILES AND SIMPLE TAGS280

513-0 ch06.qxd  11/17/05  8:41 PM  Page 280



<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

</taglib>

As before, the content between the <tag> elements describes the <thumbnail> tag, with
the <name>, <tag-class>, <body-content>, and <description> elements you’ve seen before.
What’s new here is that the TLD file defines the attributes that this tag supports. Attributes are
defined within the body of the <tag> element, and the characteristics of each attribute are
defined between the <attribute> tags.

In this example, you have two attributes—one named path that is marked as required and
one called suffix that is optional (not required). To make it easier for page authors to use the
tag, you shouldn’t force them to specify the suffix attribute; this is why it’s marked as optional.
For this to work properly, you should always ensure that tag handlers work correctly regardless
of whether a value is specified for optional attributes. Therefore, the code inside the tag handler
checks whether the suffix has been specified and defaults to .jpg if it hasn’t.

■Tip As in all programming situations where supplying a value is optional, you should always have a sen-
sible default value to fall back on if an optional attribute is not supplied. In doing so, you not only make your
tag easier to use, but you make it usable regardless of whether the value has been specified.

Finally, the path attribute allows request-time expressions, and you’ll see how this can be
put to good use shortly.

Using the Thumbnail Tag
After the tag handler has been written, compiled, and deployed, you’re ready to start using the
tag. Because you’re using the same tag library from the previous examples, you can use the
same import statement:

<%@ taglib uri="/WEB-INF/tlds/ch06.tld" prefix="ch06" %>

You can now use the tag in either of the following ways because the suffix attribute is
optional:

<ch06:thumbnail path="/ch06/photos"/>
<ch06:thumbnail path="/ch06/photos" suffix=".jpg"/>

In these examples, both usages will look in the ch06\photos directory for any .jpg files and
generate the HTML that displays them as thumbnails.

Alternatively, you could use request-time expressions written using the EL to specify the
path. For example, if you specified the path as a parameter to the JSP page on which the tag is
being used (by appending ?path=/ch06/photos to the URL), you could pass this information to
the tag with a short EL expression:

<ch06:thumbnail path="${param.path}"/>
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In this instance, the expression is evaluated automatically by the JSP container and the
result is passed in as the value of the attribute. 

■Tip Earlier versions of the JSP specification supported only request-time expressions using Java code.
For example, the equivalent of ${param.path} would be <%= request.getParameter("path") %>.
Although this is still supported, JSP 2.0 and JSP 2.1 promote the use of the EL for request-time expressions.
Not only is the EL more concise, but it removes Java code  from the page—something that helps improve
the readability of JSP pages.

This example shows how easy it is to parameterize the functionality encapsulated within
a custom tag. By allowing attributes to be used to specify the location and types of files, you’ve
built a fairly generic custom tag that can be used in many other places. However, in this exam-
ple you have hard-coded the presentation within the tag handler class. The HTML might 
be dynamically generated, but the actual presentation of the list of files is locked away and
wrapped up inside Java code. From a reusability perspective this is poor because it somewhat
restricts how the tag can be used by other people. Also, maintaining the content means modi-
fying the class file, recompiling it, and redeploying the tag library.

To wrap up this chapter on building simple tags, let’s take a look at how you can combine
templating and customization to build a truly reusable component: a tag that evaluates its
own body content.

Evaluating Body Content
In the previous sections on tags, we defined some templated content within a tag file. Essen-
tially this is just regular JSP code that has been abstracted out of the page so it can easily be
reused.

With the <thumbnail> tag, the functionality of finding the list of files was wrapped up
alongside the presentation of that list. Although we’ve made the presentation as simple as
possible, we can imagine a scenario where every usage of the tag requires a slightly different
HTML to be generated. Perhaps the list of thumbnails should be a bulleted list, or perhaps it
should be enclosed within an HTML table. To achieve this goal, ideally you need to break out
the content (the files) from the presentation (generating the HTML). This is something that is
easy to implement by using JSP fragments, or tag body content.

Essentially, the objective is to leave the content on the page where it belongs and to have
the custom tag look up and locate the files. After the tag has this list, in a similar way to the
JSTL <forEach> tag, it should then evaluate its body content repeatedly for every file that is
found. Consider the following JSP code:

<ch06:list path="/photos" suffix=".jpg">
<img src=".${filename}" width="128" height="96">

</ch06:list>
<ch06:list path="/photos" suffix=".jpg">
<td align="center">
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<img src=".${filename}" alt="${filename}" width="128" height="96">
</td>

</ch06:list>

By splitting the content (what is being displayed) from the presentation (how it’s being
displayed), you’re introducing a separation between the list of files and its presentation in
HTML. In addition to enabling this tag to be reused more often, this separation promotes easy
maintenance and modification of the presentation. In other words, should you need to modify
the way that the list of files is presented, you can do this by editing the JSP page rather than
the tag handler code.

Separating Content from Presentation
With the previous example in mind, let’s build a tag that is capable of generating a list of any
type of file. The tag won’t generate a list of HTML <img> tags, but rather it will implement a
generic mechanism enabling you to generate whatever HTML you like.

Building the Directory List Tag
Listing 6-10 shows DirectoryListTag.java, the tag handler for the list tag. As a simple tag, it
extends the SimpleTagSupport class.

Listing 6-10. DirectoryListTag.java

package com.apress.projsp;
import java.io.IOException;
import java.util.*;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.JspFragment;
import javax.servlet.jsp.tagext.SimpleTagSupport;
public class DirectoryListTag extends SimpleTagSupport {
private String path;
private String suffix;
public void setPath(String s) {
this.path = s;

}
public void setSuffix(String s) {
this.suffix = s;

}
private Collection findFiles() {
PageContext pageContext = (PageContext)getJspContext();
Collection resources =

pageContext.getServletContext().getResourcePaths(path);
List filteredResources = new ArrayList();
if (resources == null || resources.isEmpty()) {
return filteredResources;

}
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Iterator it = resources.iterator();
String uri;
String testSuffix;
if (this.suffix != null) {
testSuffix = this.suffix;

} else {
testSuffix = ".jpg";

}
// now filter out those files that don't end in the suffix
while (it.hasNext()) {
uri = (String)it.next();
if (uri.endsWith(testSuffix)) {
filteredResources.add(uri);

}
}
return filteredResources;

}
public void doTag() throws JspException, IOException  {
// first of all, find the names of the files
Collection files = findFiles();
if (files != null && !files.isEmpty()) {
String filename;
// now that the names have been found, iterate over each of them
// and invoke the body content (JspFragment)
Iterator it = files.iterator();
while (it.hasNext()) {
filename = (String)it.next();
JspFragment jspBody = getJspBody();
if (jspBody != null) {
getJspContext().setAttribute("filename", filename);
jspBody.invoke(getJspContext().getOut());

}
}

}
}

}

This class, in the same way as before, has two instance variables and setter methods to
support the attributes for the tag.

The code also includes the same findFiles() helper method as ThumbnailTag.java,
Listing 6-8.

The key difference between this and the previous <thumbnail> tag is in the way that the
doTag() method behaves. Whereas the <thumbnail> tag generated HTML that was output back
to the page, this time you just want to invoke (or evaluate) the body content of the custom tag
for each file in the resulting list.

If you think back to the tag life cycle, part of the tag creation and initialization process
involves a reference to a JspFragment object, which represents the tag’s body content, being
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passed to the tag via the setJspBody() method. The JspFragment has one method that is of
interest here: invoke(). Calling this method effectively asks the JSP container to evaluate and
process the body content and send it back to the page. This seemingly simple process pro-
vides a great deal of flexibility in building custom tags.

For example, it allows you to programmatically evaluate and include the body content,
perhaps including the body content only if a certain condition is met. In this example, you’re
invoking the body content object only if there are files that were found, and for each file
found, you invoke the body content and therefore generate some more content.

In addition to programmatically evaluating the body content, you can also evaluate the
body content multiple times. Again, in this example, if files are found, you’re invoking the
body content of the tag once for each of them.

Describing the Directory List Tag
Listing 6-11 shows the TLD for this tag. Again, you’ll use the same TLD as before; the listing
omits the previous tags for brevity.

Listing 6-11. ch06.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the <datetime> tag ...

... the description of the <thumbnail> tag ...
<tag>
<name>list</name>
<tag-class>com.apress.projsp.DirectoryListTag</tag-class>
<body-content>scriptless</body-content>
<description>
Given a path, this tag provides a list of the files in that path.

</description>
<attribute>

<name>path</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>suffix</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

</taglib>
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Describing this tag is pretty much the same as before, with the <list> tag having a
required path attribute and an optional suffix attribute. Once again, the path attribute can
accept an expression.

Using the Directory List Tag
As before, you first import the tag library and then use it in the way that we outlined previ-
ously—with the body content of the tag representing the presentation and formatting:

<%@ taglib uri="/WEB-INF/tlds/ch06.tld" prefix="ch06" %>
<table width="100%">
<tr>
<ch06:list path="/photos" suffix=".jpg">
<td align="center">
<img src=".${filename}" alt="${filename}" width="128" height="96">

</td>
</ch06:list>

</tr>
</table>

As this example shows, it’s possible to fuse together the concepts of templating and wrap-
ping up reusable functionality to form a custom tag that is not only flexible, but reusable too.
With the previous implementation, the tag generated the HTML code and the information
was presented in a limited way. However, by using this tag you can locate a list of files in a spe-
cific directory and then, by customizing the body content, display a list of names, a list of
hyperlinks, a set of thumbnails, and so on. The possibilities are vast.

Summary
This chapter has introduced the concepts of encapsulating your own content and functional-
ity as reusable software components known as JSP tag extensions or, informally, as custom
tags. These tags provide a great way to promote several of the factors associated with JSP
development, including the reusability, readability, and maintainability of JSP pages. Remov-
ing common Java code, content, and presentation from the page provides a way to clean up
JSP pages, by speeding up development, increasing quality, and permitting a quicker time to
market through reuse.

Traditionally, common content such as that found in headers and footers has been
abstracted away from JSP pages and included wherever necessary. Although this promotes
maintainability and reuse, using the raw JSP constructs can often seem awkward to those who
are not familiar with the technology and are more focused on the look and feel of a web appli-
cation rather than the mechanics of how it works. Tag files help solve these problems by
providing an easy-to-use mechanism for wrapping up and reusing common content. Next,
you also learned how such content can be templated with tag files and parameterized with
attributes. In addition to solving some technical problems, tag files provide a more natural
interface for anybody using the tags.

Simple tags were added in the JSP 2.0 specification. Previous versions of JSP technology
featured a way to wrap up common and recurring functionality as reusable custom tags,
although the life cycle and semantics behind these techniques were often seen as too
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complicated by many developers. To address this, the SimpleTag interface was introduced to
provide an effortless way to wrap up common functionality that is generally implemented in
Java code as opposed to JSP code. As a convenience, the SimpleTagSupport class is also pro-
vided by the JSP specification to serve as a starting point for your tags.

While looking at this interface, you saw the development of a fairly trivial tag, followed by a
look at how attributes can be used to customize the functionality. This led to a further discus-
sion on how custom tags can best be used, which culminated in the assertion that content and
presentation should ideally be separated if the best degree of reuse is to be achieved. Backing
this up was a modified example of the <thumbnail> tag that allowed page authors to be flexible
in the way that they used the tag as well as the content that they subsequently generated.

Tag files and the SimpleTag interface are great ways to wrap up reusable content and func-
tionality for use by page authors in the pages of one or more web applications. For backward
compatibility, JSP 2.1-compliant containers still need to support the classic method for build-
ing custom tags. This is particularly useful when reaching a wide audience is desired, or when
you are looking for more control of the functionality that tags provide. Therefore, you’ll look at
classic tags in the next chapter.
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Classic Tags

In the previous chapter, you looked at tag files and simple tags, both of which are mechanisms
for writing custom tags introduced as a part of the JSP 2.0 specification. As the examples in
Chapter 6 demonstrated, these new mechanisms remove some of the complexity that was
typically associated with building custom tags in the past. Rather than abandon the existing
method of writing custom tags, JSP 2.1 supports full backward compatibility with it.

In this chapter, you’ll take a look at the facilities provided by former versions of the JSP
specification for writing custom tags. As you’ll see throughout the chapter, these previous
methods, now called classic tags, provide more flexibility than current methods and therefore
are still useful in some scenarios. You’ll also see how classic tags can take advantage of some of
the new features that are now a part of the JSP specification, including how custom tags can
support dynamic attributes.

As this chapter presents classic tags, you’ll learn how to use them in web applications.
Specifically you’ll be looking at the following:

• What classic tags are and why they are useful

• The differences between classic tags and simple tags

• How to customize functionality by using attributes

• How to use dynamic attributes

• How to use classic tags for iteration

• How to use classic tags to evaluate body content

Classic Tags Overview
There are now three mechanisms for building custom tags outlined in the JSP 2.1 specification:
tag files, simple tags, and classic tags.

As you saw in the previous chapter, tag files provide an easy way to abstract common
behavior away from JSP pages and into reusable components. Because tag files allow this con-
tent to be written by using regular JSP constructs, wrapping up content is fairly straightforward
for JSP developers who might not necessarily know the Java programming language.

The next step up, in terms of complexity, is simple tags. These custom tags encapsulate
reusable functionality in a Java class called a tag handler. Although this process does require
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familiarity with the Java programming language, it allows complex behavior to be wrapped
up and used by page authors in a straightforward way. As you saw in the previous chapter,
simple tags offer a great deal of flexibility in the way that the functionality is encapsulated
and, through body content and JSP fragments, they allow separation between content and
content presentation.

Classic tags are the original tag development methodology introduced in version 1.1 of
the JSP specification. JSP 1.2 then added new functionality and simplified the programming
model slightly, but essentially the model was the same, and it remains the same in the JSP 2.1
specification. As with simple tags, classic tags use the concept of a tag handler class that is
written by using Java code. This is then described with a tag library descriptor file in the same
way it is with simple tags, and the resulting custom tags are again used in the same way.

So, what differentiates classic tags from simple tags? You’ll learn about the differences in
this section. You’ll also take a look at the classic tag interface, tag life cycle, and TagSupport
class, and will build a small classic tag.

The Differences Between Simple and Classic Tags
There are several key differences between simple and classic tags. Let’s take a quick look at
each in turn and evaluate what it means to you as a tag developer.

The Tag Handler Interface
The fundamental difference between simple and classic tags is the way in which the tag han-
dler class is implemented. When you’re using simple tags, any tag handlers you build must
implement the javax.servlet.jsp.tagext.SimpleTag interface. When you’re using classic tags,
however, the tag handlers must implement the javax.servlet.jsp.tagext.Tag interface or, as
you’ll see in this chapter, one of its subinterfaces.

For you as a developer, this means you need to learn a slightly different programming
model. For example, when using simple tags, all of the functionality to be encapsulated within
the tag is defined within the doTag() method. When using classic tags, there are two methods
you must implement: doStartTag() and doEndTag().

Feedback from tag developers over the past couple of years has been mixed, and many
people find the concepts employed by classic tag handlers confusing. Therefore, the interface
has been simplified and simple tags are the result of this process.

The Tag Life Cycle
Another key, though often neglected, difference relates to the tag life cycle.

With simple tags, an instance of the tag handler class is created when needed and that
instance is used to serve only a single invocation of a custom tag. In other words, a unique tag
handler instance is created for each usage of a simple tag on a page.

With classic tags, this may or may not be the case because the JSP specification enables
container vendors to optionally improve classic tag performance by pooling and reusing tag
handler instances. This means that, for example, a single tag handler instance could be cre-
ated and reused to service all invocations of that custom tag per page. The rules around reuse
are fairly complicated, and to make matters worse, JSP container vendors don’t always choose
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to implement this optional piece of the specification. Therefore, if you’re using classic tags,
you must be aware of whether your container pools and reuses tag handler instances.

The problems that arise between different JSP containers is another reason simple tags
were introduced, and it’s another area in which the complexity associated with developing
them has been reduced. The downside is that there may be times when you’d like tag
instances pooled and reused. For example, your tag might acquire some expensive resource
when it is created. In this example, it makes sense to take advantage of any performance bene-
fits that the container may provide. In many scenarios, however, this just isn’t an issue and
simple tags are more than adequate.

With this brief overview of the differences between simple and classic tags over, let’s take
a look at the interface that classic tag handlers must implement.

The Tag Interface
The Tag interface, like the SimpleTag interface, provides the basic contract that must be upheld
between the JSP page and the tag. Listing 7-1 shows the Tag interface.

Listing 7-1. Tag.java

package javax.servlet.jsp.tagext;
import javax.servlet.jsp.JspException;
public interface Tag {
public final static int SKIP_BODY = 0;
public final static int EVAL_BODY_INCLUDE = 1;
public final static int SKIP_PAGE = 5;
public final static int EVAL_PAGE = 6;
void setPageContext(PageContext pc);
void setParent(Tag t);
int doStartTag() throws JspException;
int doEndTag() throws JspException;
void release();

}

The Tag Life Cycle
As you learned in Chapter 6, the life cycle of simple tags consists of the tag handler being cre-
ated, contextual and environmental information being passed to it, and finally, the doTag()
method being executed. As Figure 7-1 shows, classic tags are not too different in this respect.

Creating a Tag Handler Instance
As with simple tags, when a classic tag is used on a JSP page, the first thing that the JSP con-
tainer must do is create a new instance of the tag handler class. Again, this is performed by
invoking the default, no-arguments constructor.
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Figure 7-1. This UML diagram shows the life cycle of a classic tag in terms of the calling sequence
of the class tag methods.

Setting the Context
The next step in the tag life cycle is to make the tag handler instance aware of the environment in
which it is running. This involves passing the tag handler a reference to the current PageContext
through the setPageContext() method. Like JspContext, this method provides an easy way to
access other objects such as the current output writer and scoped attributes. Notice here that
it’s a PageContext instance that gets passed to the tag and not a JspContext instance, as hap-
pens with simple tags. This moves simple tags away from being dependent on services and
features provided by the Java Servlet API; PageContext uses such features, whereas JspContext
doesn’t. However, for consistency and backward compatibility with earlier versions of the JSP
specification, PageContext actually extends JspContext.

Setting the Parent
Like simple tags, classic tags can be nested, and as you’ll see in Chapter 8, it’s possible for cus-
tom tag handlers to cooperate and communicate with one another. As an example, a child
(nested) tag may ask for information from its parent tag. For this reason, the setParent()
method is called and passes a reference to the closest enclosing tag handler, or null if the tag
isn’t nested.

For simple tags, this reference is of type JspTag (the superinterface for all tag handlers),
but again for classic tags this reference is of type Tag (a subinterface of JspTag) for backward
compatibility.

Executing the Functionality
With the context set, the next thing to do is execute the functionality provided by the tag. With
classic tags, this means calling the doStartTag() and doEndTag() methods.

aJSP
JspPage

aTag
Tag

setPageContext(PageContext) : void

setParent (Tag) : void

doStartTag() : int

doEndTag() : int

release () : void
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When you looked at how custom tags can be used on the page, you saw that they can be
written in a long or shortened form as follows:

<prefix:myTag></prefix:myTag>
<prefix:myTag/>

In the long format you explicitly write the start (opening) and end (closing) tags, and in the
shortened format you combine them. Regardless of how you write them, both the doStartTag()
method and the doEndTag() method are called on a tag handler instance. Figure 7-2 shows 
the tag life cycle from a slightly different viewpoint and illustrates how the doStartTag() and
doEndTag() methods can also affect the tag life cycle by the values that are returned by them.

Figure 7-2. This UML digram shows how the doStartTag() and doEndTag() methods are called to
evaluate a tag.

The Start Tag

The doStartTag() method is called when the starting tag is encountered on the page:

int doStartTag() throws JspException;

doStartTag()

Evaluate body

doEndTag()

[SKIP_BODY]

[EVAL_BODY_INCLUDE]

Initialize context and attributes

Evaluate rest of page

[EVAL_PAGE]

[SKIP_PAGE]
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The method signature from the Tag interface states that a primitive int value is to be
returned. This signals to the JSP page what do to next. Two values can be returned from tags
implementing this interface, SKIP_BODY and EVAL_BODY_INCLUDE, which are defined as con-
stants within the Tag interface.

Returning SKIP_BODY signals to the JSP page that after the doStartTag() method has been
called, any body content for the tag should be ignored. For example, any body content such as
JSP code, Java code, or content that would normally be output to the page is simply dropped.
Following this, processing proceeds to the doEndTag() method.

On the other hand, returning EVAL_BODY_INCLUDE from the doStartTag() method signals
that any body content should be evaluated and output to the page.

The End Tag

The doEndTag() method is called when the ending tag is encountered on the page, again,
regardless of whether the tag is written on the page by using the long or shortened format:

int doEndTag() throws JspException;

This method also specifies an integer return type, and the valid return types for this method
are the other two constants defined within the Tag interface, SKIP_PAGE and EVAL_PAGE. Here,
these return values signal whether the JSP container should continue evaluating the rest of the
JSP page.

In reality, the SKIP_PAGE return value is rarely used, because there aren’t many circum-
stances in which you’ll want to actually stop the rest of the page from being processed. One
such example might be a security tag that appears at the top of the JSP page and checks
whether the current user is authorized to see the contents of the page.

Releasing State
The final method to be called as part of the tag life cycle is the release() method. This method
is called to ask the tag handler to release any state it may be storing, and it’s called on the tag
handler only when that tag handler instance is finished and won’t be used anymore. In other
words, with JSP containers that don’t support the optional pooling of tag handler instances,
the release() method is called after the doEndTag() method because that particular instance
will never be used again. On the other hand, with containers that provide instance pooling,
this method is called only when the container has finished using the instance and before it
gets garbage collected.

■Caution It’s a common misconception that release() is always called directly after the doEndTag()
method and hence is used to clear the values of instance variables. This is not the case, and relying on this
behavior means that your tags might not work as expected in all vendors’ JSP containers. The next chapter
looks at some of the best practices for using and taking advantage of the tag life cycle.
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The TagSupport Class
Although the Tag interface contains more methods than the SimpleTag interface, providing 
an implementation is trivial. However, for convenience and in the same way that the
SimpleTagSupport class provides a default implementation of the SimpleTag interface, the JSP
specification provides the TagSupport class that you can use as a starting point for your own
tag handlers. Here, the default implementations of the doStartTag() and doEndTag() methods
return SKIP_BODY and EVAL_PAGE, respectively. We use this in many of this chapter’s examples.

A Simple Example
You’re now ready to build a small classic tag. To help provide a direct comparison with simple
tags, you’ll rebuild the <datetime> tag example from the previous chapter.

Building the <datetime> Tag Handler
The first step is, of course, to build the tag handler class. You’ll extend the TagSupport class as
shown in Listing 7-2.

Listing 7-2. DateTimeTag

package com.apress.projsp;
import java.io.IOException;
import java.text.DateFormat;
import java.util.Date;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;
import javax.servlet.jsp.tagext.TagSupport;

public class DateTimeTag extends TagSupport {

public int doStartTag() throws JspException {
DateFormat df = DateFormat.getDateTimeInstance(

DateFormat.MEDIUM, DateFormat.MEDIUM);
try {
pageContext.getOut().write(df.format(new Date()));

} catch (IOException ioe) {
throw new JspTagException(ioe.getMessage());

}
return SKIP_BODY;

}
}

The functionality provided by the tag is implemented within the doStartTag() method. In
situations when it doesn’t matter whether a custom tag will be used in the long or shortened
form on the page (in other words, when the tag has no body), the functionality associated with
the tag can be implemented within either the doStartTag() or the doEndTag() method.
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As you can see, the code that provides the functionality of the tag is pretty much the same
as that you used with the simple tag example in the previous chapter. The only real difference is
in the way that this code is packaged within the tag handler. One point to note is that unlike the
doTag() method on the SimpleTag interface, the doStartTag() and doEndTag() methods don’t
declare that they throw IOException; therefore, you must catch and handle this exception.

In this example, you’re throwing a JspTagException (a subclass of JspException) to tell the
JSP page that something went wrong. Throwing a JspTagException instead of a more generic
JspException is a useful way to specify that the problem may be related to a custom tag rather
than the page itself, during development and debugging.

Finally, because you’re not interested in the body content of this tag, the doStartTag()
method returns SKIP_BODY. Note that the tag handler does not supply an implementation of
the doEndTag() method. Because we are not providing any special behavior for the closing tag,
we can simply let the default implementation in TagSupport handle the closing tag. Alterna-
tively, we could have implemented the needed behavior in doEndTag() and let the default
doStartTag() handle the opening tag.

Describing the <datetime> Tag
With the tag handler written, the next step is to describe the tag. As with simple tags, you do
this by using the tag library descriptor (TLD) file. Listing 7-3 shows the TLD for this example.

Listing 7-3. ch07.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

<description>
Tag library for Professional JSP 2.1, Chapter 7.

</description>
<jsp-version>2.1</jsp-version>
<tlib-version>1.0</tlib-version>
<short-name>ch07</short-name>
<uri>http://www.apress.com/projsp</uri>
<tag>
<name>datetime</name>
<tag-class>com.apress.projsp.DateTimeTag</tag-class>
<body-content>empty</body-content>
<description>
Outputs the current date and time to the page.

</description>
</tag> 

</taglib>
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As this code illustrates, describing a tag with a TLD file is the same regardless of whether
that tag is a simple tag or a classic tag.

The way that custom tags are used on the page provides a nice abstraction for those tags
and the way they’re built. It’s perfectly acceptable to mix simple and classic tags together in
the same TLD file, and page authors will never know how the tags are actually implemented.
In fact, as you’ll see in the next chapter, you can also describe tag files in the TLD, which
makes it possible to wrap up any type of tag for easy reuse.

Using the <datetime> Tag
If you assume that the TLD file has been saved at the location WEB-INF\tlds\ch07.tld, then
importing and using the tag library is the same as before:

<%@ taglib uri="/WEB-INF/tlds/ch07.tld" prefix="ch07" %>
The current date and time is <ch07:datetime/>

Not surprisingly, the results of using the tag are also the same as before, as you can see in
Figure 7-3. As this example shows, building trivial classic tags isn’t much different from build-
ing the simple tags you saw in the previous chapter, and essentially it’s just a matter of using
the Tag interface and implementing your functionality within the doStartTag() or doEndTag()
method.

Figure 7-3. Classic tags can be used to encapsulate simple functionality, as shown in this tag that
prints the current date and time.

Let’s now continue this tour of classic tags by seeing how they, like other custom tags, can
be customized by using attributes.

Customizing Functionality by Using Attributes
In the previous chapter, you learned how you can customize tag files and simple tags by using
attributes. With tag files this meant that you could parameterize content as templates, and
with simple tags it meant that you could parameterize functionality.
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Classic tags provide just another way to wrap up functionality, and therefore the same
principle applies: you can use attributes to configure that functionality. In fact, the way that
attributes are implemented with classic tags is exactly the same as with simple tags. An exam-
ple of this follows.

Building Lists in HTML Forms
A common feature of many websites and HTML forms is a drop-down control that allows
users to select an item from a list. Figure 7-4 shows a user registration form enabling users to
select the country they live in from a list.

Figure 7-4. Drop-down boxes allow you to limit the choices a user can make on a web page form.

If the items in the list were available as a collection of JavaBeans (for example, a java.
util.List containing Country beans), it would be possible to dynamically generate such a list
with features provided by the JSP expression language and the JSTL. One option is to use the
JSTL <forEach> tag to iterate over the collection and generate the appropriate HTML for each
item in the collection.

To hold each country’s information, consisting of an ID and a name, a simple Country
JavaBean might look like the class in Listing 7-4.

Listing 7-4. Country.java

package com.apress.projsp.domain;
public class Country {
private int id;
private String name;
public Country() {
}
public Country(int id, String name) {
this.id = id;
this.name = name;

}
public int getId() {
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return this.id;
}
public void setId(int i) {
this.id = i;

}
public String getName() {
return this.name;

}
public void setName(String s) {
this.name = s;

}
}

With a collection of Country objects available as a page-scoped attribute (for example),
the following JSP code snippet shows how the JSTL can be used to help build the list:

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c" %>
Countries : 
<select name="country">
<c:forEach var="country" items="${countries}">
<option value="${country.id}">${country.name}</option>

</c:forEach>
</select>

Here, you’re using the JSTL to iterate over the collection. Short JSP EL expressions within
the JSTL tags extract the ID and name from the Country JavaBeans within that collection.
Although this works, the logic related to building the list is embedded within the JSP page,
meaning that it’s not easily reusable. Also, the code itself is a little raw and unreadable, partic-
ularly because the HTML for the select control is mixed in with JSTL and EL expressions. A
better way to implement this is to use a custom tag that generates the content for you.

Identifying the Attributes
Before building the tag handler, let’s look at what you might want to allow users to customize
when they use the tag. In the previous example, there are four things that you can customize:

• The name property of the HTML select control

• The value that is being displayed in the list (the label)

• The value behind the scenes that acts as a key for each item (the value)

• The collection of items to be displayed

Looking at what can be customized is an important step in figuring out what attributes a
custom tag might need. This review also allows the custom tag itself to be as generic as possi-
ble. After all, if you can specify all of the preceding information by using attributes, it means
that you can build a generic HTML <select> tag rather than one that displays just country
names.
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Building the <select> Tag Handler
Keeping in mind the attributes you can customize, let’s look at how to implement the tag han-
dler. Listing 7-5 shows the tag handler for a <select> tag. As before, the tag handler class will
extend the TagSupport class.

Listing 7-5. SelectTag.java

package com.apress.projsp;
import java.beans.PropertyDescriptor;
import java.util.Collection;
import java.util.Iterator;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.TagSupport;
public class SelectTag extends TagSupport {
private String name;
private String label;
private String value;
private Collection items;
public void setName(String s) {
this.name = s;

}
public void setLabel(String s) {
this.label = s;

}
public void setValue(String s) {
this.value = s;

}
public void setItems(Collection coll) {
this.items = coll;

}
public int doStartTag() throws JspException {
Iterator iterator = items.iterator();
try {
JspWriter out = pageContext.getOut();
out.print("<select name=\"");
out.print(name);
out.print("\">");
while (iterator.hasNext()) {
// get the next JavaBean from the collection
Object o = iterator.next();
// and use it to create a description of the property used
// to represent the displayable label
PropertyDescriptor labelPD =
new PropertyDescriptor(label, o.getClass());

// and the property used to represent the hidden value
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PropertyDescriptor valuePD =
new PropertyDescriptor(value, o.getClass());

// and now generate the HTML
out.print("<option value=\"");
// call the accessor method for the value property
// (this is the same as calling get<PropertyName>() on
// the JavaBean instance)
out.print(
valuePD.getReadMethod().invoke(o, new Object[] {}).toString());

out.print("\">");
// and do the same for the label property
out.print(
labelPD.getReadMethod().invoke(o, new Object[] {}).toString());

out.print("</option>");
}
out.print("</select>");

} catch (Exception e) {
throw new JspTagException(e.getMessage());

}
// and skip the body
return SKIP_BODY;

}
}

The class has fields that correspond to the various attributes for the tag. These are imple-
mented in exactly the same way as with simple tags, by having an instance variable and setter
method for each attribute.

As in this book’s previous examples, three of the four attributes here are simple string val-
ues. First, you have the name of the select control on the page. Then you have label and value,
both of which are strings representing the name of the JavaBean property containing the infor-
mation you’d like to extract from each JavaBean. For example, with the Country JavaBean, these
attributes would be set to name and id, respectively.

The fourth and final instance variable is of type java.util.Collection. When we covered
attributes in the previous chapter, we mentioned that they can be more than just simple
strings—they can be Boolean values, numeric values, and even objects. For this example, and
in the same way as the items attribute in the JSTL <forEach> tag, you want to pass your tag
handler a reference to a fully populated java.util.Collection instance containing the items
that are to be displayed in the list. Therefore, the instance variable and setter method are
defined to take Collection rather than String, and at request time the setter method will be
called with a Collection of Country objects.

The only other part of the tag handler that you must define is the functionality provided by
the tag. As in the previous example, this functionality is implemented within the doStartTag()
method, although the doEndTag() method can also be used. However, don’t implement the
same functionality in the doStartTag() and doEndTag() methods, because they both get called.

First, the doStartTag() method sets up an Iterator instance that will operate over the
collection. Next, it generates and writes the opening <select> tag back to the page. Then, for
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each item in the collection, it generates the appropriate HTML. To do this, it uses a feature of
the Java reflection mechanism to extract the values of the specified JavaBean properties:

PropertyDescriptor labelPD =
new PropertyDescriptor(label, o.getClass());

// and the property used to represent the hidden value
PropertyDescriptor valuePD =
new PropertyDescriptor(value, o.getClass());

■Tip Using PropertyDescriptor objects provides an easy way to find the getter and setter methods
associated with a JavaBean property and saves you from writing the code to determine the method names.

Finally, with the HTML generated for every item in the collection, the doStartTag()
method generates and outputs the closing </select> tag and returns SKIP_BODY, because the
tag is not interested in the body content of this custom tag.

This technique does have at least one drawback, however. It is not possible to pass cus-
tomized attributes to the HTML element created by the tag. That is, there are many other
attributes that can be added to the <select> element, such as event handlers (onclick,
onchange) or CSS attributes. There is no way to dynamically pass these to the tag handler in
Listing 7-5, unless you are willing to create properties in the tag handler for every possible
attribute. You will look at a way around this drawback in the “Dynamic Attributes” section
later in this chapter.

Describing the <select> Tag
Once again, you must next describe the custom tag by using the TLD file. Listing 7-6 shows the
TLD for this custom action. Some of the information in the TLD file is omitted for brevity.

Listing 7-6. ch07.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the datetime tag ...
<tag>
<name>select</name>
<tag-class>com.apress.projsp.SelectTag</tag-class>
<body-content>empty</body-content>
<description>
Creates an HTML select control based upon a collection of objects.
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</description> 
<attribute> 
<name>name</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>label</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>value</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>items</name> 
<required>true</required> 
<rtexprvalue>true</rtexprvalue> 

</attribute> 
</tag>

</taglib>

There’s nothing really new in concept here except that in addition to having three required
attributes (name, label, and value), you have the items attribute that is required and allows
request-time expressions. The only way to pass object attributes into tag handlers is to ensure
that they support request-time expressions. This is made possible by setting the value of the
rtexprvalue element to true in the TLD file for the attribute.

Using the <select> Tag
To use the tag, you just import the tag library the same way you did before. Assuming that a
collection of Country JavaBeans is accessible with the EL expression ${countries}, you can use
the tag in the following way:

<%@ taglib uri="/WEB-INF/tlds/ch07.tld" prefix="ch07" %>
Countries : 

<ch07:select name="country" label="name" value="id"
items="${countries}"/>

Of course, you can also use the traditional request-time expressions in the page as follows:

<ch07:select name="country" label="name" value="id"
items="<%= (java.util.Collection)

pageContext.findAttribute("countries") %>"
/>
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In doing this, you introduce a lot of Java code into the page, and this is where things start
to become unreadable—something that the JSP EL aims to fix, which is a very good reason to
adopt the EL. However, even using the tag in this manner is better than writing the code to
generate the HTML select control within the JSP page, because you’ve now encapsulated the
logic to generate the appropriate HTML and made it reusable. By looking at the source code
for the page, you can see that the generated HTML is as follows:

Countries : <select name="country"><option value="1">England</option>➥

<option value="2">Wales</option><option value="3">Scotland</option></select>

Admittedly, the generated HTML isn’t as neat, tidy, and well laid out as if you had written
it yourself, but the important point is that you have a component that you can reuse to gener-
ate HTML select lists on other pages and within other web applications. There is, however, an
inherent problem with the tag: this custom tag cannot be used to customize the HTML select
control.

One of the most common uses for custom tags since their inception has been to write
custom tag versions of the standard HTML form controls such as text fields, lists, and buttons.
However, this use has always been contentious because it provides advantages at the cost of
introducing limitations.

On the plus side, custom tags provide a great way to automate the creation of HTML
form controls. For example, you can automatically set default values for text fields, automati-
cally set the current selection in a list, and so on. A great way to implement this is through
Jakarta Struts. Struts provide a complete framework for handling requests and linking up
JavaBean instances with HTML form controls so that the information contained within the
JavaBean is automatically populated into the form. For further information about Struts,
please see Chapters 14 and 15.

On the negative side, building a set of tags to mimic the standard HTML form controls
means that page authors are no longer using standard HTML tags and are therefore limited in
the tools that they can use to help build the page. Many page authors use visual editors such
as Macromedia Dreamweaver to help them lay out and configure the HTML tags, but gener-
ally these types of editors are not able to use these custom tags.

Probably the most important issue, though, is that unless HTML tags are properly imple-
mented, the ability to customize the generated HTML is reduced. Each HTML form control
tag has many, many attributes that can be used to customize how it looks and behaves on the
page. For example, there are attributes that can be used to specify the CSS style to be used,
and others that can be used to specify JavaScript event handlers that fire when actions occur
to the controls. To customize all the possible attributes through a mimicked tag such as that in
Listing 7-5 would mean providing fields for every attribute, and methods to set and get the
fields in the tag handler class. Struts achieves this, but it’s no small task.

So, coming back to the <select> tag that you’ve just built, the inherent problem is that
you’ve effectively stopped people from customizing the HTML that’s being generated. What
would happen if you wanted to change the drop-down list, which displays a single item when
not selected, into a list box that displays multiple items? Well, if you were writing the HTML, it
would be as simple as specifying an attribute called size when you used the HTML <select>
tag. Previously for your custom tag implementation, this would have meant going back to the
tag handler, adding a new instance variable and setter method, amending the TLD file, and
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then redeploying the tag. Fortunately, the JSP specification provides a great new feature to
help you solve just this problem: dynamic attributes.

Dynamic Attributes
All the attributes that you’ve seen up to this point have been static. In other words, a tag’s
attributes have all been defined up front within the TLD file, and support for those attributes
has been specifically implemented within the tag handler class. The JSP 2.0 specification intro-
duced the concept of dynamic attributes, in which the attributes for any tag don’t have to be
determined and defined in the TLD file. The benefit of dynamic attributes is increased flexibil-
ity, particularly when the full set of attributes is either very large or unknown at the time of
development. Let’s see how your own tag handlers can take advantage of this functionality.

The DynamicAttributes Interface
The ability to support dynamic attributes is provided through an interface called
DynamicAttributes within the javax.servlet.jsp.tagext package. The interface shown in
Listing 7-7 is fairly straightforward and provides a single method through which a dynamic
attribute can be set.

Listing 7-7. DynamicAttributes.java

package javax.servlet.jsp.tagext;
import javax.servlet.jsp.JspException;
public interface DynamicAttributes {
public void setDynamicAttribute(
String uri, String localName, Object value) throws JspException

}

You can have a mixture of static and dynamic attributes for any specific tag. When that
tag is used on the page, the JSP container looks at the attributes that have been (statically)
defined in the TLD file. If an attribute is statically defined, the regular setter method is 
called in the same way that you’ve seen before. However, if the attribute isn’t defined, the
setDynamicAttribute() method on the tag handler is called instead.

The parameters of the setDynamicAttribute() method provide information about the
namespace, name, and value of the attribute. The name and value of an attribute are self-
explanatory, and the namespace simply provides a way to prevent attributes with the same
name from clashing. For example, dynamic attributes could be used to customize some
underlying content that’s generated by the tag, or perhaps passed through to another
JavaBean or component in order to configure it. In this situation, the same attribute name
might be used more than once. To prevent attributes from clashing, a namespace can be
applied to the attribute. The final point to note about this method is that it can throw a
JspException, and this can be used to indicate to the JSP container that the tag doesn’t sup-
port the specified attribute. If this is the case, no more methods on the tag handler will be
called, effectively stopping invocation of the tag. To illustrate how dynamic attributes work 
in practice, let’s look at an example.
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■Note Although you didn’t see this in the previous chapter, providing support for dynamic attributes in
simple tag handlers is achieved in exactly the same way as in classic tags, and the concepts that you’ll see
in the next example are all applicable to simple tags, too.

Further Customization with Dynamic Attributes
Taking the <select> tag as a basis, let’s modify it to support dynamic attributes. This way,
you’ll be able to customize the generated HTML without resorting to explicitly supporting all
of the attributes that the true HTML <select> tag can support.

Building the <selectWithDynamicAttributes> Tag Handler
Listing 7-8 shows the <selectWithDynamicAttributes> tag handler. As before, you’ll use
TagSupport as a starting point, although the tag will also implement the DynamicAttributes
interface.

Listing 7-8. SelectTagWithDynamicAttributes.java

package com.apress.projsp;

import java.beans.PropertyDescriptor;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.DynamicAttributes;
import javax.servlet.jsp.tagext.TagSupport;

public class SelectTagWithDynamicAttributes
extends TagSupport implements DynamicAttributes {

private String name;
private String label;
private String value;
private Collection items;
private Map dynamicAttributes = new HashMap();
public void setName(String s) {
this.name = s;

}
public void setLabel(String s) {
this.label = s;

}
public void setValue(String s) {
this.value = s;

}
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public void setItems(Collection coll) {
this.items = coll;

}

public void setDynamicAttribute(String uri, String name, Object value) 
throws JspException {

dynamicAttributes.put(name, value);
}

public int doStartTag() throws JspException {
Iterator iterator = items.iterator();
try {
JspWriter out = pageContext.getOut();
// write the starting tag of the select control
out.print("<select name=\"");
out.print(name);
out.print("\"");
// insert the dynamic attributes
Iterator it = dynamicAttributes.keySet().iterator();
while (it.hasNext()) {
String key = (String)it.next();
out.print(" ");
out.print(key); 
out.print("=\"");
out.print(dynamicAttributes.get(key));
out.print("\" ");

}
out.print(">");

while (iterator.hasNext()) {
// get the next JavaBean from the collection
Object o = iterator.next();
// and use it to create a description of the property used
// to represent the displayable label
PropertyDescriptor labelPD =
new PropertyDescriptor(label, o.getClass());

// and the property used to represent the hidden value
PropertyDescriptor valuePD =
new PropertyDescriptor(value, o.getClass());

// and now generate the HTML
out.print("<option value=\"");
// call the accessor method for the value property
// (this is the same as calling get<PropertyName>() on
// the JavaBean instance)
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out.print(
valuePD.getReadMethod().invoke(o, new Object[] {}).toString());

out.print("\">");
// and do the same for the label property
out.print(
labelPD.getReadMethod().invoke(o, new Object[] {}).toString());

out.print("</option>");
}
// write the ending tag of the select control
out.print("</select>");

} catch (Exception e) {
throw new JspTagException(e.getMessage());

}
// and skip the body
return SKIP_BODY;

}
}

The class has instance variables for the static attributes and setter methods for each vari-
able. One of the limitations of using dynamic attributes is that you can’t specify which of
them, if any, are required. By keeping the core attributes of your custom tags as statically
defined, you have the best of both worlds: flexibility through dynamic attributes and the abil-
ity to ensure that people use your tag in the correct manner.

The class needs some way to store and retrieve dynamic attributes so they can be used
during the actual processing of the tag. For this reason, and because you don’t know the
names of the dynamic attributes, the class uses a HashMap to store the dynamic attribute
names and values. The class also has an implementation of the DynamicAttributes interface’s
setDynamicAttribute() method. This implementation is fairly straightforward and involves
inserting the dynamic attributes as key-value pairs into the map. Because we’re not worried
about the names of attributes clashing, the method does not use the namespace URI that’s a
part of the method signature.

Finally, the class has an implementation of the doStartTag() method. The core function-
ality provided by this method hasn’t changed too much, although the HTML select control is
being generated to include any dynamic attributes that have been specified. 

Describing the <selectWithDynamicAttributes> Tag
Although the tag handler implements the DynamicAttributes interface, in the TLD file (see
Listing 7-9) you also have to define that the tag supports dynamic attributes. Using the
dynamic-attributes element as follows does this.

Listing 7-9. ch07.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
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xsi:schemaLocation=➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the datetime tag ...
<tag>
<name>selectWithDynamicAttributes</name>
<tag-class>
com.apress.projsp.SelectTagWithDynamicAttributes

</tag-class>
<body-content>empty</body-content>
<description>
Creates an HTML select control based upon a collection of objects.

</description> 
<attribute> 
<name>name</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>label</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>value</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>items</name> 
<required>true</required> 
<rtexprvalue>true</rtexprvalue> 

</attribute> 
<dynamic-attributes>true</dynamic-attributes>

</tag>
</taglib>

Essentially, this is all that’s required to indicate to the JSP container that a tag supports
dynamic attributes. If this element isn’t specified, the default value is assumed to be false.

■Caution Neglecting to implement the DynamicAttributes interface and indicate a tag’s ability to sup-
port dynamic attributes in the TLD file will result in your tag not working as expected.
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Using the <selectWithDynamicAttributes> Tag
Using the new version of the tag is the same as before, but remember that you can now specify
more than just four attributes:

<%@ taglib uri="/WEB-INF/tlds/ch07.tld" prefix="ch07" %>
Countries : 
<ch07:selectWithDynamicAttributes name="country" label="name" 

value="id" items="${countries}" size="3"/>

In this example, we’re also specifying a size attribute to effectively transform the original
drop-down control into an HTML list control. Figure 7-5 shows how this affects the HTML
generated by the JSP.

Figure 7-5. Using dynamic attributes allows your custom tags to accept any number of attributes.
It increases the flexibility of your custom tags when using custom tags to generate HTML controls.

Again, the generated HTML shows you what really happens and how the additional size
attribute has been used:

Countries : 
<select name="country" size="3">
<option value="1">England</option>
<option value="2">Wales</option>
<option value="3">Scotland</option>

</select>

As this example demonstrates, using dynamic attributes is a great way to increase the
flexibility of custom tags, allowing page authors to further customize content and/or function-
ality. As you saw in the previous chapter, mixing too much content and presentation logic
eventually leads to limitations in the way that the content can be presented. Therefore, it’s
best to use dynamic attributes only where fairly fine-grained customizations are required,
such as this example that allows additional, optional attributes for underlying HTML controls.
For more advanced customization, taking the approach outlined in the previous chapter (in
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which content was templated within the body content of the custom tag) is a much better
option and is made possible by returning EVAL_BODY_INCLUDE from the doStartTag() method
to signal to the JSP container that it should include/evaluate the body content. 

Iteration Tags
Now that you’re familiar with the Tag life cycle, you’re in a good position to compare its func-
tionality to that offered by the newer SimpleTag interface. For instance, both allow you to wrap
up reusable functionality, generate content, and customize the tag through the use of static
and dynamic attributes. Also, you can write a classic custom tag that evaluates or ignores its
body content, achieving the same result as simple tags invoking or not invoking their body
content via the supplied JspFragment reference that represents the tag’s body content.

One difference between a classic tag and a simple tag is that a simple tag can invoke its
body content multiple times by repeatedly calling the invoke() method of the JspFragment.
With the Tag interface, this isn’t possible; the return value from the doStartTag() method
determines whether the body content should be evaluated once or not evaluated at all. In
terms of evaluating body content more than once, to implement similar functionality to that
provided by the simple tag, you must use another classic tag interface called IterationTag.

The IterationTag Interface
The IterationTag interface (see Listing 7-10) was introduced as a part of the JSP 1.2 specifica-
tion in an attempt to simplify the procedure for evaluating and reevaluating body content
multiple times. This was previously possible with the JSP 1.1 BodyTag interface (we cover this
interface later in the chapter), although the implementation details were complex.

Listing 7-10. IterationTag.java

package javax.servlet.jsp.tagext;
import javax.servlet.jsp.JspException;
public interface IterationTag extends Tag {
public final static int EVAL_BODY_AGAIN = 2;
int doAfterBody() throws JspException;

}

The interface itself is fairly small, and this is because it extends the Tag interface. Effec-
tively, a single method has been added to the tag life cycle called doAfterBody(), and it’s this
method that provides you with the ability to ask that a tag’s body content is evaluated more
than once. Let’s see how this affects the tag life cycle.

The Iteration Tag Life Cycle
Figure 7-6 illustrates the iteration tag life cycle and shows where the new doAfterBody()
method fits in with the life cycle of a custom tag.
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Figure 7-6. To support iteration, the doAfterBody() method is called after doStartTag(). The return
value of doAfterBody() indicates whether the tag body is evaluated again or processing contin-
ues to the doEndTag() method.

Setting the Context
As before, the first thing that happens is that the contextual information (the PageContext and
parent Tag) is passed to the tag handler instance.

The Start Tag
After the context has been set, the doStartTag() method is called and one of two things can
happen. First, the doStartTag() method can return SKIP_BODY, meaning that the body content
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[EVAL_BODY_INCLUDE]
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Evaluate rest of page

[EVAL_PAGE]
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is ignored and processing proceeds to the doEndTag() method as before. Alternatively, a value
of EVAL_BODY_INCLUDE can be returned from the doStartTag() method, signaling to the JSP
container that the body content should be evaluated and included in the page. Again, this is
the same as with the Tag interface, although it’s after the body content has been evaluated that
things start to change.

After the Body
After the body content has been evaluated, the new doAfterBody() method is called, the pri-
mary purpose of which is to determine whether the body content should be reevaluated. If
this is the case, the method should return the EVAL_BODY_AGAIN constant defined within the
IterationTag interface. On the other hand, and when no more evaluations of the body con-
tent should happen, the SKIP_BODY value should be returned.

The End Tag
Finally, regardless of whether or not the body was evaluated and reevaluated multiple times,
the doEndTag() method is called in the same way as the other tags that you’ve seen in this
chapter. Again, possible return values are EVAL_PAGE and SKIP_PAGE.

The TagSupport Class Revisited
You’ve already seen how the TagSupport class provides a convenient starting place for you to
build classic tags, and we said that it provides a default implementation of the Tag interface.
This is only half of the truth, as the TagSupport class actually provides a default implementa-
tion of the IterationTag interface, meaning that it can be used as a starting point for building
iteration tags too. The default implementations of the doStartTag() and doEndTag() methods
return SKIP_BODY and EVAL_PAGE, respectively (as you’ve seen before), and default implementa-
tion of the doAfterBody() method returns SKIP_BODY. Let’s look at an example.

Evaluating Body Content Multiple Times
As you learned in Chapter 4, the JSTL provides a standard <forEach> tag that enables you to
perform iteration over a set of items by using simple JSP code. Although the JSTL is a standard,
at times you still might want to build your own tag that performs iteration. For example, per-
haps you have a graph of objects that can’t easily be iterated over without some preprocessing,
or perhaps you’re unable to use JSTL for reasons beyond your control. Either way, let’s see how
you can build a tag that evaluates its body content more than once, in the same way as the
JSTL <forEach> tag and the <list> tag that you saw in the previous chapter.

Building the Iteration Tag Handler
Listing 7-11 shows the IteratorTag class, which extends the TagSupport class.

Listing 7-11. IteratorTag.java

package com.apress.projsp;
import java.util.Collection;
import java.util.Iterator;
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import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;

public class IteratorTag extends TagSupport {
private String var;
private Collection items;
private Iterator iterator;

public void setVar(String s) {
this.var = s;

}
public void setItems(Collection coll) {
this.items = coll;

}

public int doStartTag() throws JspException {
// set up the iterator to be used
iterator = items.iterator();
if (iterator.hasNext()) {
// if there are elements, put the first one into page
// scope under the name provided by the "var" attribute
pageContext.setAttribute(var, iterator.next());
// and include the body
return EVAL_BODY_INCLUDE;

} else {
// there are no elements so skip the body
return SKIP_BODY;

}
}
public int doAfterBody() throws JspException {
if (iterator.hasNext()) {
// if there are more elements, put the next one into page
// scope under the name provided by the "var" attribute
pageContext.setAttribute(var, iterator.next());
// and instruct the JSP engine to reevaluate the body of this tag
return EVAL_BODY_AGAIN;

} else {
// there are no more elements so skip the body
return SKIP_BODY;

}
}

}

The class has instance variables and setter methods to support any attributes that the tag
will take. In this case, the class has two—one for the name of the attribute that will represent
each item in the iteration (var) and one for the collection to be specified (items).
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Next, the class has a java.util.Iterator instance. Because it will be iterating over the col-
lection, it needs some way to keep track of where it is in that collection. When you looked at
the simple <list> tag example in the previous chapter, the iteration over the entire collection
of items was performed within the doTag() method. However, here you must perform the iter-
ation over several methods; hence you use an instance variable to maintain your position.

Now you get to the functionality provided by the tag in the doStartTag() method. The first
thing to do is check whether there are items to be iterated over and, if so, get a reference to the
first one in the collection. With this reference obtained, the method sets a page-scoped attri-
bute under the name specified by var to point to this first item. It then asks the JSP container
to evaluate the body content of the tag. An EL statement inside the tag body can be used to
access the page-scoped attribute.

Alternatively, if there are no items, the doStartTag() method simply ignores any body
content and proceeds straight to the doEndTag()method, a default version of which is imple-
mented by the TagSupport class.

As you may recall from the iteration tag life cycle, after the body content has been evalu-
ated, the doAfterBody() method is called on the tag handler. The purpose of the doStartTag()
method is to find the first item in the collection, put it into the page scope, and evaluate the
body content. If there are more items in the collection, the method repeats the action again.

Here, doAfterBody() checks for more items, and if it finds them, it gets the next one, puts
it into page scope, and asks the JSP container to evaluate the body content again. After the
body content has again been evaluated, the doAfterBody() method is called. This cycle of call-
ing doAfterBody() and evaluating the body content continues until there are no more items in
the collection. At this time, the method returns SKIP_BODY, indicating that no more body con-
tent evaluations are required. 

■Tip Don’t forget to eventually return SKIP_BODY from the doAfterBody() method; otherwise, you’ll run
into an infinite loop by continuously evaluating the body content.

Describing the Iteration Tag
After the tag handler is built, you must, of course, describes the iteration tag with the TLD file.
Listing 7-12 shows the additional entries in the ch07.tld file that describe the iteration tag.

Listing 7-12. ch07.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the datetime tag ...

... the description of the select tag ...
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<tag> 
<name>iterate</name> 
<tag-class>com.apress.projsp.IteratorTag</tag-class> 
<body-content>scriptless</body-content>
<description>
Iterates over a specified java.util.Collection instance.

</description> 
<attribute> 
<name>var</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>items</name> 
<required>true</required> 
<rtexprvalue>true</rtexprvalue> 

</attribute> 
</tag> 

</taglib>

Once again, the concepts here are the same as you’ve seen before, with the <iterate> tag
having two required attributes: var and items.

Using the Iteration Tag
Using the iteration tag is also straightforward, with the same usage pattern as the JSTL
<forEach> tag:

<%@ taglib uri="/WEB-INF/tlds/ch07.tld" prefix="ch07" %>
Countries :
<ul>
<ch07:iterate var="country" collection="${countries}">
<li>${country.name}

</ch07:iterate>
</ul>

The tag handler places each object in the collection into page scope (under the name
supplied by the var attribute); the JSP page uses a simple EL expression to access that object
on the page.

Before the introduction of JSTL, this was the only way that iteration functionality could 
be implemented without resorting to Java code on the page. Consequently, fewer and fewer
developers will need to use the functionality provided by the IterationTag interface, although
for completeness we’ve included it here. Most of the time, you will probably be able to use the
JSTL iterator to accomplish what you need. However, at times you may need the additional
flexibility that building your own tag can provide. With this in mind, don’t forget that it’s easier
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to achieve the same functionality with the SimpleTag interface. You saw an example of this
with the <list> tag in the previous chapter, in which the doTag() method repeatedly invoked
the body content in the same way as you’ve just seen with the <iterate> tag. Additionally, this
technique is useful if, for some reason, you can’t work with a container that supports JSP 2.0 or
greater.

The final topic that you will look at in this chapter is body tags, a concept that takes itera-
tion tags one step further by allowing precise control over what actually gets written back to
the page.

Body Tags
So far, you’ve seen that classic tags can evaluate their body content zero, or one or more,
times. This is particularly useful when the content to be evaluated is trivial or, in other words,
when no transformation or manipulation of the content is required before it’s output to the
page. If such transformation is required prior to the content being written to the page, you
must turn to the BodyTag interface.

The BodyTag Interface
The BodyTag interface (see Listing 7-13) further extends the IterationTag interface to add even
more flexibility and capability.

Listing 7-13. BodyTag.java

package javax.servlet.jsp.tagext;
import javax.servlet.jsp.JspException;
public interface BodyTag extends IterationTag {
public final static int EVAL_BODY_BUFFERED = 2;
void setBodyContent(BodyContent b);
void doInitBody() throws JspException;

}

Once again, this interface adds another new constant and two methods that are related to
the body content of the tag in question. As you might expect, this means a slightly different life
cycle for body tags. 

The Body Tag Life Cycle
Figure 7-7 summarizes the tag life cycle.

Setting the Context
As with all of the other classic tags, first the contextual information (the PageContext and par-
ent Tag) is passed to the tag handler instance.
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Figure 7-7. The life cycle of a tag handler that implements the BodyTag interface

The Start Tag
After the context has been set, the doStartTag() method is called, and with the BodyTag inter-
face there are three different return values.

As before, the doStartTag() method can return SKIP_BODY, meaning that the body content is
ignored and processing proceeds to the doEndTag() method, or it can return EVAL_BODY_INCLUDE,
signaling that the body content should be evaluated and included in the page.

The difference is that the doStartTag() method can now return the EVAL_BODY_BUFFERED
constant defined in the BodyTag interface. Returning this value indicates to the JSP container
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that you want to use the features provided by the BodyTag interface—specifically, that the tag
handler will manipulate the body content.

Setting the Body Content
Assuming that you return EVAL_BODY_BUFFERED from the doStartTag() method to indicate that
you want to manipulate the body content, the setBodyContent() method is called on the tag
handler so that the tag can hold on to the BodyContent reference and use it later. As you may
remember from the previous chapter, simple tags have a similar method called setJspBody()
that passes a JspFragment instance representing the actual body of the tag. With the BodyTag
interface, this process is slightly different. Instead of being passed a JspFragment representing
the body content that can subsequently be invoked, the tag handler is passed an object of type
BodyContent.

Throughout our look at classic tags, generating content was simply a matter of finding the
JspWriter instance associated with the page and outputting the content. The BodyContent class
is a subclass of JspWriter and can be thought of as a temporary scratch-pad area to which con-
tent can be written. Behind the scenes, when the JSP container calls the setBodyContent()
method, the regular output stream (the JspWriter) is swapped out for a BodyContent object—
the same one that gets passed to the tag. This means that any content output from this point
onward (until the end tag is reached) is actually written into this temporary scratch pad and
not to the page.

The JSP container then calls the doInitBody() method, which can be used to set up any
state before the body content is eventually evaluated. The effect of replacing the original
JspWriter is that when evaluated, any content between the start and end tags is also written
into the BodyContent object, providing you with a way to access the generated content and
manipulate it later.

After the Body
As with the IterationTag interface, the doAfterBody() method is called after the body content
has been evaluated. There are no changes here; the method should return EVAL_BODY_AGAIN or
SKIP_BODY to signal whether more evaluations of the body content are required.

The End Tag
Finally, regardless of whether or not the body was evaluated and reevaluated multiple times,
the doEndTag() method is called in the same way as the other tags you’ve seen in this chapter.
Again, possible return values are EVAL_PAGE and SKIP_PAGE.

At this point in the life cycle, all of the body content has been evaluated and output into
the BodyContent object (the temporary scratch pad). With this in mind, you can now take this
content and manipulate/transform it. When you’re done, you can then write the final result to
the original JspWriter instance.

The BodyTagSupport Class
Because the functionality associated with the BodyTag interface is slightly different from that
provided by the other classic tag interfaces, another convenient base class, BodyTagSupport,
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has been provided for you to use as a starting point when building body tags. Talking about
the BodyTag interface makes it sound fairly complex, so let’s see it in action.

Filtering Content
Imagine that you’re building a web-based mailing list or forum, a great example of which can
be found at http://saloon.javaranch.com. One of the features that many of these types of
forums offer is the ability to hide e-mail addresses from users so that potential spammers can’t
obtain this information. This facility, a piece of presentation logic, is undoubtedly useful not
only for this project, but also perhaps for other web applications that you may build in the
future. Therefore, let’s wrap it up as a custom tag.

Building the Filter Tag Handler
Listing 7-14 shows the EmailAddressFilterTag, which extends the BodyTagSupport class.

Listing 7-14. EmailAddressFilterTag.java

package com.apress.projsp;

import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;
import javax.servlet.jsp.tagext.BodyTagSupport;

public class EmailAddressFilterTag extends BodyTagSupport {
public int doEndTag() throws JspException {
if (bodyContent != null) {
try {
String content = bodyContent.getString();
content = filter(content);
// now clear the original body content and write back
// the filtered content
bodyContent.clearBody();
bodyContent.print(content);
// finally, write the contents of the BodyContent object back to the
// original JspWriter (out) instance
bodyContent.writeOut(getPreviousOut());

} catch (IOException ioe) {
throw new JspTagException(ioe.getMessage());

}
}
return EVAL_PAGE;

}

private String filter(String s) {
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Pattern p = Pattern.compile("@[A-Za-z0-9_.]+\\.[A-Za-z]{2,}");
Matcher m = p.matcher(s);
return m.replaceAll("@...");

}
}

Because you want to filter the body content of the tag, it makes sense to wait until that
body content has been evaluated before you look at it. Therefore, you’ll leave the processing
until the doEndTag() method is called. This way, the JSP container will have already evaluated
the tag’s body content.

The doEndTag() method checks that the body content object isn’t null. This is an impor-
tant step because using this tag with an empty body content will cause the container to skip
the call to setBodyContent().

Next, the method uses the BodyContent object to get a copy of its contents as a string. After
it obtains the body content as a string, it then calls a private helper method to filter out all the
e-mail addresses.

With the content filtered, the method deletes (clears) the original body content and puts
the filtered copy in its place.

To ensure that the filtered copy actually gets output to the page, you must not forget to
write out the contents of the BodyContent object (the temporary scratch-pad area) back to the
page. This is possible because when the BodyContent instance is created, it’s provided with a
reference to the original (enclosing) JspWriter.

■Caution Neglecting to write the contents of the BodyContent object back to the enclosing writer will
result in it being lost as soon as the object goes out of scope.

You can see that the doEndTag() method uses a method named getPreviousOut(). The
getPreviousOut() method is just a convenience method supplied by the BodyTagSupport class
for getBodyContent().getEnclosingWriter().

As far as the filter() method is concerned, you’re just using the new regular expressions
functionality that is a part of version 1.4 of the JDK. The Pattern class is used to represent a
compiled regular expression, and the Matcher class is used to perform searches and replace-
ments for that pattern on a particular string.

Describing the Filter Tag
Once again, although you’ve learned some new tag handler concepts from this example, the
actual description of the tag is pretty much same as before. Listing 7-15 shows the new entries in
the ch07.tld file for this tag. In fact, because this tag has no attributes, its definition is fairly short.

Listing 7-15. ch07.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
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xsi:schemaLocation=➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the datetime tag ...

... the description of the select tag ...

... the description of the iterate tag ...

<tag> 
<name>emailAddressFilter</name> 
<tag-class>
com.apress.projsp.EmailAddressFilterTag

</tag-class>
<body-content>scriptless</body-content>
<description>
Filters out the domain from e-mail addresses.

</description> 
</tag>

</taglib>

Using the Filter Tag
Using the tag is straightforward, and because the body content of the tag is defined to be
scriptless, it provides a great deal of flexibility in the way that it can be used. For example,
you can include EL expressions to generate content, which in turn are filtered by the tag. The
following code snippet shows how you would use the filter tag in a JSP page to hide users’ real
e-mail addresses and help prevent spammers from obtaining such information:

<%@ taglib uri="/WEB-INF/tlds/ch07.tld" prefix="ch07" %>
<table>
<ch07:emailAddressFilter>
<tr>
<td><h1>${subject}</h1></td>

</tr>
<tr>
<td><b>From : </b>${name} (${emailAddress})</td>

</tr>
<tr>
<td>${message}</td>

</tr>
<tr>
<td><br><br><input type="submit" value="Reply"></td>

</tr>
</ch07:emailAddressFilter>
<table>
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Assuming that the relevant information is accessible through the preceding EL expres-
sions, the result of requesting the page would be similar to that shown in Figure 7-8. As is, the
filter tag is useful for filtering only e-mail addresses of the form name@domain. Note that you
could probably make this tag more generic. If you found that you were developing other filters
for other kinds of patterns, you might consider passing the filter pattern as an attribute to the
tag handler.

Figure 7-8. Tag handlers that implement the BodyTag interface can be used to process the body of
a custom tag.

As you can see from the HTML code, the e-mail address has been completely filtered by
the tag:

<table>
<tr>
<td><h1>Help with custom tags needed</h1></td>

</tr>
<tr>
<td><b>From : </b>Simon Brown (simon@...)</td>

</tr>
<tr>
<td>
This is my first message to the mailing list - can anybody 
help me understand how custom tags work, please?

</td>
</tr>
<tr>
<td><br><br><input type="submit" value="Reply"></td>

</tr>    
<table>
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The BodyTag interface provides a powerful way to transform and manipulate body content
before it is finally sent to the JSP page and ultimately the user. In this example, you specified a
body content of scriptless for the tag, meaning that the content was evaluated in the typical
way by the container.

Tag-Dependent Body Content
The other body content type supported by the JSP 2.1 specification is called tagdependent. Here,
any content between the start and end tags is completely ignored (that is, it isn’t processed) by
the JSP container, and it’s up to the custom tag to do something with it. For example, changing
the body content of your <emailAddressFilter> tag to tagdependent yields the result shown in
Figure 7-9.

Figure 7-9. When the body content of the tag is tagdependent, processing of the body must be per-
formed by the tag handler, not by the JSP implementation page.

The JSP container simply doesn’t process any expressions, custom tags, or Java code, leav-
ing the body content exactly as is. So why is tagdependent body content useful?

One possible use of a custom tag that uses tagdependent body content is a tag that pro-
vides a way to emulate another programming language. Using tagdependent body content,
you could write code in this other programming language between the start and end tags, and
then use the BodyTag interface to extract it and execute it in some way. When the code has
been run (perhaps through an external interpreter), the body content could be cleared of the
code and the results inserted instead.
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Summary
After covering simple tags in the previous chapter, we moved on to discuss the traditional
methods for building custom tags, now called classic tags, in this chapter. The key differences
between classic and simple tags are the interface that tag handlers must implement and the
life cycle requirements around tag handler pooling and reuse. The complexity associated
with these two differences is the primary reason simple tags were introduced into the JSP
specification.

We started our tour of classic tags by examining the Tag interface and the associated tag life
cycle, and we presented a simple example to provide a direct comparison between a classic tag
and a simple tag. Next, we covered how to customize classic tags with attributes by implement-
ing a <select> tag that generated an HTML select control from a list of items. Then we showed
the inherent problems in building such tags and introduced the DynamicAttributes interface as
a way to help solve such problems. In essence, the DynamicAttributes interface allows fine-
grained customizations to be made to tags in which the set of attributes is not fully known at
development time.

The next topic was the IterationTag interface, which provides a way to evaluate and
reevaluate body content repeatedly. This functionality is easily achievable with simple tags,
although at times slightly more flexibility may be required—for example, when iterating over 
a tree-like structure.

Finally, we discussed one of the most powerful features of custom tags: the BodyTag
interface. This interface allows the body content of a tag to be evaluated and then subse-
quently modified, transformed, and manipulated. You put these concepts into practice in the
<emailAddressFilter> tag example, which illustrated how you can achieve postprocessing of
body content.

The previous chapter and this chapter have provided a fairly comprehensive look at the
facilities provided by the JSP specification for building custom tags, and you should now be
able to build many of the tags that you might need for your own web applications. To wrap up
our coverage of custom tags, the next chapter presents some of the more advanced features
and best practices that will help make your tags even more powerful.
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Custom Tag Advanced Features
and Best Practices

Now that you understand the basics of building custom tags, it’s time to wrap up your
understanding by looking at more-advanced features and best practices.

As some of the examples in the previous chapters have shown, it’s possible for custom
tags to place objects into the various scopes so that those objects can be used elsewhere in
the page with an EL expression. Before the introduction of the EL, such functionality was
achieved by tags introducing JSP scripting variables into the page, and this is the first topic
that we’ll cover in this chapter. Although developers no longer see introducing JSP scripting
variables into the page as the best way, this method is still possible—and often useful—if you
need to use Java code on the page, perhaps to integrate with some existing components or
for maintenance reasons.

We’ll then move on to show how both simple and classic tags can cooperate on the page.
This is an important use of custom tags and one that allows tags to be more flexible in the way
that they’re used on the page. As you’ll see, this use of tags can increase page readability.

Next, we’ll introduce validation, specifically how to implement the logic to validate that 
a tag’s attributes are being used correctly. This is an often-overlooked topic, but it’s important
for anybody who is building tags that will be reused on many other web applications.

After this, we’ll show how exceptions can be handled with custom tags. Again, this is a
topic that is often overlooked but provides a way to build much more reliable and resilient tags.

Having covered how to build tags, we’ll then turn our focus to deployment and how tag
libraries can be packaged for reuse. In particular, we’ll show how to package a tag library and
all of its constituent components as a single JAR file that can be easily distributed and reused
by others. Then we’ll discuss why it’s important to test custom tags, and we’ll cover the new
tools available to help automate this process.

To wrap up our custom tag coverage, we’ll discuss some of the softer aspects around
building custom tags. We’ll examine what makes a good tag, some guidelines on naming tags,
and some common usage patterns.

Introducing Scripting Variables into the Page
In the previous examples, you’ve seen that it’s possible for custom tags to place objects into
one of the various scopes (request, page, session, or application) so that those objects can
subsequently be used elsewhere in the page or within the tag’s body content. For example, in
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the <list> tag from Chapter 6, we placed the name of each file into the page scope so that the
filename could be used with an EL expression within the body content of the tag. Here is the
line of code from Chapter 6 that performed that task:

getJspContext().setAttribute("filename", filename);

The PageContext class has always been available to custom tags, so this mechanism of
placing information into one of the available scopes was available in previous versions of the
JSP specification. However, before the introduction of the JSP EL, one of the biggest problems
associated with using these objects was that you had to access them with Java code on the
page. Taking the same example again, instead of an EL expression such as ${filename}, the
name of the file would have traditionally been accessed with a request-time expression such
as the following:

<%= pageContext.findAttribute("filename") %>.

To provide a simpler way of accessing information from within a JSP page, it’s possible for
custom tags to introduce scripting variables back into the page, meaning that the variable can
be accessed directly rather than through the PageContext class. For example, if the <list> tag
introduced a scripting variable into the page to represent the filename, that value could be
accessed by using a simple expression such as <%= filename %>. Invoking the custom tag
would lead to the creation of a Java scripting variable on the page.

This is a tried and tested method for allowing custom tags to introduce information (in this
case, Java objects) into the JSP page, but it brings with it some consequences. The first conse-
quence is that the information is most easily accessible on the page by using Java scriptlets and
expressions, and a downside to this is that it can make the page difficult to read, particularly
because of the verbose syntax. In addition, having Java scripting variables ready to use on the
page tends to encourage people to use more and more Java code on their JSP pages. As we’ve
mentioned before, this is now seen as a bad practice because it not only reduces the maintain-
ability of the page, but also tends to encourage copy-and-paste–style reuse.

To support backward compatibility with older versions of the JSP specification, this method
of introducing scripting variables into the page is still possible. Therefore, for completeness, let’s
take a quick look at how to do this. Also, this technique is useful if you find yourself working on
previous versions of the JSP specification or if you need to integrate with other pages/compo-
nents that require Java variables to be available on the page.

There are two methods for placing scripting variables into the JSP page. The first is to
provide the definitions of those variables within the TLD file (declaratively). The second is
achieved by using a TagExtraInfo class (programmatically).

Defining Variables in the TLD File
Behind the scenes, the process of introducing scripting variables into the JSP page is fairly
straightforward. All you need to do is place an object in one of the available scopes (request,
page, session, or application) and then indicate to the JSP container that you’d like to be able
to access this as a scripting variable. Then, when the tag is invoked, the JSP container finds
your object and automatically declares a scripting variable for you.

So how do you indicate to the JSP container that it should create a variable? Well, the
easiest way is to place this information in the TLD file. Let’s look at an example.
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Building the Cookie Tag Handler
In this section, you’ll build a custom tag that looks up a named cookie and makes it available
as a scripting variable. Let’s look first at the tag handler, which is shown in Listing 8-1. In this
case, you’ll extend the classic TagSupport class because this makes it easier to gain access to
some of the HTTP-specific classes that you need to access cookies.

■Note Remember, the Tag interface relies on features provided by the Java Servlet API, unlike the
SimpleTag interface, which relies only on the JSP API.

Listing 8-1. CookieTag.java

package com.apress.projsp;

import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;

public class CookieTag extends TagSupport {
private String name;
public void setName(String s) {
this.name = s;

}
public int doStartTag() throws JspException {
// find the current cookies
HttpServletRequest request;
request = (HttpServletRequest)pageContext.getRequest();
Cookie cookies[] = request.getCookies();
// now try to find the named cookie
Cookie cookie = getCookie(cookies, name);
if (cookie != null) {
// the cookie was found so evaluate the body content
pageContext.setAttribute(id, cookie);
return EVAL_BODY_INCLUDE;

} else {
// the cookie wasn't found so skip the body content
return SKIP_BODY;

}
}
private Cookie getCookie(Cookie cookies[], String name) {
if (cookies != null) {
for (int i = 0; i < cookies.length; i++) {
if (cookies[i].getName().equals(name)) {
return cookies[i];
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}
}

}
// we got this far so the specified cookie wasn't found
return null;

}
}

This tag will have two attributes: id and name. You use the id attribute to specify the name
of the scripting variable on the page, and you use the name attribute to specify the name of the
cookie that you’d like to look up. Another benefit of using the TagSupport class in this example
rather than the SimpleTagSupport class is that the instance variable and setter method for the
id attribute are already provided. Traditionally, the id attribute has been used to specify the
name of scripting variables on the page and, because it used to be such a common require-
ment, the id attribute has been implemented for us in the TagSupport class.

Next, you have the processing associated with this tag. Essentially, all this does is look 
up the named cookie with a private helper method. If the cookie is found, the Cookie object is
placed into page scope under the name supplied by the id attribute. The body content of the
tag is then evaluated. If the cookie isn’t found, the body content is simply skipped. This is yet
another example of how tags can programmatically evaluate their body content.

Note that you don’t mention anything about scripting variables—the object that you’d like
to access as a scripting variable is just placed into page scope.

Describing the Cookie Tag
Now you must describe the tag in the TLD file. The TLD file in Listing 8-2 indicates to the JSP
container that you’d like a scripting variable with which to access your object.

Listing 8-2. ch08.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

<description>
Tag library for Professional JSP 2.1, chapter 8.

</description>
<jsp-version>2.1</jsp-version>
<tlib-version>1.0</tlib-version>
<short-name>ch08</short-name>
<uri>http://www.apress.com/projsp</uri>
<tag>
<name>cookie</name>
<tag-class>com.apress.projsp.CookieTag</tag-class>
<body-content>JSP</body-content>
<description>
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Looks up a named cookie and makes it 
available as a scripting variable.

</description>
<variable> 
<name-from-attribute>id</name-from-attribute> 
<variable-class>javax.servlet.http.Cookie</variable-class> 
<declare>true</declare> 
<scope>NESTED</scope> 

</variable> 
<attribute> 
<name>id</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>name</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
</tag>

</taglib>

There are two points to note about this otherwise normal tag description. First, the body
content of the tag has been set to JSP. This means that any JSP content (tags, scriptlets, and 
so on) can appear within the body content of the tag. If scriptless were used instead, a page-
translation error would occur if you attempted to use Java scriptlets or expressions.

The second difference is that you’ve added a new variable element to the tag descrip-
tion, and this is where the scripting variable is defined. In a similar way to defining attributes,
this section allows you to define the name and type of the variable, along with some other
information.

When you’re defining the name of a scripting variable in a TLD file, you can use two tags.
The first of these is <name-given>, which allows you to statically define the name of the script-
ing variable. As a result, the scripting variable will be accessible through the same name on
every page where that tag is used. The drawback to this approach is that the name you stati-
cally define may clash with existing variables on the page, causing a page-translation error 
to occur. The other option you have is to use the <name-from-attribute> tag, as shown in this
example. Instead of statically defining the name of the variable, you tell the JSP container to
use the value of the named attribute. In this example, you’re telling the JSP container that the
scripting variable should be given the name provided by the id attribute.

Next is the <variable-class> element. This is just the fully qualified class name of the
scripting variable. Because you’re introducing a cookie into the page, the class name is
javax.servlet.http.Cookie, a class from the Servlet API.

Finally, you have two elements that are related to how the variable is used on the page.
You can decide whether a new variable should be declared on the page with the <declare>
element. If you specify true (the default value), a new variable is automatically created. If you
choose false, the JSP container assumes that a variable has already been declared for it to use.
Subsequently, if that variable hasn’t been previously declared on the page, a compilation error
will occur when the JSP page is translated into a Java servlet.
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Following this is the <scope> element, which can have one of the following values:

• AT_BEGIN

• NESTED (the default value)

• AT_END

The <scope> element allows you to define where on the page the scripting variable will be
accessible. The three possible values mean from the start tag until the end of the page, between
the start and end tags, and anywhere from the end tag until the end of the page, respectively.
For this example, you want the variable accessible only between the start and end tags, so you
choose NESTED.

Using the Cookie Tag
As with the other examples, using the tag is then just a matter of importing the tag library and
using the correct prefix:

<%@ taglib uri="/WEB-INF/tlds/ch08.tld" prefix="ch08" %>
<ch08:cookie id="myCookie" name="lastVisited">
You last visited this website on <%= myCookie.getValue() %>

</ch08:cookie>

At request time, this JSP snippet looks for a cookie called lastVisited. If it finds
lastVisited, the Cookie object is made available as a scripting variable called myCookie
within the body content of the tag, and the body content is then evaluated. If the cookie can’t
be found, the body content is skipped. As this example demonstrates, this type of functional-
ity is useful for providing customized pages to the users of your web application, and it’s
another way that custom tags can help you build JSP-based web applications.

Defining Variables in a TagExtraInfo Class
The other method for declaring scripting variables in the page is programmatically, by using a
TagExtraInfo class. This was the original JSP 1.1 method by which variables were introduced into
the page, and it allows for an additional level of flexibility in the way that variables are defined.
Although the <variable> element in the TLD file allows you to be flexible in the name you give to
the scripting variable, it doesn’t provide a way to specify the type of that variable to be defined at
page creation time; instead, it allows you only to statically define the type within the TLD file.

Consider the <iterate> tag example from Chapter 7. You might like a scripting variable
available to access each element of the collection over which you’re iterating, as shown in the
following JSP snippet:

<%@ taglib uri="/WEB-INF/tlds/ch08.tld" prefix="ch08" %>
Countries :
<ul>
<ch08:iterate id="country" type="com.apress.projsp.domain.Country"
items="${countries}">
<li><%= country.getName() %>

</ch08:iterate>
</ul>
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There are several differences between this code and the code for the <iterate> tag that
you built in the previous chapter, and the way in which that tag was used on the page. First,
you now have an id attribute through which to specify the name of the scripting variable. Sec-
ond, you have a new attribute called type that is used to specify the fully qualified class name
of the objects within the collection. Within the body content, you can then access each item 
in the collection through Java code, perhaps with an expression or inside a scriptlet. So, how
do you implement this type of functionality, where the variable type is declared on the page
instead of within the TLD file?

Building the Iterate Tag
As before, you have the tag handler class (see Listing 8-3) that extends the TagSupport class. 
In fact, this is almost identical to the version you saw in the previous chapter, except that you
have id and type attributes.

Listing 8-3. IteratorTag.java

package com.apress.projsp;
import java.util.Collection;
import java.util.Iterator;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;
public class IteratorTag extends TagSupport {
private String type;
private Collection items;
private Iterator iterator;

public void setType(String s) {
this.type = s;

}
public void setItems(Collection coll) {
this.items = coll;

}
public int doStartTag() throws JspException {
// set up the iterator to be used
iterator = items.iterator();
if (iterator.hasNext()) {
// if there are elements, put the first one into page
// scope under the name provided by the "id" attribute
pageContext.setAttribute(id, iterator.next());
// and include the body
return EVAL_BODY_INCLUDE;

} else {
// there are no elements so skip the body
return SKIP_BODY;

}
}
public int doAfterBody() throws JspException {

CHAPTER 8 ■ CUSTOM TAG ADVANCED FEATURES AND BEST PRACTICES 333

513-0 ch08.qxd  10/28/05  1:02 PM  Page 333



if (iterator.hasNext()) {
// if there are more elements, put the next one into page
// scope under the name provided by the "id" attribute
pageContext.setAttribute(id, iterator.next());
// and instruct the JSP engine to reevaluate the body of this tag
return EVAL_BODY_AGAIN;

} else {
// there are no more elements so skip the body
return SKIP_BODY;

}
}

}

Building the Iterate TagExtraInfo Class
This is where things are slightly different from the <iterate> tag in the previous chapter. You
need to additionally write a class that extends the TagExtraInfo class. This class, shown in 
Listing 8-4, will provide information about the variable being exposed to the JSP page.

Listing 8-4. IteratorTagExtraInfo.java

package com.apress.projsp;
import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;
import javax.servlet.jsp.tagext.VariableInfo;
public class IteratorTagExtraInfo extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {
return new VariableInfo[] {
new VariableInfo(
data.getId(),
data.getAttributeString("type"),
true,
VariableInfo.NESTED)

};
}

}

Here you’re implementing a single method called getVariableInfo(), which is called by
the JSP container to obtain information about the variables that your tag wishes to make
accessible. A TagData object is passed to this method, and this is just a translation-time view 
of the tag’s usage on the page, specifically including information about its attributes.

To signal to the JSP container that you’d like a scripting variable accessible on the page, you
return an array of VariableInfo objects containing one VariableInfo object for each scripting
variable that you’d like. The API provided by the TagData class provides you with a method to
look up the values of a tag’s attributes and, using this method, you can easily find out the name
and type of the scripting variable that you want to introduce into the page.
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The VariableInfo class constructor takes four parameters. These parameters map 
to the subelements of the <variable> element within the TLD file: name (name-given or 
name-from-attribute), variable-class, declare, and scope. In this example, the name is
being set as the value of the id attribute (available through the convenient getId() method
on the TagData class), the variable class is being set as the value of the type attribute, and the
other properties are being statically defined as before.

Describing the Tag
Whereas in the previous example you defined the variables within the TLD file, all you need 
to do here is tell the JSP container that you wish to use a TagExtraInfo (TEI) class. This is spec-
ified in a similar way to the tag handler class, as shown in Listing 8-5.

Listing 8-5. ch08.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the cookie tag ...
<tag> 
<name>iterate</name> 
<tag-class>com.apress.projsp.IteratorTag</tag-class> 
<tei-class>
com.apress.projsp.IteratorTagExtraInfo

</tei-class> 
<body-content>JSP</body-content>
<description>
Iterates over a specified java.util.Collection instance.

</description> 
<attribute> 
<name>id</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>type</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>items</name> 
<required>true</required> 
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<rtexprvalue>true</rtexprvalue> 
</attribute> 

</tag> 
</taglib>

Using the Iterate Tag
As you’ve seen already, using the tag is then a matter of setting the values for the id and type
attributes before you can use the new scripting variable within the body content of the tag:

<%@ taglib uri="/WEB-INF/tlds/ch08.tld" prefix="ch08" %>
Countries :
<ul>
<ch08:iterate id="country" type="com.apress.projsp.domain.Country"
items="${countries}">
<li><%= country.getName() %>

</ch08:iterate>
</ul>

Both implementation techniques shown here for introducing scripting variables into the
page are useful for previous versions of the JSP specification and for when you really do need
to have a scripting variable declared in the page. However, as you’ve seen in previous chapters,
it’s much better to use a simple EL expression and not introduce scripting variables into the
page. After all, allowing people to use Java code in one page tends to encourage them to use it
elsewhere, and before you know it you have a mass of unmaintainable Java code sitting inside
your JSP pages.

■Tip We recommend you use the JSP EL when you can or, failing that, the JSTL with its expression language.

Cooperating Tags
Until now, the examples we’ve presented have all been tags that work on their own to achieve
a specific goal. However, custom tags don’t have to work in isolation—they can cooperate with
one another, either by sharing information or by directly accessing methods/fields on other
tag handlers that are being used on the page. These are useful techniques and, as you’ll see,
they allow you to make your tags more generic and therefore more reusable.

Cooperating by Sharing Information
The most common way that custom tags cooperate is by sharing information, which is typically
implemented by using one of the available scopes (request, page, session, or application) as a
shared resource in which information can be placed and retrieved later. There are generally two
ways that this can happen.

In the first method, a tag places an object in one of the available scopes, and then the
name of that object is passed to another tag as an attribute. A good example of this in practice
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is the <jsp:useBean> tags that you saw in Chapter 1. To demonstrate this, you’ll use a simple
JavaBean called Forum that has id and name properties:

<jsp:useBean id="forum" 
class="com.apress.projsp.domain.Forum" scope="page">
<jsp:setProperty name="forum" property="id" value="1"/>
<jsp:setProperty name="forum" property="name" value="Servlets"/>

</jsp:useBean>

Here, the <jsp:useBean> tag is setting up a page-scoped variable called forum, and the
name of this object is being passed to the <jsp:setProperty> tags so that they can find the
object for themselves. To achieve this type of functionality within your own tags, you need 
to use the setAttribute() and getAttribute() methods on the JspContext and PageContext
classes for simple tags and classic tags, respectively. Essentially, information is being shared
in a specific scope, under a name that is well known to both tags.

With the introduction of the JSP EL, the second way that tags commonly share informa-
tion is through EL expressions. Let’s again look at an example, this time from the JSTL:

<c:forEach var="forum" items="${forums}">
<c:out value="${forum.name}"/>

</c:forEach>

Here, assuming that a collection of Forum JavaBeans is accessible with the EL expression
${forums}, this small snippet provides iteration over that collection and displays the name of
each forum. You’re using the <c:out> tag to actually write out the information, and this infor-
mation is being specified by another EL expression. Although behind the scenes a Forum bean
is being placed into page scope upon each iteration, instead of simply passing the name of the
object, you’re now using an EL expression to pass the actual information that the tag needs to
perform its processing. In this case, the processing is to output the specified information.

Although these two techniques differ slightly, they’re very useful and commonly used in
sharing information between custom tags, therefore allowing them to cooperate to achieve a
common goal. However, sometimes a little more flexibility is required in that the child (nested)
tags should pass information on to their parents. In this situation, you can use a tag’s ability to
directly access its parent tag or tags.

Cooperating by Accessing Other Tag Handlers
Something that happens early in the tag life cycle is that a tag is passed a reference to its clos-
est enclosing parent via the setParent() method on the tag handler class. Using this reference
to a JspTag or a Tag on a simple or classic tag, respectively, you can directly access the parent
tag handler instance and directly call methods on it. So, why is this useful?

In the previous example of how tags can cooperate on the page, you saw that it’s easy for 
a parent tag to pass an object to its child tags, effectively using one of the available scopes as a
shared area. However, a side effect of this technique is that unless the information is removed
from the scope when it’s finished, that information is readily available to other tags on the page.
Although this generally isn’t a problem, having all this information lying around could interfere
with other parts of the page—or worse, the application—making debugging more difficult.

Another situation in which sharing information isn’t appropriate is when you’d like to use
nested tags to configure the characteristics of the enclosing parent tag. If you look back to the
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<select> tag example in Chapter 7, you can see that you were able to configure it through the
use of dynamic attributes, meaning you could customize the HTML select control that was
eventually generated. One of the ways that you can customize the select control is to add a
JavaScript event handler that forwards the user to another page when an item in the list is
selected—this is something that is done on websites, such as JavaRanch, that allow users to
easily navigate between the many forums. Because these event handlers are implemented as
attributes on the generated HTML tag, forwarding the user to another page is fairly easy to
achieve with the dynamic attributes version of the <select> tag from the previous chapter:

<ch07:selectWithDynamicAttributes
name="forum" label="name" value="id" items="${forums}">
<jsp:attribute name="onChange">
window.location=('view-forum.jsp&forumId='

+ this.options[this.selectedIndex].value)
</jsp:attribute>

</ch07:selectWithDynamicAttributes>

Remembering that attributes can be specified by using the <jsp:attribute> tag, in
essence all you’re doing is specifying an attribute called onChange, the value of which is the
JavaScript code that you’d like executed when an item in the list is selected. Although this
works, imagine that you’d like to build a custom tag to explicitly specify this information
instead, the usage of which would be as follows:

<ch08:select name="forum" label="name" value="id" items="${forums}">
<ch08:eventHandler name="onChange">
window.location=('view-forum.jsp&forumId='

+ this.options[this.selectedIndex].value)
</ch08:eventHandler>

</ch08:select>

The benefit of adopting this sort of approach is twofold. First, it provides a standard and
natural way to add event handlers to the generated HTML tag. Having a specific <eventHandler>
tag is more readable than having a generic <jsp:attribute> tag. Second, it provides a way to
ensure that the JavaScript code doesn’t get interpreted in any way by the JSP compiler; you 
can specify the body content of the <eventHandler> tag as tagdependent. For this to work, the
<eventHandler> tag will take the body content (the JavaScript code) and pass it directly to the
enclosing <select> tag. The <select> tag can then use this information when generating the
underlying HTML.

Building the Tag Handlers
The first step is to build the tag handlers, and you’ll start with the <select> tag. This time
you’ll implement the <select> tag as a simple tag and the <eventHandler> tag as a classic tag.
The reason for this is so that you can see how to perform cooperation between a simple and 
a classic tag.

Starting with the <select> tag (Listing 8-6), the implementation is pretty much the same
as before in that you have four instance variables and their setter methods to support the four
attributes you need.
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Listing 8-6. SelectTag.java

package com.apress.projsp;

import java.beans.PropertyDescriptor;
import java.io.IOException;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class SelectTag extends SimpleTagSupport {
private String name;
private String label;
private String value;
private Collection items;
private HashMap eventHandlers;

public SelectTag() {
this.eventHandlers = new HashMap();

}
public void setName(String s) {
this.name = s;

}
public void setLabel(String s) {
this.label = s;

}
public void setValue(String s) {
this.value = s;

}
public void setItems(Collection coll) {
this.items= coll;

}
public void doTag() throws JspException, IOException {
try {
// first of all we must evaluate the body content
if (getJspBody() != null) {

getJspBody().invoke(getJspContext().getOut());
}
JspWriter out = getJspContext().getOut();
// write the starting tag of the select control
out.print("<select name=\"");
out.print(name);
out.print("\"");
// and now write out any event handlers
Iterator it = eventHandlers.keySet().iterator();
String eventHandlerName;
while (it.hasNext()) {
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eventHandlerName = (String)it.next();
out.print(" ");
out.print(eventHandlerName);
out.print("=\"");
out.print(eventHandlers.get(eventHandlerName));
out.print("\"");

}
out.print(">");
it = items.iterator();
while (it.hasNext()) {
// get the next JavaBean from the collection
Object o = it.next();

// and use it to create a description of the property used
// to represent the displayable label
PropertyDescriptor labelPD =
new PropertyDescriptor(label, o.getClass());

// and the property used to represent the hidden value
PropertyDescriptor valuePD =
new PropertyDescriptor(value, o.getClass());

// and now generate the HTML
out.print("<option value=\"");
// call the accessor method for the value property
// (this is the same as calling get<PropertyName>() on
// the JavaBean instance)
out.print(
valuePD.getReadMethod().invoke(o, new Object[] {}).toString());

out.print("\">");
// and do the same for the label property
out.print(
labelPD.getReadMethod().invoke(o, new Object[] {}).toString());

out.print("</option>");
}
// write the ending tag of the select control
out.print("</select>");

} catch (Exception e) {
e.printStackTrace();
throw new JspTagException(e.getMessage());

}
}
public void addEventHandler(String name, String code) {
eventHandlers.put(name, code);

}
}

The class has a HashMap to contain the event handlers for the generated tag. The HashMap
is initialized within the public no-arguments constructor, which is called when the tag handler
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instance is created. Because event handlers on HTML controls are just name=value pairs, you
can store the event handler information easily in a map.

The processing associated with the tag occurs in the doTag() method. All that additionally
happens in this version is that before any processing occurs, the body content of the tag is
invoked. This is necessary because it allows the child tags to be processed, and these child tags
provide the invoked tag with the information on any event handlers that should be included
in the generated HTML. After this has been done, the class generates the HTML as before,
including the list of event handlers.

So, how do child tags actually pass information about event handlers to this tag? The class
implements a public method that they can call, named addEventHandler(String, String),
which places the information into the HashMap the tag handler maintains.

With the code for the <select> tag written, it’s time to turn to the <eventHandler> tag
(Listing 8-7). Because you’d like the body content for this tag to be tagdependent, you’ll use 
the BodyTagSupport class as a starting point. Having tagdependent body content is possible
with simple tags, although getting hold of the content is easier to achieve with body tags.

Listing 8-7. EventHandlerTag.java

package com.apress.projsp;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.BodyTagSupport;
import javax.servlet.jsp.tagext.TagAdapter;
public class EventHandlerTag extends BodyTagSupport {
private String name;
public void setName(String s) {
this.name = s;

}
public int doEndTag() throws JspException {
if (bodyContent != null) {
// get the body content (the JavaScript code)
String content = bodyContent.getString();
// now find the parent tag
SelectTag tag = (SelectTag)((TagAdapter)getParent()).getAdaptee();
// and add the event handler to the select tag
if (tag != null) {
tag.addEventHandler(name, content);

}
}
return EVAL_PAGE;

}
}

With this tag you have a single attribute called name, and this attribute is used to represent
the name of the event handler.

As with the other body tags that you’ve seen, the processing associated with this tag takes
place in the doEndTag() method, because this allows you to gain access to the body content.
Here, with the body content representing the JavaScript code for the event handler, all that
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you need to do is get that body content, find the parent tag, and pass the information by using
the public method that you defined in the SelectTag class.

One of the reasons for choosing to show cooperation between simple and classic tags is
that it’s not as straightforward as cooperation between tags of the same type. If you’re solely
using simple tags, the getParent() method will return an object of type JspTag—the super-
class of all tag interfaces. However, with classic tags, historically the getParent() method
returns an object of type Tag, and this has been maintained for backward compatibility. In 
this example, the outer tag is a simple tag (of type SimpleTag), and the inner tag is a classic tag
(of type BodyTag).

An object implementing the SimpleTag interface can’t be cast to the Tag interface, and
therefore the JSP container provides an adapter class called TagAdapter that wraps up a
SimpleTag and makes it look like a Tag. Behind the scenes, it’s this object that’s passed to the
setParent() method on your EventHandlerTag, which is why you need to do some additional
processing to extract a reference to the enclosing tag handler instance. Basically, it all comes
down to providing backward compatibility for existing classic tags while making them fully
interoperable with the newer simple tags.

An alternative way to find a specific parent tag is with the findAncestorWithClass()
method provided by the SimpleTagSupport and TagSupport classes. This method provides a
way to automatically search through all of the parent tag handler instances until it finds an
instance that implements a specific interface. For example, you could use the following line 
of code to locate the parent SelectTag class:

SelectTag tag = (SelectTag)findAncestorWithClass(this, SelectTag.class);

This line says, “Starting from this tag handler, look at each parent in the tree in turn until
you find one that is of type SelectTag.” This will even work if you’re mixing tag types and the
actual tag handler is wrapped up inside the TagAdapter class behind the scenes.

Another benefit is that you can search for parent tags that implement a specific Java inter-
face, making it possible to allow the implementation of cooperating tags to be substituted,
provided that they implement the same interface. A good example is that the SelectTag class
could implement an interface that allows event handlers to be added. The <eventHandler> tag
can then look for a parent implementing this interface, which gives you the flexibility to use
the <eventHandler> tag nested inside other event-handler–capable tags and to substitute the
implementation of the <select> tag if necessary.

Describing the Tags
Next, you must describe both tags in a TLD file (Listing 8-8). The <select> tag is the same as
before—it has scriptless body content and the four required attributes. The <eventHandler>
tag, on the other hand, has tagdependent body content and a single, required attribute 
called name.

Listing 8-8. ch08.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
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version="2.1">

... the description of the tag library ...

... the description of the <cookie> tag ...

... the description of the <iterate> tag ...
<tag>
<name>select</name>
<tag-class>com.apress.projsp.SelectTag</tag-class>
<body-content>scriptless</body-content>
<description>
Creates an HTML select control 
based upon a collection of objects.

</description> 
<attribute> 
<name>name</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>label</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>value</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
<attribute> 
<name>items</name> 
<required>true</required> 
<rtexprvalue>true</rtexprvalue> 

</attribute> 
</tag>

<tag> 
<name>eventHandler</name> 
<tag-class>com.apress.projsp.EventHandlerTag</tag-class>
<body-content>tagdependent</body-content>
<description>
Used to represent a JavaScript event handler.

</description> 
<attribute> 
<name>name</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
</tag>

</taglib>
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Using the Tags
As you’ve already seen, using the tags is simply a matter of nesting one inside the other:

<%@ taglib uri="/WEB-INF/tlds/ch08.tld" prefix="ch08" %>
Forums : 
<ch08:select name="forum" label="name" value="id" items="${forums}">
<ch08:eventHandler name="onChange">
window.location=('view-forum.jsp&forumId='

+ this.options[this.selectedIndex].value)
</ch08:eventHandler>

</ch08:select>

If you then look at the generated HTML, you can see how the event handler has been
implemented on the control:

<select name="forum" onChange="window.location=('view-forum.jsp& ➥

forumId='+this.options[this.selectedIndex].value)"><option value="1"> ➥

Servlets</option><option value="2">JSP</option><option value="3"> ➥

EJB</option><option value="4">JMS</option></select>

As we mentioned at the start of this example, having a dedicated tag with which to spec-
ify event handlers can help make the JSP page more readable and provide you with a way to
ensure that the JavaScript code doesn’t get mistaken for JSP code. However, you might be
wondering whether the additional development overhead of this example provides any 
substantial, tangible benefit over using the dynamic attributes version that you built in the
previous chapter. To answer this question, let’s look at how you can put some validation
around the use of tag attributes.

Tag Validation
Having built custom tags, you’re now probably aware that the JSP container does, in fact, 
perform some rudimentary validation of the way that custom tags are used on the page. For
example, it checks that you’ve specified the start and end tags correctly, that the body content
matches up with that defined in the TLD file, and that you’ve specified any required attributes
for your tags. The failure of any of these checks results in a page-translation error.

This is useful in ensuring that, at a basic level, the tags are used properly on the page, but
it would be nice if you could go a step further and check the actual values of attributes. This
way, you could detect problems up front if attributes were being misused, perhaps because a
value was out of your desired range. Thankfully, the JSP specification provides two mecha-
nisms to perform validation: the TagLibraryValidator and TagExtraInfo classes.

Validation with a TagLibraryValidator Class
The TagLibraryValidator (TLV) class was introduced in version 1.2 of the JSP specification. It
provides an extremely flexible method to perform validation. Behind the scenes, when a JSP
page is being translated into a servlet, an intermediate version of the page is generated that is
represented as a pure XML document. This document is useful because it provides a standard
way for JSP containers to parse, process, and validate the JSP page. In essence, in the XML
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view of the page, all the elements of the JSP page (content, directives, actions, scriptlets, and
so on) are converted and represented as XML tags. When using the TLV class, it’s possible to
get a reference to this document and validate anything on the page. This could include any-
thing from checking that the values of tag attributes are acceptable to looking at the structure
of the page and determining whether your tags have been used correctly (perhaps checking
that they’ve been nested in the right way).

Unfortunately, this flexibility comes at a price in that TLV classes are fairly complicated to
build because they require a fair amount of XML knowledge. Therefore, they aren’t often used,
and the TagExtraInfo class is favored.

Validation with a TagExtraInfo Class
TagExtraInfo (TEI) classes are inherently much simpler to use than TLV classes, but of course
they don’t offer anywhere near as much flexibility, with the main function of TEI classes being
to validate tag attributes. However, for those developers who need to implement such valida-
tion logic, a TEI class is usually sufficient.

Implementing a TEI class is fairly straightforward, although the process has changed
slightly from previous versions of the JSP specification. Before JSP 2.0, the validation logic
would be implemented within a method called isValid(), returning true if valid and false
otherwise. Although this was simple to implement, it couldn’t provide anybody with informa-
tion should a particular tag not be valid. Of course, a System.out.println() statement can be
used to output error details to the console, but this is hardly a desirable solution.

For this reason, JSP 2.0 introduced similar functionality to that provided by the much
more complex TagLibraryValidator class with a method called validate(). Instead of return-
ing true or false, JSP 2.0 and JSP 2.1 allow an array of ValidationMessage instances to be
returned to the JSP container that details exactly what the problem is. Let’s put this into prac-
tice with an example.

Building the TagExtraInfo Class
For this example, imagine that you’d like to add some validation to the <eventHandler> tag to
check that the value of the name attribute (the name of the JavaScript event handler) is valid. 
To do this, you can define a list of the permitted names and compare the value of the name
attribute to this list. Listing 8-9 shows a class that does this and then can be used to validate
the <eventHandler> tag.

Listing 8-9. EventHandlerTagExtraInfo.java

package com.apress.projsp;
import java.util.ArrayList;
import java.util.List;
import javax.servlet.jsp.tagext.*;
public class EventHandlerTagExtraInfo extends TagExtraInfo {
private static List EVENT_HANDLERS = new ArrayList();
static {
// here is a list of the valid event handlers for the select tag
EVENT_HANDLERS.add("onblur");
EVENT_HANDLERS.add("onchange");
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EVENT_HANDLERS.add("onclick");
EVENT_HANDLERS.add("ondblclick");
EVENT_HANDLERS.add("onfocus");
EVENT_HANDLERS.add("onkeydown");
EVENT_HANDLERS.add("onkeypress");

EVENT_HANDLERS.add("onkeyup");
EVENT_HANDLERS.add("onmousedown");
EVENT_HANDLERS.add("onmousemove");
EVENT_HANDLERS.add("onmouseout");
EVENT_HANDLERS.add("onmouseover");
EVENT_HANDLERS.add("onmouseup");

}
public ValidationMessage[] validate(TagData data) {
String name = data.getAttributeString("name");
// validate that the name is valid
if (!EVENT_HANDLERS.contains(name.toLowerCase())) {
return new ValidationMessage[]{
new ValidationMessage(null, "Event handler called " + 

name + " not valid")
};

} else {
return null;

}
}

}

Now all the validate() method has to do is find the value of the name attribute through
the API provided by the TagData class and compare it with the list of valid values. The TagData
class itself is just a translation-time view onto the way the tag has been used on the page; this
view allows the values of a tag’s attributes to be obtained.

■Note Because TagData is a view of the tag’s attributes at page-translation time, it isn’t possible to get the
values of those attributes that are request-time expressions because the page hasn’t yet been requested—it’s
still in the process of being translated into a Java servlet.

If the value of the name attribute is in the list of permitted values, we chose to return a
null value from the validate() method, indicating that the attributes are valid. The specifi-
cation also allows a zero length array to be returned if the attributes are valid. The TEI class is
used by the JSP container, so the choice of whether to return a null or a zero-length array is
mostly a matter of personal preference. There is no inherent advantage in one choice over
the other. An array containing a ValidationMessage instance is returned to indicate that
something is wrong.
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Describing the Tag
Now that you’ve built the TEI class, you must tell the JSP container that you want to use it. To do
this, you define the TEI class within the description of the tag in the TLD file (see Listing 8-10).

Listing 8-10. ch08.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the <cookie> tag ...

... the description of the <iterate> tag ...

... the description of the <select> tag ...
<tag> 
<name>eventHandler</name> 
<tag-class>com.apress.projsp.EventHandlerTag</tag-class>
<tei-class>
com.apress.projsp.EventHandlerTagExtraInfo

</tei-class>
<body-content>tagdependent</body-content>
<description>
Used to represent a JavaScript event handler.

</description> 
<attribute> 
<name>name</name> 
<required>true</required> 
<rtexprvalue>false</rtexprvalue> 

</attribute> 
</tag>

</taglib>

As with the name of the tag handler class, the name of the TEI class must be a fully
qualified class name.

Using the Tags
With the TEI class in place, you can use the tags in the same way as before. At page-translation
time, the information about a tag’s attributes is passed to the TEI class so that the validation
can happen. The way in which JSP containers present error messages varies among vendors,
but with Tomcat 5, the error in Figure 8-1 is shown if you try to set the value of the name attri-
bute of the <eventHandler> tag to onDoubleClick.
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Figure 8-1. This error page is returned by Tomcat when the container detects a validation error
with the use of the EventHandlerTag. The full error message is “org.apache.jasper.JasperExcep-
tion: /select-with-validation.jsp(20,6) <h3>Validation error messages from TagExtraInfo for
ch08:eventHandlerValidate</h3><p>Event handler called onDoubleClick not valid</p>”.

As this example shows, validating the values of attributes is a useful way to ensure that
your tags are used correctly. More important, validating the values helps guarantee that the
generated HTML is error-free. After all, picking up these sorts of errors is easier to do up front
during the JSP translation process at deployment rather than at request time, when users start
to complain that the pages of your application don’t seem to work correctly.

With the usage of the tags now more resilient, let’s see how you can make the tags them-
selves more robust in the way that they handle exceptions.

Handling Exceptions
Because custom tags have full access to the rich set of APIs provided by Java, it’s possible 
that something could go wrong. For example, a network connection might be unexpectedly
terminated, or perhaps a file read could fail. Typically, you’d just wrap functionality that may
potentially fail inside a try-catch block, and with simple tags this isn’t much of a problem
because all the processing associated with the tag is wrapped up within the doTag() method.
However, when you’re using classic tags, this logic can potentially be split across the doStartTag()
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method, the tag’s body content, and the doEndTag() method. Therefore, it’s not possible to
place a try-catch block around all of this logic. The JSP specification addresses this issue
through the TryCatchFinally interface that classic tag handlers can implement.

The TryCatchFinally Interface
The TryCatchFinally interface was introduced in the JSP 1.2 specification. This interface pro-
vides a way to gracefully handle exceptions that may occur during the processing of classic
tags, regardless of whether the tag implements the Tag, IterationTag, or BodyTag interface 
(see Listing 8-11).

Listing 8-11. TryCatchFinally.java

package javax.servlet.jsp.tagext;
import javax.servlet.jsp.*;
public interface TryCatchFinally {
void doCatch(Throwable t) throws Throwable;
void doFinally();

}

The TryCatchFinally interface has two methods, doCatch() and doFinally(), in which
you can place functionality that might typically be written into catch and finally blocks. For
example, in the doCatch() method, you might choose to roll back a transaction, and in the
doFinally() method, you might choose to close a file or a connection to a remote resource. 
In essence, tags should implement this interface if you want them to have more control over
exception handling. Figure 8-2 shows a UML diagram of the tag life cycle for a tag that imple-
ments the TryCatchFinally interface. Next, we’ll cover each of the methods in turn.

The doCatch() Method
The JSP specification guarantees that the doCatch() method will be called if an exception is
thrown in the doStartTag() method, the tag’s body content, or the doEndTag() method. Addi-
tionally, if the tag handler implements the IterationTag or BodyTag interface, the doCatch()
method will be executed if an exception is thrown within the doAfterBody() and doInitBody()
methods, respectively.

Something to notice is that the doCatch() method won’t be called if an exception is thrown
before the execution of the doStartTag() method—perhaps when the context or attributes are
being set. Therefore, it’s best not to put any logic into attribute setter methods that may cause
an exception to be thrown.

If the exception should be propagated further up the calling stack, perhaps by a JSP error
page, the doCatch() method can handle the exception as required and then subsequently
rethrow the same or a new exception. This is useful because there’s no way to tell the tag han-
dler class to catch only specific subclasses of Exception in the same way you would when
writing try-catch blocks in your code. Instead, the doCatch() method handles all exceptions,
and it’s up to us as tag developers to decide which to handle and which to rethrow.
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Figure 8-2. During the tag life cycle, there are several opportunities where doCatch() or
doFinally() might be called to handle an exception.
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The doFinally() Method
When you write try-catch-finally blocks in regular Java code, the finally block always gets
called, regardless of whether an exception was thrown. Similarly, the doFinally() method on
the tag handler will always get called.

Although tag handlers are generally small components, there is still much that can go
wrong, especially when you’re dealing with databases and remote objects such as Enterprise
JavaBeans. Implementing the TryCatchFinally interface is a way to build tags that are better
equipped to deal with such problems; it will make your tag libraries more robust and resilient
to failure. With this in mind, let’s now take a look at how you can deploy these resilient tags
and make them available for use in the easiest possible way.

Tag Library Deployment
Tag libraries can be deployed and used within web applications in several ways. The examples
that you’ve seen until this point have all used one of these methods that focuses on deploying
tag libraries within a development environment. There is, however, a much better way of
deploying tag libraries that allows you to package all of your tag resources into a single JAR file.
Before we cover how to do this packaging, we’ll briefly recap the former method of deployment.

Deploying a Tag Library for Development
Assuming that the tag handler classes have been written and compiled, the first step is to
ensure that the class files for the tag handlers in the tag library are in the CLASSPATH of your
web application. In other words, the class files should reside in the WEB-INF\classes directory
of your web application or, if you’ve placed your class files within a JAR file, this JAR file has
been copied into the WEB-INF\lib directory of your web application. If your tag handlers refer-
ence any other classes that you or a third party has written, don’t forget that these classes must
also be present in one of these two places.

As you’ve seen in the previous examples, the next step is to place the TLD file within the
web-application directory structure. By convention, the JSP specification suggests that all TLD
files be placed within the WEB-INF\tlds directory, and although this isn’t mandatory, placing
all TLD files there provides a central place for people to find them at a later date.

Importing the tag library is then simply a matter of using the taglib directive. This allows
you to specify the tag library that you want to import and the prefix with which to reference
the tags within that tag library. As an example, you used the following directive in Chapter 6 
to import the tags within the tag library that you built:

<%@ taglib uri="/WEB-INF/tlds/ch06.tld" prefix="ch06" %>

The uri attribute of the taglib directive explicitly specifies the location of the TLD repre-
senting the tag library that you’d like to use, and the prefix dictates how that tag library will be
used and identified on the page.

As we’ve said before, this method of deploying tag libraries is mainly used when deploy-
ing custom tags within a development environment. This approach allows you to save the
TLD file straight into the web-application directory structure, underneath the WEB-INF direc-
tory, and to explicitly specify the tag library from within the JSP page. In an agile development
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environment, the build-deploy-test cycles are generally very short, and this is one reason this
mechanism for deploying tags is often adopted—it’s very quick and lightweight.

However, a drawback to this method is that it makes tag libraries harder to reuse. You
have to copy all the tag handler and dependent classes along with the TLD file into a new web-
application structure and place them in the correct directories. Although this procedure isn’t
complicated, individual files could easily get lost. What happens when new versions of the
tags are available? Also, you haven’t considered reusing tag files that simply reside underneath
the WEB-INF\tags directory.

Thankfully, the JSP specification addresses these issues by providing an alternative mech-
anism for packaging and deploying tag libraries containing all types of tags.

Deploying a Tag Library for Reuse
The key to achieving reuse with tag libraries, as with many other Java technologies, is the JAR
file. Packaging a tag library for reuse requires creating a JAR file that contains the following
items:

• The (compiled) tag handler classes, along with any dependent classes you’ve created

• The TLD file that describes the tag library

As with other JAR files, the classes must be stored within the JAR file, with the directory
structure mirroring the package structure maintained. As for the TLD file, this must reside
inside the JAR file in a directory called META-INF. The only requirement here is that the TLD file
must have a file extension of .tld so the JSP container can find it.

■Note A requirement of previous versions of the JSP specification was that the TLD file would have to be
called taglib.tld. This requirement has since been lifted. In fact, it’s possible to place more than one TLD
file in the META-INF directory for distributing more than one tag library in the same JAR file.

Creating the JAR File
Creating the JAR file is a fairly simple process that can be achieved with the regular jar
command-line tool or via a build tool such as Jakarta Ant. To learn how you might create such 
a JAR file to contain a tag library, you’ll take the examples from Chapter 6 and package them.

First, create an empty directory. In this directory, place the class files that are required for
the tag library, and don’t forget to maintain the directory structure representing the packages
to which these classes belong. Next, create a META-INF directory and place the TLD file inside
it. Figure 8-3 shows the directory structure for the tags from Chapter 6.
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Figure 8-3. The directory structure of a tag distribution

At a command prompt, change to the directory that you created to contain the classes
and TLD file and run the jar command as follows:

jar cvf ch06.jar .

Using the current location as a starting point, this creates a JAR file that includes every-
thing in the appropriate structure. To check that this was successful, run the following
command to list the contents of the JAR file:

jar tf ch06.jar

Figure 8-4 shows the output of this command. This screen shot shows that the tag handler
class files are located within the appropriate directory structure and that the TLD file resides
in the META-INF directory.

Figure 8-4. One method to check the contents of a Java ARchive is to use the jar command with
the t option. This lists the contents to the screen.

Deploying the Tag Library
With the JAR file built, the final step in deploying the tag library contained within is to copy
the JAR file into the WEB-INF\lib directory of your web application.
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Using the Tag Library
Use of the tag library is made possible with the taglib directive. However, rather than explic-
itly specifying the location of the TLD file representing the tag library, specify the URI (the
unique identifier for the tag library) that you defined in the TLD. In this example, the tag
library can be used on the page with the following taglib directive:

<%@ taglib uri="http://www.apress.com/projsp/ch06" prefix="ch06" %>

Notice that the URI you’re using is the same as the one you defined for the tag library in
the TLD file. From a usage perspective, because you’ve specified the same prefix, the tags
within the imported tag library can be used in the same way as before.

■Tip Remember, the URI is just a unique identifier for the tag library—it doesn’t have to represent a valid
resource on the Internet.

Packaging Tag Files
This method works because the custom tags in the tag library are described by using a tag
library descriptor file, something that you don’t have to do for tag files. However, the packag-
ing mechanism does allow for tag files to be deployed alongside simple and classic tags by
providing a way for them to be described in the TLD too.

To do this, the first step is to ensure that the tag files will be included in the correct place
within the JAR file structure. The JSP specification states that tag files must reside underneath
the META-INF directory, in a subdirectory called tags. In Chapter 6, you built two tag files: one
to generate a copyright statement and another to generate a template for an HTML box that
can be used to highlight areas of importance on the page. Figure 8-5 shows the directory
structure of the JAR file with the tag file directories.

Figure 8-5. When packaging tag files as part of tag library, the tag files must be located in the
META-INF\tags directory.
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Next, you must define the tag files within the TLD file. This is made possible by using the
<tag-file> element. Listing 8-12 shows a <tag-file> element for the tag files from Chapter 6.

Listing 8-12. ch06.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
version="2.1">

... the description of the tag library ...

... the description of the <datetime> tag ...

... the description of the <thumbnail> tag ...

... the description of the <list> tag ...
<tag-file>
<name>box</name>
<path>/META-INF/tags/box.tag</path>

</tag-file>
<tag-file>
<name>copyright</name>
<path>/META-INF/tags/copyright.tag</path>

</tag-file>
</taglib>

Two subelements to the <tag-file> element, name and path, represent the name of the tag
as it will be used on the page and the path to the corresponding tag file in the JAR file, respec-
tively. After the JAR file has been generated and deployed, the tag library can be used in the
same way as before—just import the tag library and use the tags within it.

There are many benefits to adopting this approach to deploying tag libraries, but the
primary benefit is that it makes deployment and reuse of tag libraries easy. Another benefit
relates to technology independence. With the ability to define a mixture of tag files, simple
tags, and classic tags within a tag library, the end users of that tag library will never know how
those tags are actually implemented. This means that should you need to reimplement a tag
by using a different technology in the future, this is no problem. Essentially, custom tags pro-
vide a nice abstraction to reusable Java components.

Best Practices
To wrap up this chapter’s look at custom tags, we’ll briefly cover some of the best practices that
have emerged over the past few years.

Common Usage Patterns and Granularity
Custom tags have access to the full range of APIs that are provided by the Java Standard Edition
and Java Enterprise Edition platforms. This means that they can pretty much wrap and provide
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any functionality for use on JSP pages, from generating content and providing iteration to read-
ing files and accessing remote data sources. However, just because you can provide this type 
of functionality doesn’t necessarily mean that you should. One of the key things to remember
when you design custom tags is your audience. Who will be using the tags? Generally, there are
two user extremes, although most people tend to fit somewhere in between.

At one extreme are web designers (or page authors). These people are responsible for the
look and feel of a web application. As part of their role, they’re much more concerned with the
creative aspects of the JSP pages than the mechanics behind how the pages work. At the other
extreme are developers, who are more focused on providing functionality than on how the
web application looks. This split of responsibility may not be as clear-cut on many of your 
own projects, but the principles are worth bearing in mind.

Typically, the skill sets of these two types of people will be dramatically different. One has
expert knowledge in web design and markup, and the other has expert knowledge of how a
web application works from a technical perspective. This is why it’s important to consider
your audience when you design custom tags and to work with that audience to ensure that
your custom tags meet the audience’s needs.

When programming, we as developers are typically used to building up high-level func-
tionality from a series of low-level constructs. For example, to iterate over a collection we might
choose to use a for loop. Within the for loop, we might use the counter variable to find a 
specific item in the collection. Although this may seem basic to us, it won’t to web designers;
therefore, they won’t want to see such logic on JSP pages. The point is that custom tags should
be fairly granular in nature. In other words, to achieve a specific goal you shouldn’t have to use
many custom tags in cooperation with one another. A good example is providing iteration
over an array. Before the introduction of the JSTL, many people would build two custom tags
to implement iteration functionality—one tag to loop and one tag to get the next item in the
collection, as follows:

<prefix:for from="0" to="10">
<prefix:getBean id="myBean" array="${myBeans}"/>
... content to be displayed on each iteration ...

</prefix:for>

From a developer’s perspective this makes sense, but from a page author’s perspective it
doesn’t. In summary, keep the tags as simple as possible and don’t try to simply replicate pro-
gramming constructs.

Naming
On a related note, the name you give to a tag or its attributes can also affect how that tag is
perceived by others. Using overly technical language for naming these items can cause confu-
sion. For example, the tag that provides iteration in the JSTL is called <forEach>, and the list of
items that it iterates over is called items instead of collection, list, or array. Once again, keep
your audience in mind when describing your tags—if you’re wrapping up technology-focused
functionality such as accessing databases or using XML, then generally these tags are going to
be used only by technologists anyway. Giving tags simple, appropriate names is a great way to
make JSP pages readable and maintainable.
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Another point related to naming is giving cooperating tags an appropriate name that
reflects their intent. For example, you built a specific <eventHandler> tag to specify event han-
dlers for the <select> tag. Although passing this information to the <select> tag is possible
with dynamic attributes, a side effect is that the readability of the page suffers. The key is to
make tags and using those tags seem natural, and you can help by providing good names for
tags and making them easy to use together, in cooperation.

What Makes a Good Tag Library?
Finally, let’s address the question of what makes a good tag library. A useful comparison to
make is between tags and other development disciplines such as object orientation (OO) and
component-based development (CBD). A common goal in these disciplines is reuse. With OO,
you aim to get reuse at the class level, and with CBD, you aim to get reuse at the component
level. Mapping this back to custom tags, you can see that you’d like to get reuse at the tag level.
With OO and CBD, a good class or component is one that has high cohesion and low coupling.
In other words, the class contains highly related functionality and doesn’t depend too much
on other classes/components.

You can go one step further and look for reuse at the package level or, with custom tags, at
the tag library level. Ideally, you’d like to be able to take a tag library and reuse it as-is on other
web applications in the future.

So, coming back to the question of what makes a good tag library, essentially it’s the same
aspects of achieving reuse at the package level with OO and CBD. The tags within a tag library
should form a highly cohesive collection of functionality that’s loosely coupled to other tag
libraries. You’d like to take a tag library and reuse it elsewhere without having dependencies on
other libraries. In this way, your initial goals to increase the readability, reusability, and main-
tainability of JSP development are all achieved.

Summary
In this final chapter on custom tags, you looked at some of the more advanced custom tag fea-
tures. First, you learned how custom tags can introduce scripting variables into the page. This
is something that has always been possible in previous versions of the JSP specification, and
in essence nothing has changed. However, with the introduction of the JSP EL, you should see
scripting variables being used within JSP pages less and less, meaning that these techniques
should also be used less frequently by people writing new tags. After all, the JSP EL provides a
much better, cleaner way to access information from within a JSP page.

Next, you examined how tags can cooperate with one another on the page. You learned
that this is possible through a couple of methods: one in which information is shared between
the tags, and one in which child (nested) tags look up their parent and directly access the cor-
responding tag handler instance. Both methods are widely implemented and allow custom
tags to be more flexible in the way that they’re used on the page. Also, these methods provide a
way for more-generic tags to be created that can be used in cooperation with different tags to
achieve different goals.

Then you looked at how more-resilient tags can be built by using techniques that allow a
tag’s attributes to be validated. This is an often-overlooked part of tag development, although
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it provides an easy way to ensure that your tags are used in the way that is expected and there-
fore work in the way that is expected. After this, you took a brief look at the TryCatchFinally
interface, which allows you to make your tags more resilient to failure. This is particularly
important if you’re working with files and network connections, for example.

With our look at developing tags over, we then focused on how tag libraries can be
deployed in both development environments and specifically for reuse. We described how it’s
possible to mix tag files, simple tags, and classic tags into a single tag library that is distrib-
utable and deployable as a single JAR file. Also, we covered the importance of testing custom
tags and the options available to automate this process.

Finally, we discussed some of the important best practices relating to developing custom
tags, particularly with respect to how tags are used on the page and how the audience can
make a difference in how your tags are perceived. To wrap up, we showed what makes a good
tag library and how this can help you achieve the original goals we outlined when we started
presenting custom tags as a technology—that is, increased readability, reusability, and
maintainability.
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Data Access Options 
for Web Applications

Now that you have a full understanding of web applications, JSP, and servlets, it’s time to
start discussing how these technologies fit together in a JSP application. No matter what type
of JSP application you’re writing, you’ll need to either store the data that is created by your
application or use data from an external source in your application. You need data access.
There are many options for data access from a JSP application including file storage, object-
oriented databases, XML databases, and relational databases. In almost all cases, a relational
database is the best choice.

For simple applications intended for small-scale use on a single-instance application
server, you might choose to store your data in files. However, if you want to scale your applica-
tion up to meet the needs of a large number of users, then you’ll need to distribute application
processing across multiple servers. All Java EE application servers make this easy and transpar-
ent to you, the application programmer, but you need to store your data in a location that is
accessible to all of your servers. Unfortunately, file system storage isn’t the best way to do this.

For more complex larger-scale applications, you should use a database, but what type of
database should you choose? Although object-oriented and XML databases might be appeal-
ing to some developers, most IT managers prefer to use tried-and-true relational database
technology. Relational database technology is preferred because it’s ubiquitous, well under-
stood, standardized, and supported by a tremendous number of tools and applications.

In this chapter, we’ll discuss five Java database access options, several JSP database access
architectures, and an example of a JSP database application. By the end of this chapter you
should have enough knowledge to evaluate and select a database access technology, design
database access architecture, and implement database access for your JSP application.

This chapter assumes that you have knowledge of Java, JavaBeans, JSP, JDBC, SQL, and
relational database technology.

Data Access Technologies
Database access has been part of Java since Sun Microsystems added the JDBC API as an add-
on to Java 1.0. Since then, Sun has also added Enterprise JavaBeans (EJBs) and most recently
Java Data Objects (JDO) to Java. That isn’t all; Sun is only one of the many organizations sup-
porting database access from Java. Numerous vendors have sprung up over the years to provide
JDBC implementations and Object-Relational Mapping (O/R) frameworks for Java.
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The good news is that there are a lot of choices for data access. That’s also the bad news.
In this section, we’ll sort out the choices by dividing them into five categories starting with the
simplest and ending with the most sophisticated. The five data access technologies, from sim-
plest to most sophisticated, are as follows:

• JSP tags for SQL

• JDBC

• O/R frameworks

• JDO

• EJB entity beans

When you choose a data access technology, you should consider both the nature of 
the web application that you’re developing and the skills of your development and support
teams. Generally speaking, if you have simple requirements and a less experienced team, you
should favor the simple end of the spectrum. If you have more complex requirements and a
more experienced team, you should favor the sophisticated side. Here are some questions to
consider:

• Does your application have fairly simple database access requirements? Perhaps you
need only to display a couple of reports based on information in a database. For simple
applications, you might want to avoid the learning curve, complexity, and overhead of a
more sophisticated data access technology.

• Will your application have a complex Java object model that must be persisted to a
database? If so, you might find that you really cannot do without the sophisticated
automated object-relational mapping capabilities of an O/R framework or of EJB
container-managed persistence (CMP).

• Is your application one that is highly transactional, requires high availability, and is
likely to support a large number of concurrent users? If so, you might need the declara-
tive transaction support, fault tolerance, and load balancing provided by EJB servers.

• Which Java data access technologies do your developers know? What level of database
knowledge do your developers have? Will you need training? If your team has previous
experience with database access, that might influence your selection of a database
access technology.

With these types of questions in mind, let’s discuss the pros and cons of each of the five
data access options, starting with the most simple.

JavaServer Pages Tags for SQL
The JSTL, which is covered in Chapter 4, includes a set of JSP tags that allow you to access a
database via SQL directly from your JSP pages.

The obvious advantage of the JSP tags for SQL is simplicity. It’s easy to query the database
and to throw the results up on a web page. This is great for simple applications that need only
to display database data on a web page and make simple database table updates—JSP tags for
SQL work well. The <sql:query> tag executes an SQL query and returns a result set object that
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you can iterate over and display with other JSTL tags. You can also perform database table
updates. The <sql:update> tag executes an SQL update.

For larger projects, there are a couple of disadvantages to keep in mind. One disadvantage
is that you must embed SQL queries with table and field names into your JSP pages. If data-
base table and field names change, you’ll have to make the corresponding changes in your JSP
files. For a small project, this might not be a big problem, but larger projects should consider
other data access options. Other data access options, such as O/R frameworks and EJB, can
provide some level of indirection so that changes to the database schema do not have as much
of an effect on your application code.

Another disadvantage is updates. The JSP tags for SQL allow you to perform updates on a
database, but you have to build the SQL update string yourself. Again, for small projects with
simple updating needs, this might not be a problem, but larger projects should consider other
data access options. Other data access options can provide infrastructure to make updates
much easier to program.

JavaServer Pages Tags for SQL Example
Listing 9-1 is an example of JSP tags for SQL. This example illustrates how to execute a query,
iterate through the results, and display the results in an HTML table.

Listing 9-1. jstl-example.jsp

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/c.tld" prefix="c"%>
<%@ taglib uri="/WEB-INF/sql.tld" prefix="sql"%>
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html><head><title>jstl-example</title></head>
<body bgcolor="#ffffff">
<sql:query var="items"
dataSource="jdbc:hsqldb:hsql://localhost,org.hsqldb.jdbcDriver,sa">
SELECT TITLE,TIME FROM ITEM ORDER BY TIME

</sql:query>

<h1>News Items</h1>

<table border="1">
<th>Title</th><th>Time</th>

<c:forEach var="row" items="${items.rows}">
<tr>
<td><c:out value="${row.TITLE}"/></td>
<td><c:out value="${row.TIME}"/></td>

</tr>
</c:forEach>

</table>
</body>
</html>
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Figure 9-1 shows a screen shot of the page generated by the JSP page.

Figure 9-1. The JSP page has accessed a database table and displayed two columns from 
the table.

Let’s examine the code more closely. At the top of the page, you see the two taglib
directives:

<%@ taglib uri="/WEB-INF/c.tld" prefix="c"%>
<%@ taglib uri="/WEB-INF/sql.tld" prefix="sql"%>

The first directive declares that this example uses JSTL Core tags and the second directive
declares use of the JSTL SQL tags. The corresponding TLD files, c.tld and sql.tld, must be in
the example web application’s WEB-INF directory.

The next interesting block of code is the actual query itself, shown here, and expressed
using the JSTL <sql:query> tag:

<sql:query var="items"
dataSource="jdbc:hsqldb:hsql://localhost,org.hsqldb.jdbcDriver,sa">
SELECT TITLE,TIME FROM ITEM ORDER BY TIME

</sql:query>

The tag has two attributes: var and dataSource. The var attribute specifies the name of an
object (of type javax.servlet.jsp.jstl.sql.Result) that will be created by the query to hold
the results of the query.

The dataSource attribute specifies the database connection string. This is a comma-
separated string with the format connection URL, the JDBC driver class name, the username,
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and password. In the example, the password is an empty string and can be omitted from the
connection string. The <sql:query> tag will use these parameters to obtain a connection from
the JDBC driver manager. Within the body of the <sql:query> tag is the SQL query string to be
executed: SELECT TITLE,TIME FROM ITEM ORDER BY TIME.

After the query has been executed and the results are available in the items object, you
display the HTML table by using the JSTL <c:forEach> tag to iterate through the rows that are
contained in the items object:

<table border="1">
<th>Title</th><th>Time</th>
<c:forEach var="row" items="${items.rows}">
<tr>
<td><c:out value="${row.TITLE}"/></td>
<td><c:out value="${row.TIME}"/></td>

</tr>
</c:forEach>

</table>

For each row of data, you use the <c:out> tag to display each column of data.
We presented a summary of the JSTL SQL tags in Chapter 4, and Listing 9-1 gives a brief

example of how to use a few of the tags. If you want to learn more about the JSTL, you can find
more information at Sun’s JSTL web page (http://java.sun.com/products/jsp/jstl/). The
Sun Web Services tutorial (http://java.sun.com/webservices/docs/1.0/tutorial/index.html)
also covers JSTL and includes a section on the JSTL SQL tags. 

Java Database Connectivity
JDBC is a standard part of Java and provides a uniform API that can be used to access any
relational database. The low-level JDBC API is the foundation for the other database access
technologies discussed in this chapter, but many programmers use the JDBC API directly. If
your application has fairly limited database access needs, JDBC might be all you need.

The advantages of JDBC are simplicity and flexibility. There are only about 25 classes and
interfaces in JDBC, and for the most part, to use them you need to know only the basics of
SQL. It’s simple. You execute queries and updates written in standard SQL, and each query
returns a ResultSet object containing the resulting rows and columns of data. The JDBC API
is simple, but it still provides the flexibility to do just about anything you’ll need to do with a
database.

The simplicity of JDBC is also a disadvantage. If you have a lot of queries and updates to
do, using JDBC can be a lot of work. You’ll find yourself writing a lot of repetitive boilerplate
code to build up query and update strings, iterate through the ResultSet objects returned by
your queries, and map Java object fields to and from database table fields. In the next section,
we’ll discuss how using an O/R persistence framework can eliminate the repetitive boilerplate
coding required by JDBC.

JDBC gives you cross-database portability, which is wonderful, but that portability isn’t
perfect. You still have to watch for SQL incompatibilities, data-type differences, and other
problems. You still have to write a database creation script for each type of database you
intend to support.
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JDBC is a relatively small and easy-to-use API, but complete coverage of JDBC is really
beyond the scope of this book. Several resources with information on JDBC are available; here
are three:

• Beginning Java Databases by Kevin Mukhar, Todd Lauinger, and John Carnell (2001,
Wrox Press)

• JDBC home page: http://java.sun.com/products/jdbc/

• JDBC tutorial: http://java.sun.com/docs/books/tutorial/jdbc/basics

Obtaining a JDBC Connection in a Web Application
All of the database access technologies that are discussed in this chapter are built on the
foundation laid by JDBC. So, before you can use any of them you need to understand how to
configure a JDBC database connection. Let’s discuss the two database connection mecha-
nisms provided by JDBC: the java.sql.DriverManager and the javax.sql.DataSource.

Using the java.sql.DriverManager

The java.sql.DriverManager is a standard part of JDBC and a standard part of Java available
to stand-alone Java programs, JSP applications, and application server-hosted Java EE appli-
cations in general.

If you’re going to use the DriverManager to obtain a database connection or if you’re config-
uring a software package that does, you’ll need to provide the following database connection
parameters:

• The name of the JDBC driver class to be used

• The JDBC connection URL for your database

• Your database username-password combination

Using the DriverManager to obtain a database connection is a two-step process. First 
you must load your JDBC driver class by name, which causes it to become registered with the
DriverManager. Second, you call the static DriverManager.getConnection() method, passing in
your database connection parameters, and receiving in return a Connection ready for use. For
example, the following code shows how to obtain a connection to MySQL by using the JDBC
driver class org.gjt.mm.mysql.Driver:

Class.forName("org.gjt.mm.mysql.Driver");
Connection con = DriverManager.getConnection(

"jdbc:mysql://localhost/ag","username","password");

Note that if you explicitly load the class by using Class.forName(), you need to call the
forName() method only once in your program. After the driver is loaded by the JVM, it is avail-
able to any code within the JVM.

Alternately, you can provide the driver class name as a system parameter to the JVM. The
system parameter name is jdbc.drivers. Thus, to tell the JVM to load the MySQL driver, you
would use a command line similar to the following:

java –Djdbc.drivers=org.gjt.mm.mysql.Driver MyProgram
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If you need to load multiple drivers, they can be separated by using a colon as the delimiter.
When you are using this technique, your code no longer needs to call Class.forName(). The JVM
will automatically load the driver class for you (assuming that the class is on the CLASSPATH).

However, those connection parameters are a problem. If you use the DriverManager, you’ll
have to manage those connection parameters. You know you cannot hard-code them in your
Java classes or JSP pages and you cannot store them in the database, so you’ll probably end up
storing them in a property file. When your application is installed, somebody will have to edit
that property file.

Using a javax.sql.DataSource

The javax.sql.DataSource interface was introduced as part of the JDBC 2.0 Standard Exten-
sion to provide Java applications with a standard way to tap into the database connection
management and connection-pooling functionality provided by Java application servers.

If you use the javax.sql.DataSource approach, you no longer have to manage database
connection parameters in your code. Instead, you declare the names of the data sources
required by your application and you expect the administrator who installs your application
to set up those data sources for you in the deployment environment. Within the container,
the administrator configures a data source and binds it to a name.

In your application you need to declare this data source by adding a resource reference to
the application’s web.xml file, as shown here:

<resource-ref>
<res-ref-name>jdbc/agdb</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

After this is done, you can use the following code to look up this data source via JNDI and
to obtain a database connection:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.sql.DataSource ds =

(javax.sql.DataSource) ctx.lookup("java:comp/env/jdbc/agdb");
Connection con = ds.getConnection();

Note that the lookup name is the name jdbc/agdb with an added prefix of java:comp/env/.
This prefix indicates to the container that the resource is an internal resource.

Setting Up a javax.sql.DataSource

So, how do you set up one of these data sources? That depends on your application server, and
every application server is a little different. Some application servers include a web interface
that allows you to set up new data sources and to administer the connection pools associated
with those data sources. Other application servers require you to edit configuration files.

For example, on the Tomcat servlet container, you can use either technique. You can
configure a global or application-specific data source by using Tomcat’s web-based adminis-
tration tool. Figure 9-2 shows the page for configuring an application-specific data source. On
this web page, you enter the parameters for the JDBC driver class name, the connection URL,
the JNDI name, the database URL, and the username and password for the database. After this

eceding code snippets.
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Figure 9-2. Using Tomcat’s web-based administration tool, you can create an application-specific
data source.

You can also create a global data source in a similar manner. Figure 9-3 shows the web
page for configuring a global data source. You enter the same parameters as for an application-
specific data source.

you can create a global data source.
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After creating a global data source, you must configure a link from the application to the
global data source. Figure 9-4 shows how to do this by using the Resource Links web page for
the application. On this page, you enter the name used by your application to access the data
source, and the JNDI name of the global resource. This maps the application name to the
global name and allows different applications to use different names to access the global
resource.

Figure 9-4. Before an application can access a global data source, you must create a link to the
data source for the application.

Alternately, you can manually configure your application’s data source. The configuration
is stored in a file named context.xml in the application’s META-INF directory. The following is 
the Tomcat 5.0 context entry for this chapter’s example application (see “Implementing the RSS
Newsreader Example” later in this chapter):

<Context path="/ch09" docBase="ch09" debug="0">
<Resource name="jdbc/agdb" auth="Container" type="javax.sql.DataSource" />
<ResourceParams name="jdbc/agdb">
<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>
<parameter><name>username</name><value>sa</value></parameter>
<parameter><name>password</name><value></value></parameter>
<parameter>
<name>driverClassName</name>
<value>org.hsqldb.jdbcDriver</value>

</parameter>
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<parameter>
<name>url</name>
<value>jdbc:hsqldb:hsql://localhost</value>

</parameter>
</ResourceParams>

</Context>

■Note Your application server may store the database configuration files in a different location and under
a different name. Check your container’s documentation for information on how to configure database
resources.

Within the Context element, you declare the data source as a resource named jdbc/agdb,
and then you declare the parameters for the data source. As you can see, you specify the same
parameters that you had hard-coded before into the JSP code. These include the JDBC driver
class name, the database connection URL, the database username, and the corresponding
password. If you need to change any of these values, you no longer have to modify the code 
of your application as you would when using the JDBC driver manager.

Note that before you can use JDBC, you need to ensure that your JDBC driver JAR file is
in the right CLASSPATH. If you’re using the JDBC driver manager to obtain your connections,
you can put your JDBC driver JAR in your application’s WEB-INF\lib directory. However, 
if you’re using a JDBC data source, you’ll need to ensure that your JDBC driver JAR is in 
your server’s CLASSPATH. On Tomcat, this means putting your JDBC driver JAR into the
%TOMCAT_HOME%\common\lib directory.

You can also find information on configuring data sources in Tomcat at the Apache
Jakarta Tomcat websites: 

• Apache Jakarta Tomcat website: http://jakarta.apache.org/tomcat

• Apache Jakarta Tomcat 5.5 JNDI DataSource How-To: http://jakarta.apache.org/
tomcat/tomcat-5.5-doc/jndi-datasource-examples-howto.html

Object/Relational Persistence Frameworks
O/R persistence frameworks make it easy to store and retrieve Java objects in a relational data-
base. O/R frameworks come in a variety of shapes and sizes, but generally speaking, an O/R
framework is a class library and a small set of development tools that support the storage and
retrieval of Java objects in a relational database. The following are the main advantages of
using an O/R framework over JDBC:

• Easier to program: With an O/R framework, you can easily store and retrieve your Java
objects without writing a lot of repetitive boilerplate code to map fields to and from
SQL queries.

• Better cross-database support: O/R frameworks make it easier for you to support dif-
ferent vendors’ databases because the framework handles query creation and data-type
mapping. Some frameworks will even generate database creation (DDL) scripts for dif-
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• Better performance: O/R frameworks often include database connection pooling,
object caching, and other performance-enhancing features.

There are a number of ways to use an O/R framework. The authors of the open-source
Hibernate O/R framework wrote about four approaches to O/R persistence. Table 9-1 describes
each approach. Most of the O/R frameworks support these four approaches, so let’s take a look
at each one.

Table 9-1. Approaches to Object-Relational Persistence in the Hibernate Framework

Name Description

Top-down Starting with an existing set of Java objects, you develop a mapping-
specification file that describes your objects and their relationships, use
tools provided by the O/R framework to generate a DDL script to create
database tables to store your objects, and use the O/R frameworks API to
store and retrieve your objects in the database.

Bottom-up Starting with an existing database schema, you develop a mapping-
specification file that describes your tables and their relationships, use
tools provided by the O/R framework to generate your Java objects, and
use the O/R frameworks API to store and retrieve your objects in the
database.

Middle-out In this approach you start by writing a mapping specification that
describes your objects and their relationships, use tools provided by the
O/R framework to generate both your Java objects and your DDL script,
and use the O/R frameworks API to store and retrieve your objects in the
database.

Meet-in-the-middle Take this approach if you already have an existing set of Java objects 
and an existing database schema. All you have to do is write a mapping
specification that maps your Java objects to your database tables, and
then you’re ready to use the O/R frameworks API to store and retrieve
your objects in the database.

O/R persistence frameworks are popular among Java web-application developers, and
there are many choices, both commercial and open source. Popular commercial O/R frame-
works include TopLink, now owned by Oracle, and CocoBase, developed by Thought Inc.
Some open-source O/R frameworks are Castor, Hibernate, and Jakarta OJB.

Later in this chapter, you’ll use the open-source Hibernate framework because it’s well
supported and well documented. This chapter will give you enough information to evaluate
the strengths and weaknesses of the various other O/R frameworks for yourself.

The following are links to the websites of the O/R frameworks previously mentioned:

• Castor (open source): http://www.castor.org/

• CocoBase (Thought, Inc.): http://www.thoughtinc.com

• Hibernate (open source): http://www.hibernate.org/

• Jakarta OJB (open source): http://db.apache.org/ojb/

• TopLink (Oracle): http://www.oracle.com/technology/products/ias/toplink/
index.html
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Java Data Objects
Each of the O/R frameworks previously mentioned has its own unique API and its own unique
way to specify the mapping of Java objects to database tables. This is a problem because it
means that Java programmers may have to learn multiple persistence APIs and mapping tech-
niques as they move through their careers, and because the Java programs written by those
programmers will each be locked into one persistence API. Wouldn’t it be better if there were
only one standard persistence API? Sun thinks so, and that is why Sun worked closely with the
Java community to create the Java Data Objects (JDO) API specification.

JDO is a relatively new Java API specification designed to provide a standard API to enable
the persistent storage of Java data in relational databases, object databases, and other enter-
prise information systems. The JDO specification (http://www.jcp.org/en/jsr/detail?id=12)
was finalized in March 2002; a maintenance release of the specification occurred in 2003, 
and maintenance review was completed at the end of 2004. In addition, at the time of this
writing, public review of the next major update to JDO, JDO 2.0 (http://www.jcp.org/en/jsr/
detail?id=243), has been completed and the expert committee is working on a final draft
specification. Since the initial specification release, a number of commercial and open source
implementations have been released. Commercial JDO implementations include small-name
vendors such as Signsoft and SolarMetric. Open-source implementations include Jakarta OJB
and TriActive JDO (TJDO).

The advantages of using JDO are that it provides the same benefits as using an O/R
framework and that it does so through a standardized API and mapping technique. As a Java
standard, JDO is likely to be very well supported and very well known among Java developers.
The disadvantage of using JDO is that it’s new and, some would say, untested. The big-name
Java vendors, IBM, BEA Systems, and Oracle, haven’t committed to JDO, and the open-source
JDO implementations aren’t yet ready for production use.

It’s important to note that JDO is very different from Microsoft’s ActiveX Data Objects
(ADO) API, despite the similar names. ADO is a lower-level API, similar to JDBC, that allows
you to execute SQL queries and retrieve data as RecordSet objects of tabular data. JDO, on the
other hand, allows you to save and retrieve any arbitrary Java object to and from a database.
JDO includes an object query language (OQL) and when you execute an OQL query, you
receive a collection of objects instead of tabular data as you would with ADO or JDBC.

Like JDBC, JDO is a fairly small API, but complete coverage is well beyond the scope of
this book. For more information, refer to Sun’s JDO home page, the JDO central website, and
the various vendors that are supporting JDO. The following are links to these resources:

• Sun’s JDO home page: http://java.sun.com/products/jdo

• JDO central: http://www.jdocentral.com

• IntelliBO JDO (Signsoft): http://www.intellibo.com/

• Kodo JDO (SolarMetric): http://www.solarmetric.com/Software/Kodo_JDO

• Jakarta OJB (open source): http://jakarta.apache.org/ojb/

• TJDO (open source): http://tjdo.sourceforge.net/
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EJB Entity Beans
EJB is a Java API specification that provides a component architecture for the development
and deployment of distributed business objects, but many Java programmers use EJB only for
its database access and Java object-persistence capabilities. If your application is highly trans-
actional, requires high availability, and is likely to have many concurrent users, you might
want to consider using EJB.

EJB is a standard part of the Java EE and is therefore supported by all Java EE–compliant
application servers. Application servers that support EJB do so by providing an EJB container
that hosts EJB components, just as a servlet container hosts servlets and JSPs. And just as servlet
containers may be clustered to provide load balancing and fault tolerance for servlets, EJB con-
tainers can be clustered to provide the same functionality for distributed business objects.

An EJB container can support three types of components: entity beans, session beans,
and message beans. We won’t discuss session and message beans because they aren’t persis-
tent. We’ll focus on entity beans, which can be persisted to a data store by using one of the
following two mechanisms:

• Container-managed persistence (CMP): You provide a mapping that specifies how to
map fields from your entity bean objects to fields in a database, and the EJB container
manages the persistence of your entity beans in the database.

• Bean-managed persistence (BMP): You implement the persistence of your objects by
using JDBC, an O/R framework, JDO, or some other technology. The EJB container will
notify your code when it’s time to store or retrieve an object to or from the database.

The benefits provided by using EJB for persistence are many; here are some of the most
significant:

• Built-in O/R framework: If you use EJB CMP, you get all the benefits of using an O/R
framework plus the added benefits of EJB. However, the O/R mapping capabilities of
CMP don’t address some of the harder tasks in O/R mapping such as optimistic locking,
batch updates, and so on.

• Scalability and high availability: EJB containers can be clustered to allow your applica-
tion to scale up to meet the needs of more and more users. If an EJB container fails, the
objects that were running in that container will automatically and transparently failover
to continue execution in another EJB container.

• Declarative transaction support: EJB allows you to declare the transactional charac-
teristics of your business objects. Instead of writing the code to begin and end
transactions, you simply declare the transactional requirements of each of your
object’s methods and let the EJB container do the rest. If you have a complex and
highly transactional system, this is an important benefit.

• Declarative method-level security: EJB allows you to declare the security characteris-
tics of your business objects. Instead of writing code to ensure that only certain users
working in certain roles can use your objects, you simply declare the security con-
straints of each of your object’s methods and let the EJB container handle the security.

• Distributed object support: EJB is designed to support the development and deploy-
ment of distributed business objects that are callable via Java Remote Method

rotocol (IIOP).
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One disadvantage of EJB is complexity. The technology is complex, and the learning curve
is steep. To learn EJB development, you need to learn the EJB philosophy, the EJB API, recom-
mended EJB patterns, EJB development tools, and the EJB deployment descriptors. To learn
EJB deployment, you need to learn how to use the administration and deployment tools pro-
vided by the various Java EE application servers that you intend to support, each of which can
vary quite significantly.

Another disadvantage of EJB is development overhead. When EJBs were first introduced,
you needed to create at least three (often four) files for a single EJB. Tools such as XDoclet
made the process easier, but until recently there was a lot of complexity in developing even
simple beans. EJB 3.0, part of the latest Java Platform, Enterprise Edition 5 specification, has
made steps to make the writing process easier, but there are still many issues to understand
and consider. There is also considerable runtime overhead associated with using entity beans
as the container interposes a variety of services for your beans.

EJB does a lot for you, but with increased complexity and significant development over-
head. Make sure that you really need the benefits provided by EJB before you commit to using
it in your application.

Comparing the Choices
Now that you’ve learned about the five data access options, JSTL, JDBC, O/R, JDO, and entity
beans, Table 9-2 reviews the pros and cons of each.

Table 9-2. Comparison of Various Data Access Options

Option Pros Cons

JSTL Simple and easy to use with JSP Useful only for displaying query 
results and performing simple updates

JDBC Can require repetitive, tedious, and
error-prone boilerplate coding

O/R Each O/R framework has its own 
nonstandard API and query language

JDO Currently, supported only by small
vendors

EJB Complex solution, lots to learn
High development overhead
Poor performance if used improperly

Widely supported, well-known, well-
documented, and standard Java API
EJB CMP provides a built-in O/R
framework
Scalability and high-availability
features
Declarative transactions and security
Distributed object support

The official standard Java persistence
API with growing momentum among
developers
Easy to persist objects to DB
Easy to use API and OQL
Most of the same benefits as O/R
frameworks

Makes it easy to persist objects to DB
Eliminates much repetitive boilerplate
coding
Good tool support
Better support for portability
Many open- and closed-source
implementations

Simple and easy to use. Also very
flexible and powerful
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Data Access Architectures
We have discussed several data access technologies and now we’ll discuss how data access 
fits into the architecture of a web application. Of course, there isn’t one true web-application
architecture. Every application is different, and different applications often need different
architectures.

According to UML gurus Grady Booch, James Rumbaugh, and Ivar Jacobson in The Unified
Modeling Language User Guide (Addison-Wesley, 2005), one definition of architecture is the
“set of significant decisions about the organization of a software system.” When you come up
with a new architecture, you’re deciding how to divide your software into different parts and
you’re deciding how these parts will work together. These decisions will affect your application’s
performance, maintainability, reusability, ease of development, and resilience to change.

Architectural decisions often require trade-offs that can be made only by somebody who
knows the unique requirements of the software being developed. In this section, we’ll discuss
architectures at three increasing levels of complexity. You’ll learn the advantages and disad-
vantages of each type of architecture, so that you can decide for yourself which architecture is
best for each of your web applications.

Example: RSS Newsreader
Before we discuss the three types of architectures, we should introduce the example applica-
tion that we’ll use to illustrate these architectures. This chapter’s example is a JSP-based Rich
Site Summary (RSS) newsreader.

RSS is a simple XML-based format for representing the current news stories available on 
a website. A website that supports RSS may provide several RSS news feeds, each covering one
topic and each available at a different URL. An RSS news feed is represented by an RSS file,
which is dynamically generated and updated on a regular schedule. An RSS file contains a
<channel> element that describes the contents of the file, and that channel element contains 
a series of <item> elements with each representing one news story. Each news item has a title,
description, publication time, and link that points to the full story on the website that is asso-
ciated with the news feed. Here’s one <item> element from an RSS that was recently available
from a common news site:

<item>
<title>iPod Owners Make Friends And Influence People (TechWeb)</title> 
<link>http://us.rd.yahoo.com/dailynews/rss/digitalmusic/ ➥

*http://news.yahoo.com/s/cmp/20051026/tc_cmp/172900215</link> 
<guid isPermaLink="false">cmp/20051026/172900215</guid> 
<pubDate>Tue, 25 Oct 2005 18:00:00 GMT</pubDate> 
<description>TechWeb - Owners of Apple Computer's iPods are among ➥

the Internet's most influential users, a study says.</description>
</item>

An RSS newsreader allows a user to subscribe to one or more RSS news feeds, and then to
view the news stories from those news feeds within a single interface such as a desktop applica-
tion or a web page. RSS newsreaders are often referred to as aggregators because they typically
read news stories from multiple sites and aggregate them together for display.
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In this chapter, you’ll develop a simple JSP-based RSS newsreader. If you would like 
to see a more full-featured web-based RSS newsreader, take a look at O’Reilly’s Meerkat,
(http://www.oreillynet.com/meerkat/), which can aggregate and filter news stories from
numerous professional sources. An alternative is Atlassian’s JavaBlogs.com, which aggregates
numerous Java-oriented weblogs (http://www.javablogs.com).

■Note Because of the large amount of code in this example, only a few code listings from the example are
included in this chapter. The complete source code for the example is available as part of the code download for
the book, at the Source Code area of the Apress website (http//:www.apress.com/book/download.html).

Now that you know a little bit about RSS and RSS newsreaders, you’re equipped to under-
stand the examples that follow. Now, let’s move on to the architectures.

One-Layer Architecture
In the simplest JSP data access architecture, an application accesses data directly from the
presentation layer. You might be tempted to use this type of architecture because it seems like
the easy route. After all, you don’t have to design and implement a business layer or a data
layer. Figure 9-5 illustrates the single-layer architecture. As you can see, the presentation layer
not only depends on the Servlet API, but also has a direct dependence on the data access tech-
nology, which might be JDBC, JDO, or some other persistence framework.

Figure 9-5. In a single-layer architecture, the presentation logic, business logic, and data access
logic all reside within the same application code.

With single-layer architecture, you’re sacrificing maintainability, reusability, and resilience
to change in order to make development a little easier. This might be acceptable for a smaller
application, but for a larger application this type of architecture will make your code have the
following characteristics:

• Difficult to maintain: Presentation, business, and persistence logic are all mixed
together and cannot be considered or changed separately.
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CHAPTER 9 ■ DATA ACCESS OPTIONS FOR WEB APPLICATIONS374

513-0 ch09.qxd  11/16/05  12:03 PM  Page 374



• Difficult to reuse: The business logic cannot easily be separated from the presentation
logic. If you need to create a new application or a web service that uses your business
logic, you’re out of luck because your business logic is mixed in with your JSP and
servlet-based presentation code.

• Not resilient to change: If you need to switch to a new data access technology, you’ll
have to make sweeping changes in your code. You cannot change the persistence logic
without putting the business logic and presentation logic at risk.

Two-Layer Architecture
Splitting your application into a presentation layer and a business layer can solve the one-layer
problems previously mentioned. This is a more difficult task because it requires designing busi-
ness objects to model the business concepts and entities in your application. It also requires
creating an interface or a set of interfaces through which your presentation layer can invoke
business operations and access business objects.

Figure 9-6 illustrates the two-layer architecture. As you can see, the presentation layer
depends on the Servlet API but it calls upon the business layer to perform business operations
and data access. The business layer depends on data access technology, which again can be
JDBC, JDO, or some other persistence framework. Looking at Figure 9-6, you can see that the
business layer is now an independent and reusable software entity. You could take that busi-
ness layer and place it in a desktop application or you could take it and build a SOAP-accessible
web service around it.

Figure 9-6. In a two-layer architecture, the presentation logic is separated from the business logic
and data access logic.

You’re probably wondering what is going on inside the business layer box in Figure 9-6.
The best way to understand the concepts of business interfaces and business objects is by
example. So, let’s take a look at the business objects and business interface of the RSS news-
reader that was mentioned earlier.

An RSS newsreader allows a user to subscribe to a number of news feeds and then to read
the news items retrieved from those news feeds. By looking at the nouns in that sentence, you
can see what objects are going to be involved in this application. You’ll need objects to model
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users, subscriptions, news feeds, and news items. Figure 9-7 is a UML diagram that shows
these objects, their attributes, and their relationships.

Figure 9-7. A User has one or more Subscriptions. A Subscription consists of Newsfeeds, which
consists of Items.

The diagram, which uses UML notation, shows that the users have a one-to-many
relationship with subscriptions, subscriptions have a many-to-many relationship with news
feeds, and news feeds have a one-to-many relationship with items. In this example, you’ll
have a one-to-one correspondence between classes and database tables. So you’ll have User,
Subscription, Newsfeed, and Item objects as well as corresponding user, subscription,
newsfeed, and item tables.

Now that you’ve designed the objects needed for your application, you’ll need to design
the business-layer interface. This interface will be used by the presentation layer to invoke
newsreader operations and to access the newsreader objects that were discussed earlier.

To implement the presentation layer, you need to be able to add subscriptions, remove
subscriptions, access users, and run the news feed aggregation operation. Listing 9-2 shows 
an interface that fulfills all of these requirements.

Listing 9-2. Aggregator.java

package com.apress.projsp;
/**
* Business interface for Newsfeed aggregation.
*/

public interface Aggregator {
/** Gets user by name, create new user if necessary. */
public User getUser(String userName) throws Exception;

/** Add new subscription and associate with a newsfeed. */
public Subscription addSubscription(

User user, String name, String url) throws Exception;

/** Remove subscription by id. */

User
+name

Item

+title
+time
+description
+link

Newsfeed

+url1

1

*
*+name

Subscription
*

*
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/** Run the aggregator and fetch items from all Newsfeeds. */
public void aggregate() throws Exception;

}

The Aggregator interface distills the interface between the presentation layer and the busi-
ness layer down to only four methods. The interface is so simple because the getUser() method
does a lot of work. It returns a User object that has a collection of Subscription objects. Each
Subscription has a Newsfeed object, and each Newsfeed has a collection of Item objects, the
most recent news stories retrieved from the Newsfeed’s website.

The addSubscription() and removeSubscription() methods allow you to manage sub-
scription in the presentation layer. Finally, the aggregate() method allows you to launch the
aggregate operation, which visits each of the news feeds represented by subscriptions in the
database, parses the RSS from the news feed into Item objects, and stores those objects in
the database.

With the simple Aggregator interface previously discussed, you can totally separate the
presentation layer of the RSS newsreader from the business layer. The presentation layer
doesn’t need to know anything about what is going on behind that interface. It doesn’t need
to know what type of RSS parser is being used to parse the incoming news feeds. It doesn’t
need to know what type of data access technology is being used to persist business objects.

A two-layer architecture is usually sufficient, but in some cases you may wish to take the
architecture one step further and use a three-layer architecture.

Three-Layer Architecture
The two-layer architecture works well. It allows you to separate presentation logic from busi-
ness logic, and that is good. However, you didn’t separate the business logic from the data
access logic. Business logic and data access logic seem to go together. Business rules are often
built right into database schemas in the form of database constraints, and business logic is
often coded into databases in stored procedures and triggers.

But if two is good, three must be better. Figure 9-8 shows an illustration of a three-layer
architecture. In the three-layer architecture, business logic is further separated from data
access logic. 

Figure 9-8. In a three-tier architecture, presentation, business, and data are separated into
different components, making it easier to change components in a tier without affecting the
other tiers.
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Why would anybody want to introduce yet another layer into an application? After all,
each additional layer adds another layer of complexity, and all these layers cannot be good
for performance. You have to think carefully before you decide to add another layer to your
application, but there are at least two reasons that you might want to do so. These reasons to
consider separate business and data layers come right off the list of trade-offs that we dis-
cussed when we introduced the topic of architecture:

• Reusability: Someday you may want to turn your business layer into a stand-alone
desktop application that doesn’t require a database. If your data access logic is mixed in
with your business logic, this task is going to be difficult and error-prone.

• Resilience to change: Changes in the persistence logic will be less likely to affect the
business logic, and changes in the business logic will be less likely to affect the persis-
tence logic. For example: Someday you might find that the O/R persistence framework
you chose has a fatal flaw or is no longer going to be supported. You might need to
replace your chosen O/R framework with something else, and separation of business
logic and data access logic will make this task easier.

Reusability and resilience to change are forms of flexibility, and most developers consider
flexibility to be a good thing. However, it’s important to realize that flexibility comes at the
price of added complexity, and complexity makes software more difficult to develop and to
maintain. You don’t want to do a lot of extra work now for some event that may possibly occur
at some point in the future, especially if that extra work is going to make your application
more difficult to maintain. The following are a couple of other reasons not to use separate
business and data layers:

• Developing an abstract interface to data access isn’t an easy task. It requires some
knowledge of each of the various data access technologies that you may wish to use
behind that interface.

• Hiding your data access technology behind an abstract interface may make it difficult
to use some of that technology’s advanced features.

The Data Access Object Pattern
If you decide that you do want to implement a three-layer architecture and you do want to
separate out your data access logic into a data layer, then you should consider using the Data
Access Object (DAO) pattern. As you may already know, a pattern is a general design for a
recurring problem. The DAO pattern is a general design for encapsulating data access. The
DAO pattern is a popular pattern and is documented as part of the Sun J2EE Patterns Catalog
(http://java.sun.com/blueprints/corej2eepatterns/).

Here is how the DAO pattern works. Instead of calling the JDBC or some other persistence
API directly from all of your Java classes that need to access data, you encapsulate all of your
data access code in one or more data access objects, or DAOs. Typically a DAO will include
methods for creating, retrieving, updating, and deleting objects from the database as well as
methods for querying the database to retrieve collections of objects. Depending on how you
implement the DAO pattern, you could have a DAO for each class of object in your application
or you could have a single DAO that is responsible for creating, retrieving, updating, and delet-
ing all of your objects.
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In your RSS newsreader application example, there is a single DAO called AggregatorDAO,
which is shown in Listing 9-3. The AggregatorDAO contains methods for creating, retrieving,
updating, and deleting all the different types of objects that are part of the application. These
objects are User, Subscription, Newsfeed, and Item.

Listing 9-3. AggregatorDAO.java

package com.apress.projsp.persist;

import com.apress.projsp.Item;
import com.apress.projsp.Newsfeed;
import com.apress.projsp.Subscription;
import com.apress.projsp.User;
import java.util.List;

/** Aggregator Data Access Object (DAO) interface. */
public interface AggregatorDAO {
/** Gets user by name, create new user if necessary. */
public User getUser(String userName) throws DAOException;
/** Add new subscription and associate with a newsfeed */
public Subscription addSubscription(
User user, String name, String url) throws DAOException;

/** Retrieve subscription by ID */
public Subscription retrieveSubscription(String id) throws DAOException;
/** Remove subscription but not associated Newsfeed. */
public void removeSubscription(Subscription sub) throws DAOException;

/** Get all newsfeeds. */
public List getAllNewsfeeds() throws DAOException;

/** Remove newsfeed and associated subscriptions. */
public void removeNewsfeed(Newsfeed feed) throws DAOException;

/** Store newsfeed. */
public void storeNewsfeed(Newsfeed feed) throws DAOException;
/** Add item to newsfeed. */
public void addItem(Newsfeed feed, Item item) throws DAOException;

/** Add a newsfeed (for testing only). */
public Newsfeed addNewsfeed(String url) throws DAOException;
/** Get all items (for testing only). */
public List getAllItems() throws DAOException;

}

AggregatorDAO is an interface that you could implement by using just about any data
access technology. For example, you could write a JdbcAggregatorDAO class that implements
data access with JDBC or you could write an XmlAggregatorDAO that stores User, Subscription,
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Newsfeed, and Item objects in an XML file. In the next section, you’ll learn the steps involved
in implementing the AggregatorDAO interface when using the Hibernate O/R persistence
framework. 

Implementing the RSS Newsreader Example
The RSS newsreader example that we have been discussing in this chapter is developed by
using a three-layer architecture as described in the previous section. The application includes
a presentation layer, a business layer, and a data layer. In this section, we’ll first discuss the
package organization of the RSS newsreader and then we’ll cover each of the steps that were
taken in the development of the application.

Package Organization
Before talking about the steps involved in building this application, let’s talk a little more
about how the pieces fit together. Figure 9-9 shows the three layers of the application, the Java
packages that exist within each layer, and the dependencies that exist between these packages
indicated by arrows.

Figure 9-9. The RSS application has three layers (or tiers). Each component in the application 
is part of a single layer. The components work together to provide the functionality of the 
application.

The business layer is made up of the business objects and the AggregatorImpl class,
which implements the Aggregator business interface that was discussed earlier in the section
on two-layer architectures. The business layer depends only on the data layer, and the sole
interface to the data layer is the AggregatorDAO interface.
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The presentation layer is implemented with JSP pages, JSTL tags, and Java classes in the
package com.apress.projsp.web, which are responsible for parsing request parameters and
calling the business layer. The presentation layer depends only on the business layer. The sole
interface to the business layer is the Aggregator business interface.

The data layer exists under the com.apress.projsp.persist package and is made up 
of the AggregatorDAO interface, the DAOException class, and the DAO implementation class
HibeAggregatorDAO. The DAO implementation uses the Hibernate O/R persistence framework.

Step 1: Implementing the Object Model
You’ve already learned the first steps in the RSS newsreader development process. These steps
were the design of the object model, the design of the business interface, and the design of the
DAO interface that will encapsulate data access.

The next step in the process is to implement the object model. This is easy because there
are only four business objects, and these business objects are simple JavaBeans with each hav-
ing only a small number of properties. Listing 9-4 is an example of one of the business objects,
the Item class.

Listing 9-4. Item.java

package com.apress.projsp;
import java.util.Date;
import java.util.Set;
/**
* Represents a single news item retrieved from a newsfeed.
*/

public class Item {
private String mId;
private String mLink;
private String mDescription;
private String mContent;
private String mTitle;
private Date mTime;
private Newsfeed mNewsfeed;
private Item mItem;

/**
* Construct Item using all field values.
* @param title  Title of this news item.
* @param time  Time of publication.
* @param link  Link article on originating website.
* @param desc  Description of article (or full text of article).
* @param content (Optional) full text of article.
*/
public Item( String title, Date time, String link,
String description, String content ) {
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mTitle = title;
mTime = time;
mLink = link;
mDescription = description;
mContent = content;

}
/** Default constructor */
public Item() {
}
public String getId() {
return mId;

}
public void setId(String id) {
mId = id;

}
public Newsfeed getNewsfeed() {
return mNewsfeed;

}
public void setNewsfeed(Newsfeed newsfeed) {
mNewsfeed = newsfeed;

}
public String getTitle() {
return mTitle;

}

public void setTitle(String title) {
mTitle = title;

}
public String getContent() {
return mContent;

}
public void setContent(String content) {
mContent = content;

}
public String getDescription() {
return mDescription;

}
public void setDescription(String description) {
mDescription = description;

}
public String getLink() {
return mLink;

}
public void setLink(String link) {
mLink = link;

}
public Date getTime() {
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return mTime;
}
public void setTime(Date time) {
mTime = time;

}
}

Similar JavaBeans exist for User, Subscription, and Newsfeed.

Step 2: Creating an Object-Relational Mapping
The next step in the development of the RSS newsreader is the development of the data layer
to store and retrieve the business objects developed in step 1.

This step is a little more difficult because you must learn the ins and outs of your persis-
tence choice—in our case the Hibernate O/R persistence framework. Luckily, the Hibernate
documentation is very good and Hibernate is fairly easy to use.

Before you can use Hibernate to store Java objects in a relational database, you have to
create an object-relational mapping for each object to be stored. A mapping specification is an
XML file that describes how to map one or more Java classes to tables in a database. For exam-
ple, the mapping for the com.apress.projsp.Newsfeed class, from the file Newsfeed.hbm.xml, is
shown in Listing 9-5.

Listing 9-5. Newsfeed.hbm.xml

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<!-- ag.Newsfeed root -->
<class name="com.apress.projsp.Newsfeed" table="newsfeed">

<id column="id" name="id" >
<generator class="uuid.hex"/>

</id>
<property name="url" column="url" type="string" 

not-null="true" unique="true" />
<set name="items" table="item" cascade="delete" >

<key column="newsfeed_id" />
<one-to-many class="com.apress.projsp.Item" />

</set>
<set name="subscriptions" table="subscription" cascade="delete">

<key column="newsfeed_id" />
<one-to-many class="com.apress.projsp.Subscription" />

</set>
</class>

</hibernate-mapping>
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Let’s analyze the contents of the Hibernate mapping.
After the standard XML declaration and the DOCTYPE tags, you find the root element of a

Hibernate mapping file, the <hibernate-mapping> element. Within the root element, you’ll find
one or more <class> tags. The <class> tag maps one class to a database table, so the tag has
two attributes. The name attribute specifies the name of the Java class, and the table attribute
specifies the name of the table that the Java class is to be mapped to:

<hibernate-mapping>
<class name="com.apress.projsp.Newsfeed" table="newsfeed">

The first element within the class mapping is the <id> element. This element specifies
which JavaBean property and which database table column are to be used as a primary key for
the class. Within the <id> tag is the <generator> tag, which specifies which method should be
used to generate primary keys for new objects:

<id column="id" name="id" >
<generator class="uuid.hex" />

</id>

Hibernate supports 10 primary-key generation methods. The class="uuid.hex" method
results in a 32-character key that is generated by using the IP address of the machine upon
which Hibernate is running. It’s also possible to tell Hibernate to allow the database to gener-
ate the key by using class="sequence" or to allow the application to assign the key by using
class="assigned".

The <property> tag maps a simple java.lang.String property named url to a database
column called url. The property isn’t allowed to be null and is required to be unique.

<property name="url" column="url" type="string"
not-null="true" unique="true" />

The next two elements are interesting. The <set> tag indicates that you’re mapping 
a java.util.Set collection to the database. Each Newsfeed is associated with a collection 
of Item objects and a collection of Subscription objects. This is a classic one-to-many rela-
tionship. The com.apress.projsp.Newsfeed objects are stored in the newsfeed table, the
com.apress.projsp.Item objects are stored in the item table, and the two tables are related 
by a newsfeed_id column in the item table:

<set role="items" table="item" cascade="delete">
<key column="newsfeed_id" />
<one-to-many class="com.apress.projsp.Item" />

</set>
<set role="subscriptions" table="subscription" cascade="delete">
<key column="newsfeed_id" />
<one-to-many class="com.apress.projsp.Subscription" />

</set>

If you’re having a hard time visualizing these relationships, refer to Figure 9-7 in the 
“Two-Layer Architecture” section, which shows the relationships between User, Subscription,
Newsfeed, and Item objects.
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It’s possible to map more than one class within a single <hibernate-mapping> element,
but it’s a recommended practice to map only one class per mapping file. At runtime, the
Newsfeed.hbm.xml file should be placed in the same package as the Newsfeed.class so that
Hibernate can find it.

The Hibernate mapping file may look complicated, but it’s complicated for a reason. The
mapping is designed to accommodate all the different data and relationship types that you
might use in a Java application and in a relational database schema. If you have problems
coming up with the right mappings, consult your friendly database administrator. Ask for
help on the Hibernate mailing list.

Step 3: Creating the Database Tables
Creating the object-relational mappings for the RSS newsreader classes is relatively difficult,
but once you have those mappings Hibernate starts to earn its keep.

Hibernate includes a command-line tool that reads mapping files and can then either
generate a database creation script or connect to your database and create the tables for you.
This tool is called SchemaExport and it can handle 16 database dialects including Oracle,
Sybase, Microsoft SQL Server, MySQL, and PostgreSQL.

SchemaExport is just a command-line Java program, so it may be easily run from an Ant
build script. For example, the following Ant build script excerpt is used to run SchemaExport
and create the tables for the RSS newsreader example:

<target name="create-tables">
<java classname="net.sf.hibernate.tool.hbm2ddl.SchemaExport"

fork="true" dir="./build/5130ch09/WEB-INF/classes">
<arg value="--quiet"/>
<arg value="--output=../ag.ddl"/>
<arg value="--properties=hibernate.properties"/>
<arg value="./com/apress/projsp/Subscription.hbm.xml"/>
<arg value="./com/apress/projsp/Newsfeed.hbm.xml"/>
<arg value="./com/apress/projsp/Item.hbm.xml"/>
<arg value="./com/apress/projsp/User.hbm.xml"/>
<classpath>

<path refid="jdbcdriver.path"/>
<path refid="hibernate.path"/>
<pathelement
path="./build/5130ch09/WEBINF/classes/com/apress/projsp/"/>

</classpath>
</java>

</target>

The <java> element runs the class cirrus.hibernate.tools.SchemaExport within the
build directory so that it can find the mapping files. The –output argument tells the Schema-
Export to generate a database creation script named rss.ddl. The –properties argument tells
SchemaExport where to find the Hibernate properties file, which contains the database con-
nection parameters needed to connect to the target database. The rest of the arguments
indicate which mappings are to be processed.
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The create-tables target in the previous example code comes from an Ant build script.
This Ant build script compiles the example Java classes, builds the example WAR file, and cre-
ates the example’s database tables by using the create-tables target. You can find the build
script with the code download for this book (http://www.apress.com/book/download.html).

Step 4: Implementing the AggregatorDAO
The next step in RSS newsreader development is to write the Hibernate implementation of the
AggregatorDAO interface. This implementation is in the package com.apress.projsp.persist.
hibe and is named HibeAggregatorDAO.

This task requires some knowledge of the Hibernate API, but the excellent Hibernate Ref-
erence Document (available at http://www.hibernate.org/hib_docs/v3/reference/en/html/)
and Javadocs really shortens the learning curve. Obviously, we don’t want to discuss every line
of code in the implementation. Looking at the code for the constructor and the logic for per-
sisting one object should give you a good understanding of the implementation.

Listing 9-6 is the source code for the HibeAggregatorDAO class. We have split this code
listing into parts, so that we can more easily discuss the various methods of the class. The
constructor creates a Hibernate Datastore, loads the mappings for the classes that will be
persisted, and creates a SessionFactory for use during the rest of the lifetime of the DAO
object. The SessionFactory represents a database connection pool and is responsible for cre-
ating Session objects. The Session interface is the main Hibernate interface used by a Java
program; a Session object holds a database connection.

Listing 9-6. HibeAggregatorDAO.java (Package, Imports, and Constructor)

package com.apress.projsp.persist.hibe;
import com.apress.projsp.*;
import com.apress.projsp.persist.*;
import net.sf.hibernate.*;
import net.sf.hibernate.cfg.*;
import java.util.List;
/** Hibernate implementation of Ag DAO. */
public class HibeAggregatorDAO implements AggregatorDAO {

private static SessionFactory sessionFactory;
public HibeAggregatorDAO() throws DAOException {

try {
Configuration config = new Configuration();
config.addClass(Newsfeed.class);
config.addClass(Subscription.class);
config.addClass(User.class);
config.addClass(Item.class);
sessionFactory = config.buildSessionFactory();

}
catch (MappingException e) {

throw new DAOException(e);
}
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catch (HibernateException e) {
throw new DAOException(e);

}
}

The storeNewsfeed() and storeObject() methods, as shown next, illustrate the code nec-
essary to add a new object into the data store. The first step in the method is to open a session,
which begins a database transaction. Next, you’ll save the object database. To finalize the
operation, you commit the transaction. If an exception occurs, roll back the transaction and
throw a DAOException so that the business layer can handle the error condition. The finally
block ensures that, no matter what happens, the session is closed and therefore the database
connection that was used by the connection is released back to the database connection pool.

Listing 9-6. HibeAggregatorDAO.java (storeNewsfeed() and storeObject() Methods)

public void storeNewsfeed(Newsfeed feed) throws DAOException {
storeObject(feed);

}
private void storeObject(Object obj) throws DAOException {
Session ses = null;
try {

ses = sessionFactory.openSession();
ses.saveOrUpdate(obj);
ses.flush();
ses.connection().commit();

} catch (Exception e) {
try { ses.connection().rollback(); }
catch (Exception ex) { e.printStackTrace(); };
throw new DAOException(e);

} finally {
try { ses.close(); }
catch (Exception ex) { ex.printStackTrace(); };

}
}

The retrieveNewsfeed() method and retrieveObject() methods in the following contin-
uation of Listing 9-6 show the code necessary to retrieve an object from the database by using
the object’s primary key. The steps are simple. You open a session, load the object, close the
session, and return the object.

Listing 9-6. HibeAggregatorDAO.java (retrieveNewsfeed() and retrieveObject() Methods)

public Newsfeed retrieveNewsfeed(String id) throws DAOException {
return (Newsfeed)retrieveObject(Newsfeed.class, id);

}
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private Object retrieveObject(Class clazz, String id) throws DAOException {
Object obj = null;
Session ses = null;
try {
ses = sessionFactory.openSession();
obj = ses.load( clazz, id );

} catch (Exception e) {
throw new DAOException(e);

} finally {
try { ses.close(); }
catch (Exception ex) { ex.printStackTrace(); };

}
return obj;

}

The getAllNewsfeeds() method, shown in the following excerpt, illustrates the code nec-
essary to fetch a collection of objects from the database by using a query. This is also a simple
operation. You open a session and run a query to get all news feeds by using the ses.find()
method. The query is expressed by using Hibernate’s own OQL, which is similar to but not
quite the same as SQL.

Listing 9-6. HibeAggregatorDAO.java (getAllNewsfeeds() Method)

public List getAllNewsfeeds() throws DAOException {
List feeds = null;
Session ses = null;
try {

ses = sessionFactory.openSession();
feeds = ses.find("from newsfeed in class " +

"com.apress.projsp.Newsfeed");
} catch (Exception e) {
throw new DAOException(e);

} finally {
try { ses.close(); }
catch (Exception ex) { ex.printStackTrace(); };

}
return feeds;

}

The removeNewsfeed() and removeObject() methods show the code necessary to remove
an object from the database. The steps here are very similar to the steps involved in the
storeNewsfeed() method, except that we call ses.delete() to delete the object. Note that,
because you specified the cascade="true" attribute in the mapping for the associated Item
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and Subscription collections, any items and subscriptions associated with the Newsfeed
object will also be removed from the database.

You might be wondering why you have to call ses.load() on the object before you can
delete it. That call is necessary because objects have associations, and associations will not 
be handled properly at delete-time if the object and its associations aren’t created within the
same session as the ses.delete() call.

Listing 9-6. HibeAggregatorDAO.java (removeNewsfeed() and removeObject() Methods)

public void removeNewsfeed(Newsfeed feed) throws DAOException {
removeObject(Newsfeed.class, feed.getId(), feed);

}
private void removeObject(Class clazz, String id, Object obj)

throws DAOException {
Session ses = null;
try {
ses = sessionFactory.openSession();
obj = ses.load(clazz,id);
ses.delete(obj);
ses.flush();
ses.connection().commit();

} catch (Exception e) {
try { ses.connection().rollback(); }
catch (Exception ex) { e.printStackTrace(); };
throw new DAOException(e);

} finally {
try { ses.close(); }
catch (Exception ex) { ex.printStackTrace(); };

}
}

Step 5: Implementing the Business Layer Interface
The next step after implementing the AggregatorDAO interface is to implement the business-layer
interface. The business-layer interface is the Java interface Aggregator and the implementation
is the Java class AggregatorImpl.

The Aggregator interface is a very small interface and most of its methods correspond
directly to methods in the AggregatorDAO interface, so they are easy to implement.

The only real application logic that exists in this sample application is the Aggregator.
aggregate() method. This method is responsible for walking the list of news feeds in the data-
base, fetching the RSS data for each news feed, parsing the RSS data, and saving the news
items found in each news feed to the database.

The code for the aggregate() method is shown in Listing 9-7. The method uses an RSS
parsing API from an open-source product known as Flock.

Listing 9-7 shows a class that implements the Aggregator interface. First, you create a
FlockFeedFactory to help you to parse the RSS XML. Next, you get an iterator so that you may
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iterate over all the news feeds in the database. You call upon Flock to parse each news feed into
articles. Each article is then stored into the database by using the AggregatorDAO.addItem()
method. 

Listing 9-7. AggregatorImpl.java

package com.apress.projsp;
import net.sourceforge.flock.FlockArticleI;
import net.sourceforge.flock.FlockFeedI;
import net.sourceforge.flock.parser.FlockFeedFactory;
import java.net.URL;
import java.util.Iterator;
import com.apress.projsp.persist.*;
public class AggregatorImpl implements Aggregator {
private AggregatorDAO dao;

public AggregatorImpl(AggregatorDAO dao) {
this.dao = dao;

}
/** Run aggregation, collection items, store them in database */
public void aggregate() throws Exception {
FlockFeedFactory factory = new FlockFeedFactory();

Iterator feedIter = dao.getAllNewsfeeds().iterator();
while ( feedIter.hasNext() ) {
Newsfeed feed = (Newsfeed)feedIter.next();
String url = feed.getUrl();

try {
FlockFeedI flockFeed = factory.createFeed(new URL(url));
Iterator articleIter = flockFeed.getArticles().iterator();

while ( articleIter.hasNext() ) {
FlockArticleI article = (FlockArticleI)articleIter.next();
Item item = new Item(

article.getTitle(),
article.getCreationTime(),
article.getLink().toString(),
article.getDescription(),
"");

dao.addItem(feed,item);
}

} catch (Exception e) {
e.printStackTrace();
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}
}

}
/** Gets user by name, create new user if necessary. */
public User getUser( String userName ) throws Exception {
return dao.getUser(userName);

}

/**
* Add new subscription and associate with a newsfeed, creating
* a new newsfeed only if necessary.
*/
public Subscription addSubscription(
User user, String name, String url) throws Exception {
return dao.addSubscription(user,name,url);

}

/**
* Remove subscription but not associated Newsfeed.
*/
public void removeSubscription(String id) throws Exception {
Subscription sub = dao.retrieveSubscription(id);
dao.removeSubscription(sub);

}
}

For more information on the Flock RSS news aggregator and parser, check out the Flock
website: http://flock.sourceforge.net/.

Step 6: Implementing the Web User Interface
The final step in the development of the RSS newsreader is the creation of the presentation
layer. The presentation layer is made up of a simple controller servlet, three action classes, and
three JSP pages that correspond to those three action classes. The controller servlet and the
action classes constitute a very simple Struts-like Model-View-Controller (MVC) framework. All
requests are handled initially by the controller servlet, com.apress.projsp.web.Controller. The
controller determines which action to call and does so. All of the action classes implement the
com.apress.projsp.web.Action interface. Each action class follows the same pattern:

1. Perform an action.

2. Load some objects (the model) into scope.

3. Forward the request to a JSP page (this is the view).

Table 9-3 summarizes the three web pages and lists the JSP page and action class for 
each page. 

CHAPTER 9 ■ DATA ACCESS OPTIONS FOR WEB APPLICATIONS 391

513-0 ch09.qxd  11/16/05  12:03 PM  Page 391



Table 9-3. Action Classes and JSP Pages in the RSS Application

Name Action Class JSP Page Description

Login or Change User login.jsp Allows user to log in by entering 
a username. If username doesn’t
exist in database, new user will be
created.

Manage Subscriptions subs.jsp Allows user to add new subscrip-
tions and to remove existing
subscriptions.

Read News news.jsp Allows user to view news items that
have been previously aggregated
and to request aggregation of new
news items.

com.apress.projsp.web.
AggregationAction

com.apress.projsp.web.
SubscriptionAction

com.apress.projsp.web.
LoginAction
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The SubscriptionAction Class
Before you dive into Java code, let’s take a look at how the Manage Subscriptions page looks 
in a web browser. Figure 9-10 shows a screen shot of the page generated by the presentation
layer just after a new subscription was added.

Figure 9-10. The Manage Subscriptions page of the RSS application allows a user to add or
remove subscriptions.
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The page starts out with a title, Manage Subscriptions, and a menu that allows the user to
access the Read News page and the Change User page. After that there is a status message area
and one status message that indicates the result of the last action performed. In this case, the
last action performed was the addition of a new subscription named Yahoo Personal Tech.
Under the status message is the Add a New Subscription form. The form includes a subscrip-
tion name field, a subscription URL field, and a button to submit the form. Finally, under the
Subscriptions heading, there is a list of the user’s current subscriptions.

How does the page work? Let’s start from the beginning. As you can see in the screen shot,
the URL is http://localhost:8080/5130ch09/ag/subs. The /ag part of the URL maps the incom-
ing request to the controller servlet. The controller servlet uses the path-info part of the URL (in
this case subs is the path-info) to determine which action is to be called. Then it calls the action
object’s doGet(request, response) method to process the request. In this example, the path-
info subs maps to an action object of class com.apress.projsp.web.SubscriptionAction.

SubscriptionAction is responsible for responding to posts from the Add a New Subscrip-
tion form, for removing subscriptions, for adding to scope the objects required for displaying
the Manage Subscriptions page, and, finally, for forwarding the request to the subs.jsp page
for display. Let’s take a closer look at SubscriptionAction.java. Listing 9-8 shows the code for
the SubscriptionAction class, interspersed with comments.

Listing 9-8. SubscriptionAction.java

package com.apress.projsp.web;
import com.apress.projsp.User;
import java.util.Collection;
import javax.servlet.ServletContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
/** Action for subscription management. */
public class SubscriptionAction extends BaseAction {
public SubscriptionAction(ServletContext mContext) throws Exception {
super(mContext);

}

The previous code shows the class declaration and the constructor. The class implements
the Action interface, but like the other action classes, it does so by extending the BaseAction
class.

Listing 9-8. SubscriptionAction.java (continued)

/** Process subscription action. */
public void doGet(HttpServletRequest req, HttpServletResponse res) {
try {
String verb = req.getParameter("verb");
String name = req.getParameter("name");
String url = req.getParameter("url");
String remove = req.getParameter("remove");
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// Perform action specified by request attribute 'verb'
if ((verb != null) && verb.equals("Add")) {
User user = (User) req.getSession().getAttribute("ag.user");
mAggregator.addSubscription(user, name, url);
req.setAttribute("processMessage", "Added subscription [" + name + "]");

} else if ((remove != null) && verb != null && verb.equals("Remove")) {
mAggregator.removeSubscription(remove);
req.setAttribute("processMessage", "Removed subscription ["

+ remove + "]");
}

The first half of the doGet() method looks for a request parameter called verb. If that
parameter equals add, the action attempts to add a subscription. If it equals remove, the action
attempts to remove a subscription. If either of these actions succeeds, a status message is put
into the request as a request attribute using the name processMessage. If there is an exception,
an error message is put into the request using the name processError.

Listing 9-8. SubscriptionAction.java (continued)

// Load model into context for page
User user = (User) req.getSession().getAttribute("ag.user");
user = mAggregator.getUser(user.getName());
req.setAttribute("user", user);
Collection subs = user.getSubscriptions();

req.setAttribute("subs", subs);
// Forward to view
req.getRequestDispatcher("subs.jsp").forward(req, res);

} catch (Exception e) {
String msg = "ERROR Processing form action [" +

e.getCause().getMessage() + "]";
req.setAttribute("processError", msg);
mContext.log(msg, e);

}
}

}

The second half of the doGet() method places the objects required by the Manage Sub-
scriptions page into the appropriate scope. In this case the appropriate scope is request scope.
Finally, it uses the request dispatcher to forward the request to the subs.jsp page for display.

The subs.jsp Page
Now let’s take a close look at the subs.jsp code. The code is shown in Listing 9-9 in its entirety,
interspersed with comments.
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Listing 9-9. subs.jsp

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/c.tld" prefix="c"%>

You start the page by including the Core JSTL taglib from the file WEB-INF\c.tld. After the
familiar <html> and <body> tags, you emit a menu consisting of links to the other actions in the
application news and login.

Listing 9-9. subs.jsp (continued)

<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>

<style type="text/css"><jsp:include page="/ag.jsp" /></style>
<title>Ag - Manage Subscriptions</title>

</head>
<body bgcolor="#FFFFFF">
<h1>Ag - Manage subscriptions</h1><hr />
<p>

<b>Manage Subscriptions</b> |
<a href="news">Read News</a> |
<a href="login">Change User <c:out value="[${user.name}]" /></a>

</p>

To display status information, you start using some of the objects that were put into the
request by the action object. The user object is a business layer object of type com.apress.
projsp.User. The processMessage and processError objects are strings that, if they exist, con-
tain status or error information.

Listing 9-9. subs.jsp (continued)

<c:if test="${ processMessage != '' }">
<p><font color="green"><c:out value="${processMessage}" /></font></p>

</c:if>
<c:if test="${ processError != '' }">
<p><font color="red"><c:out value="${processError}" /></font></p>

</c:if>

Next, you have the Add a new subscription form. This form has two fields, called name
and url. As you can see, this form posts to the subs action.

Listing 9-9. subs.jsp (continued)

<h2>Add a new subscription</h2>
<form action="subs" method="POST">

Name <input type="text" name="name" />
Newsfeed URL <input type="text" name="url" size="40"/>
<input type="submit" name="verb" value="Add"/>

</form>
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Finally, there is the Subscriptions list. Here, you use a JSTL <c:forEach> tag to loop
through the subs collection that was placed into the request by the SubscriptionAction object.
For each com.apress.projsp.Subscription object in the collection, you use the JSTL <c:url>
tag to construct a remove link. The remove link is just a link back to the subs action, but with a
request parameter named remove whose value is the ID of the subscription to be removed.

Listing 9-9. subs.jsp (continued)

<h2>Subscriptions</h2>
<p>You are currently subscribed to these newsfeeds:</p>
<c:forEach var="sub" items="${subs}">

[<c:url value="subs" var="url">
<c:param name="verb" value="Remove"/>
<c:param name="remove" value="${sub.id}"/>

</c:url>
<a href="<c:out value='${url}'/>">  Remove </a> ]
<b>Name:</b> <c:out value="${sub.name}"/>
<b>URL:</b> <c:out value="${sub.newsfeed.url}"/> <br/>

</c:forEach>
</body>
</html>

Castor: An Alternative to Hibernate
Castor is an open-source persistence framework like Hibernate. Although Castor has been
around longer than Hibernate and may be more widely accepted, Hibernate was chosen for
this chapter because it has better documentation. However, the RSS newsreader example pro-
gram can be configured to use either Hibernate or Castor.

If you look at the example source code, you’ll find a class in the package ag.persist.castor
named CastorAggregatorDAO. This class is an implementation of the AggregregatorDAO
interface that uses Castor instead of Hibernate. If you would like to compare the Castor and
Hibernate APIs, compare the methods in HibeAggregatorDAO class to the methods in the
CastorAggregatorDAO class. You’ll find that, in some cases, the APIs are very similar. If you
would like to configure the RSS newsreader example to use Castor instead of Hibernate, refer
to the example readme.txt file for instructions on how to make the switch. 

Summary
In this chapter, you’ve learned the basics of using JDBC in a simple JSP application, the advan-
tages of using an object-relational persistence framework, and how to design a sophisticated
data access architecture.

With your new knowledge of basic JDBC concepts, you should be able to add data access
to simple JSP applications by using JDBC code in JSP pages or by using the JSTL SQL tags. You
should be able to access any sort of database as long as it has a JDBC driver. In addition, you
should also be able to configure a JDBC driver by using either the old data manager approach
or the newer JNDI data source technique.
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With your new knowledge of the concepts behind O/R persistence frameworks, you should
be able to work with any of the frameworks available from commercial software vendors and
from open-source projects. Your knowledge of one-, two-, and three-layer architectures as well
as your understanding of the flexibility-complexity trade-off will help you choose the appropri-
ate architecture for your next JSP application.

You’ve also taken a close look at a complete example JSP application, the RSS newsreader,
which illustrates how to use an O/R persistence framework within a modular three-layer
architecture. You can use the RSS newsreader example as a starting point for your own proj-
ects. The example relies only on open-source components that are free of charge and free for
you to distribute with your own applications.

You should now have enough knowledge to evaluate database access technologies and to
design and implement database access within your JSP applications.
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Introduction to Filtering

Filtering is a standard feature of all Servlet 2.5–compliant containers. Since its introduction 
in the Servlet 2.3 specification, filters have found widespread use among Java EE developers.
Some popular uses for filters include authentication, auditing, compression, encryption, and
on-the-fly format transformation, to name but a few. For the very first time, an application-
level programmer can tap into the request-processing pipeline of the container—in a portable,
nonserver-specific manner. Servlet 2.5 further enhances container support of filters by provid-
ing filtering for dispatched requests—a feature that you’ll be looking at in detail over this
chapter and the next.

The unique positioning of filters in the processing pipeline, the relative ease with which
they can be written and designed, and the versatile way these filters can be configured make
them ideal design choices for a wide range of web-application features that were formerly
impossible, difficult, or awkward to implement.

In this chapter, you’ll learn the following:

• What a filter is, what it can do, and why it’s needed

• How filters fit in with the rest of the servlets and JSP machinery

• What life cycle is followed by container-managed filters

• The power of filter mapping

• What the importance of filter chaining is

• How RequestDispatcher interacts with the action of filters and filter chains

• How to develop filters by using three complete code samples

• How filters differ from interceptors and valves

• What some best practices for filter design and coding are

The material covered in this chapter will provide a basic understanding of what Servlet 2.5
filtering is all about. You’ll dive into the important concepts and illustrate them with easy-to-
understand code wherever necessary. We have purposely deferred advanced concepts in
filtering, together with detailed design issues for more complex filters, to the next chapter.
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This chapter is concept-heavy and code-light, while the next one will be both concept- and
code-heavy as we provide insight into the design and coding of many typical filters. Chapter 11
focuses on the techniques used in programming filters and serves as a “cookbook” for the prac-
ticing JSP programmer, letting you incorporate filters into your favorite application recipes.

Common Filter Applications
Before you take a technical look at what a filter really is, let’s start with a quick look at some
applications of filters in the real world. Here is a short list of common filter applications,
together with a description of the specific feature that makes the filter appropriate for the
application:

• Filters can intercept request header information before it reaches the resource in 
the processing pipeline and can therefore be used to create customized authentication
schemes. For example, a filter can be written to authenticate a user against an external
legacy system before allowing access to a resource. Having “wide open” exposure to all
the request headers, filters can be written to perform sophisticated logging and audit-
ing. Combining the use of filters with URL pattern–based filter mapping, you can have
fine-grained control on the set of resources to protect or audit.

• Filters are also useful in data transformation. For example, you can use filters to pre-
sent an XML document as HTML via an XSLT transformation filter on the fly. Another
form of data transformation filter might perform encryption or compression. For exam-
ple, a filter can first detect whether a user agent (browser) supports compressed data
streams. If the browser can handle the compression, the filter can then compress the
response from a resource on the fly.

• Filters can preempt the serving of a particular resource altogether and generate their
own response. One example could be a time-sensitive filter that blocks access to certain
resources (such as an Internet proxy server) outside certain set hours. Yet another inter-
esting application in this category is customized caching. A filter can maintain a cache
of most frequently requested (static) resources based on prespecified criteria, and serve
a cached copy instead of accessing the real resource whenever possible.

By strategically combining the request dispatcher and filters, web-application frame-
works designers can create specialized filters that perform a service such as form validation,
data pre-fetch, and other functions. In these cases, filters can become fully fledged, bona fide
resource processors in the request-processing pipeline.

The Big Picture of Filtering
The middle-tier component of the Java EE architecture consists of an application server often
fronted by a web server. These servers serve up web content and execute servlets and JSP
pages in response to incoming client requests. Figure 10-1 illustrates how client requests flow
through a stand-alone application server such as Tomcat:
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Figure 10-1. A client can request various types of resources from a web server. The web server
routes the request and returns the appropriate resource to the client.

One way of looking at this diagram is to view it as a server for resource requests. In this
view, you don’t differentiate between static and dynamically generated resources. Therefore,
the middle-tier server becomes a server that serves one of three types of resources based on
incoming requests:

• Static content (HTML, images, and so on)

• A servlet

• A JSP page (which may be considered a specialized case of a servlet)

■Note This chapter and the next continually refer to this resource-based view of request processing. This
is the way a filter designer looks at the container. Note that servlets and JSP pages are sometimes called
“processing resources” because they can actively perform processing on a request.

Figure 10-2 illustrates this simplified view of the middle-tier server, emphasizing the
request and response flow and showing where filters fit into the picture.

You can see that the filters are positioned in the processing pipeline, between the appli-
cation server and the client. A filter provides application-level access in the request-handling
pipeline of the container.
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Figure 10-2. Filters are called by the application server both prior to and subsequent to the
resource processing of a request.

Before the advent of filters, there was no way for web applications to participate in the
processing being performed along the request-handling path. A web application could only
supply and define the resources that were being served. If an application required access to
the processing pipeline, you had to resort to nonportable server-level extensions (intercep-
tors, valves, and the like which you’ll look at later).

Due to their strategic position in the request-processing pipeline, filters can easily handle
the pre- and postprocessing of requests for resources (such as HTML pages, JSP pages, and
servlets). The specialized construction of filters, as you’ll discover later, will actually allow
them to participate in the processing of the request or response throughout the processing
path.

You also have the option of chaining several filters together dynamically to process each
incoming request. This allows the filter deployer to combine the action of two or more filters
at deployment time. At runtime, the container uses filter mappings to determine the filter or
filters that each request and response will pass through.

Filtering the Pipeline
Filters enable a developer to tap into the pipeline of request and response processing. A filter
can do its work just before the resource is fetched (or executed in the case of dynamic output),
and immediately after the resource is fetched and executed. It’s even possible to inject custom
behavior while the request is being processed by the resource.
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More specifically, when you apply this notion to the HTTP-based request and response
that is serviced by the middle-tier servers, filters can be used to do the following:

• Inspect the request header and data before it reaches the resource

• Inspect the response header and data after it has been sent by the resource

• Provide a modified version of the request to the resource being processed by the
container

• Access and modify the response from the resource before returning it 

• Stop a request from reaching a resource altogether

This behavior is depicted in Figure 10-3.

Figure 10-3. Filters can act on the request before it reaches the resource, and on the response after
the resource has been accessed.

You’ll examine filter implementations that perform each of these actions in this chapter
and the next. You should note that code implemented in filters can have the same power, if
not more, as code implemented in resources (in other words, servlets and JSP pages) when it
comes to request processing. In some ways, you can view the servlet engine and the JSP
engine simply as end-point filters in this processing pipeline.

Filters in Depth
You’ll now take a more concrete, technical look at what filters really are. First, you’ll become
intimately acquainted with the single interface that defines a filter: the Filter interface.
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The Filter Interface
A filter is simply a class that implements the javax.servlet.Filter interface. Similar to 
the javax.servlet.Servlet interface, there are three life-cycle methods that a filter must
implement:

• public void init(FilterConfig config)throws ServletException: The container is
responsible for setting the FilterConfig object before the doFilter() method (described
next) is called for the first time. The FilterConfig object provides the initialization
parameters for the filter and also allows access to the associated ServletContext.

• public void doFilter(ServletRequest req, ServletResponse res, FilterChain
chain) throws IOException, ServletException: The doFilter() method contains the
logic of the filter. It’s where almost all of the work of a filter is done. The container will
call this method each time an applicable request is being handled. You’ll see how to
associate filters with types of requests in the next section.

• public void destroy(): The container calls destroy() when the filter is being taken 
out of service.

Any class that implements this interface is officially a filter and can then be included as a
component of a web application.

Configuration and Deployment of Filters
In the deployment phase, filters are an integral part of a web application, at the same level as
servlets, JSP pages, or static resources. Filters are typically created by developers and delivered
as bytecode classes within a web application. Typically, a web application’s filters are config-
ured at deployment by specifying the following:

• Which filter(s) to use

• Any initialization parameters to the filter

• Where to apply the filter

• The order in which multiple filters are chained together (if applicable)

All of the previous items are specified within the standard Java EE web-application
deployment descriptor (web.xml).

In this way, filters are configured and deployed in a similar fashion as servlets in a web
application. The servlet container supporting filters will parse the following two types of filter-
related declarations present within this file:

• Filter definition: Tells the container the textual name associated with the filter

• Filter mapping: Tells the container which resources the filter will be applied to

You’ll cover these in more detail shortly when you examine filter definition and
configuration.

Now that you know what a filter is, you need to take a look at the interactions that occur
between a container and the filter and specifically the life cycle of a filter.
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The Life Cycle of a Filter
Just like servlets and JSP pages, the container manages the life cycle of a filter. You’ll learn the
following in this section:

• When the container instantiates a filter

• How initialization parameters are passed into a filter

• How the container determines how many instances of the filter to create

• When the doFilter() method is called

• How filters can clean up on application shutdown

Figure 10-4 illustrates the life cycle of a filter by using a block diagram to represent states
that the filter can be in. As you can see, the filter life cycle is almost identical to that of the
servlet life cycle. The four stages of the filter life cycle (instantiation, initialization, filter exe-
cution, and destruction) are analogous to the servlet life cycle (instantiation, initialization,
request execution, and destruction). Of the four stages, there are only two explicit states: ini-
tialization and filter execution. In the other two stages, the filter instance does not exist; it is
either being created or being destroyed.

Figure 10-4. The life cycle of a filter is similar to the life cycle of a servlet. The filter is created 
and initialized, it processes requests, and it is destroyed when no longer needed.
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For each filter definition in the web application (as specified in web.xml), the container
will create and initialize a filter instance.

Every filter must implement the javax.servlet.Filter interface. This interface defines
three methods: init(), doFilter(), and destroy(). These three methods, and the constructor,
correspond to the four stages of the filter life cycle. The constructor is called during the instan-
tiation phase. The init() method is called for initialization. The doFilter() method, which
contains all the filter-processing logic, handles the filter execution phase. Finally, the
destroy() method is used in the destruction phase.

That single filter instance, with its initial parameters, will service all requests that corre-
spond to its filter mapping specified within the deployment descriptor. The only exception to
this occurs when the engine consists of multiple Java Virtual Machine (VM) servicing requests.
In this case, the container mechanism will create one instance in each VM, thereby allowing
all participating VMs to service filtered resources equally. The container will call destroy()
when the web application is shut down.

The initialization must occur before the first request is mapped through the filter
instance. During initialization, the container passes a FilterConfig object via the init()
method of the javax.servlet.Filter interface.

The FilterConfig can be used by the filter to obtain initialization parameters of the filter,
the textual name of the filter, or the ServletContext that the application is running under.

The FilterConfig Interface
The FilterConfig interface declares four methods:

• public String getFilterName(): You can use this method to obtain the textual name of
the filter, as defined in the web.xml deployment descriptor.

• public String getInitParameter(String paramName): The getInitParameter() method
obtains the string value of a specific initialization parameter by name. Returns null if
not found.

• public Enumeration getInitParameterNames(): This method obtains a java.util.
Enumeration consisting of all the names of the initialization parameters for this
instance. These parameters are specified in the web.xml deployment descriptor within
the <filter> definitions. Returns an empty enumeration if no parameter is set.

• public ServletContext getServletContext(): This method obtains the ServletContext
that the filter is executing within. This context is typically specified in the server.xml
file of the server.

In all cases, after a filter is instantiated and initialized, the container will send all
requests that the filter maps to through the filter’s doFilter() method. For most static pages,
JSP pages, and servlet resources, this means that many threads of execution may be execut-
ing the doFilter() method at the same time. Therefore, you must take care to write filters
that are thread-safe.
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The filter instance will be kept alive to process a request until the container (or a VM in
the container) shuts down or the associated web application is undeployed. Before this hap-
pens, the container calls destroy() to give the filter a chance to perform any cleanup work
that may be necessary.

Filter Definitions
Filters can be defined for each web application. Filter definitions appear in the web.xml
deployment descriptor inside the <filter> element. Each <filter> element must have a
<filter-name> child element, a <filter-class> child element, and optionally one or more
<init-param> child elements. Here is a brief description of each:

• <filter-name>: Textual name to associate with the filter. Used in filter mapping. This 
is a mandatory element.

• <filter-class>: The actual class that implements a filter. Should be a fully qualified
class name with a package prefix. This is a mandatory element.

• <init-param>: Specifies the initial parameters to supply to this instance of the filter.
Contains <param-name> and <param-value> subelements, specifying the name and value
of the parameter, respectively. Note that <init-param> is an optional child element of
<filter>, which can also appear multiple times—once for each initialization parameter
for the filter.

As an example, consider an audit filter that logs all access to certain specified resources.
The AuditFilter class would be set up in the application’s web.xml file as follows:

<filter>
<filter-name>Audit Filter</filter-name>
<filter-class>filters.AuditFilter</filter-class>

</filter>

The previous segment associates the name Audit Filter with the filter implementation in
AuditFilter.class.

You’ll examine the details of the initial parameters of filters after you’ve looked at how fil-
ters are mapped to resources.

Filter Mapping
You’ve seen how to define a filter in the web.xml deployment descriptor file. Now let’s move on
to look at how to map a filter. Filter mapping allows you to specify resources that the filter will
be applied to within your application on a by-request basis. Applying a filter to a resource lit-
erally means adding the filter to the processing pipeline when accessing that resource.

Filter mappings are XML-based entries, specified per web application within the web.xml
file. The “mapping” that is performed is between the filter’s textual name and one or more
resources that the filter will be applied to. Because the filter mapping uses the filter’s textual
name, the corresponding <filter> element must precede a <filter-mapping> element within
the web.xml file.
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This is what the filter mapping for our audit filter might look like:

<filter-mapping>
<filter-name>Visual Audit Filter</filter-name>
<servlet-name>mylocate</servlet-name>

</filter-mapping>

Here, the mapping specifies that the filter declared as Visual Audit Filter (in a previous
<filter> declaration) will be applied only when a request is received for the servlet resource
called mylocate. It’s assumed, of course, that the servlet name is defined within the same
web.xml file, like this:

<servlet>
<servlet-name>mylocate</servlet-name>
<servlet-class>FindProd</servlet-class>

</servlet>

To map a filter to more than one resource, you need to either create multiple mapping
entries or create a filter mapping that uses a URL pattern. Now let’s take a look at how to use
URL patterns.

Matching URL Patterns
The real power of filter mapping becomes evident when you use URL pattern matching. URL
patterns allow users to apply a filter to a group of resources with some commonality in its
URL. You can also use wildcard characters (such as *) within the URL to match multiple URLs.
This is similar to the handling of the <servlet-mapping> element.

Depending on how the URL pattern is specified, you can apply a filter to a set of homoge-
neous resources (for instance, just servlets) or a set of heterogeneous resources (a mix of static
HTML files, servlets, and JSP pages). Table 10-1 lists some sample URL patterns.

Table 10-1. Example Filter Mapping Patterns

URL Pattern Matches

/* Everything that is served by this web application, including static
pages, servlets, and JSP pages

/servlet/* All servlets (assuming all servlets are mapped under the /servlet path)

/jsp/*.jsp All JSP pages located on the /jsp path

/dept/accounting/* All resources in the accounting department branch of the web
application

The following is an example of filter mapping that uses a URL pattern:

<filter-mapping>
<filter-name>Audit Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
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This declaration applies the Audit Filter filter to all resources served by the application.
Here’s another example:

<filter-mapping>
<filter-name>Stop Games Filter</filter-name>
<url-pattern>/servlet/*</url-pattern>

</filter-mapping>

Assuming that servlets in this web application are mapped under the /servlet path, this
filter mapping would apply the Stop Games Filter to all servlets in the application.

Insertion of Filters into the Request Flow
Prior to Servlet 2.4, filters could operate only on requests as they originated from the client.
However, many modern web applications and frameworks make extensive use of the ability 
to dispatch requests from one processing resource to another (servlet to servlet, servlet to JSP,
JSP to servlet, JSP to JSP, and so on). The inability of filters to work in the processing pipeline
between dispatch points handicapped earlier versions of servlet containers. This was changed
with the Servlet 2.4 specification, and containers such as Tomcat 5.5 have full flexibility to
insert filters into the request flow—even in-between programmatically dispatched points.

Filters and the Request Dispatcher
To better understand how the request dispatcher interacts with filters, we’ll present a series of
figures depicting the request flow in a servlet container. First, we’ll show the action of Servlet
2.3–compliant containers. These containers support filters but don’t support interactions with
the request dispatcher.

Servlet 2.3–Compliant Container Filtering
Consider a filter mapping similar to the following:

<filter-mapping>
<filter-name>F1</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>
<filter-name>F2</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>
<filter-name>F3</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Figure 10-5 illustrates the filtering that will be performed.
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Figure 10-5. An incoming request is processed by zero or more filters, and the response from the
web resource can be processed by the same set of filters.

The previous figure is the conventional request flow. The incoming request is optionally
passed through a mapped filter chain before being sent to the final processing resource—
typically a servlet or JSP page. This is the typical filtered request data flow for older Servlet
2.3–compliant containers. 

Figure 10-6 reveals what happens when you use the same filter mapping with two
resources that are included by the main web resource (via RequestDispatcher.include() in 
a servlet or an include directive in JSP) when using Servlet 2.3–compliant containers.

Figure 10-6. When a resource in a Servlet 2.3 container includes other resources, these resources
do not get processed by the filters.

In other words, under Servlet 2.3–compliant container control, when the primary web
resource uses the request dispatcher to include other processing resources, the included
processing resource cannot be filtered. The same thing happens when the web resource
uses the request dispatcher to forward the request to other processing resources (via 
the RequestDispatcher.forward() method in a servlet or the <jsp:forward> tag in JSP). 
Figure 10-7 illustrates this situation.
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Figure 10-7. In Servlet 2.3 containers, filters are not applied to the request or the response
between the original resource and the forwarded resource. Filters are only applied between 
the client and the request resource.

Servlet 2.5–Compliant Container Filtering
A container, such as Tomcat 5.5, allows filtering to occur with both the include and forward
action of the request dispatcher. Consider the following filter mapping:

<filter-mapping>
<filter-name>F1</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcer>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>
<filter-mapping>
<filter-name>F2</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcer>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>
<filter-mapping>
<filter-name>F3</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcer>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

The <dispatcher> subelement of a filter mapping allows you to specify that filtering is to
be performed during regular request dispatch as well as when the request dispatcher is called
to include additional web resources. Figure 10-8 illustrates the action of this filter mapping on
the included web resource.
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Figure 10-8. When a resource in a Servlet 2.4 or 2.5 container includes another resource, zero or
more filters can be applied as part of the include action.

Now filters can be applied in-between the first processing resource and any included
resources. For example, if the first JSP page included the output from multiple JSP pages or
servlets, filters could be applied to each included resource.

Next, you’ll look at the case when the request dispatcher forwards processing to a web
resource. Consider the following filter mapping:

<filter-mapping>
<filter-name>F1</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>
<filter-mapping>
<filter-name>F2</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>
<filter-mapping>
<filter-name>F3</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>

In this case, the filter chain will operate on both the standard request processing and the
forwarded web-resource processing, as shown in Figure 10-9.

This time the first web resource uses the request dispatcher’s forwarding capability. The
resource that the request is forwarded to is responsible for generating the actual output for
the client. Here, the filter is applied before the primary web resource, and before the resource
being forwarded to.
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Figure 10-9. Zero or more filters can be applied to the request and response when a resource 
forwards a request to another resource.

Filter interactions with the dispatcher are controlled by the <dispatcher> subelement of
<filter-mapping>, as you saw earlier. Let’s take a more detailed look at this new subelement.

The <dispatcher> Element
The <dispatcher> subelement in <filter-mapping> is optional. If omitted, the <filter-mapping>
declaration is backward compatible with Servlet 2.3 containers. In this case, the mapped
filter will work only on the request level, and not when the request is dispatched via a request
dispatcher. This compatibility mode is entirely equivalent to specifying the following
<filter-mapping> segment:

<filter-mapping>
<filter-name>F1</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>

REQUEST, FORWARD, INCLUDE, or ERROR <dispatcher> Values 
Table 10-2 shows the allowed values inside a <dispatcher> element.

Table 10-2. Valid Subelements of the <dispatcher> Tag

Value Description

REQUEST Enables filter mapping for incoming requests

FORWARD Enables filter mapping for forwarded requests by using the request dispatcher

INCLUDE Enables filter mapping when the request dispatcher is used to include the out-
put of multiple processing resources

ERROR Enables filter mapping when the request is forwarded to an error-handling
resource
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For any single filter mapping, you can specify one or more of these values, thereby allow-
ing fine-grained control over filter action. Using these values enables you to apply some filters
under all circumstances and selectively apply others.

Error Filters
Using ERROR as the value of the <dispatcher> element will cause the filter to be called when-
ever a request is forwarded to an error-handling resource. This use of the <dispatcher>
element enables specific filters to be configured to work with the error-handling resource—
the filters will be applied before the request reaches the actual error-handling resource.

Filter Chaining
Chaining is the action of passing a request through multiple filters in sequence before
accessing the resource requested. For example, you may want an authentication filter on an
XML-based resource that is also processed by an XSLT transformation filter. The good news is
that all filters are inherently chainable. Unlike most other chaining mechanisms, however, fil-
ter chaining also means passing the response from the resource back through the chains of
filters in the reverse order. This is an important concept and is an essential component in the
versatility of filters.

The FilterChain Interface
The container and the filter implementation work together to ensure that every filter is chain-
able. This is done through a filter chain object that implements the javax.servlet.FilterChain
interface. This filter chain object is passed into the core doFilter() method of a filter by the
container. This object allows the filter to directly call the next filter in the chain after its own
processing. The interface contains this doFilter() method:

public void doFilter(ServletRequest req, ServletResponse res) 
throws IOException, ServletException

Calling this method invokes the doFilter() method of the next filter in the chain. If the
filter is the very last filter in the chain, the actual resource processing will occur. This method
doesn’t return until all downstream filters have returned from their doFilter() calls. Also note
that from the point of view of the filter, all of the nonfilter logic request processing is “folded”
into the call to the doFilter() method of FilterChain. This allows us to do something that is
typically very difficult to perform in other request/response intercepting mechanisms. Because
all the processing of the request and response occurs in the same doFilter() method and in
the same thread, we can easily share variables between the preprocessing and the postprocess-
ing logic.

All Filters Are Chainable
Compatibility with filter chaining is an integral requirement of every filter. Filter chaining is
provided by a series of interactions between the container and the filter. Figure 10-10 is a UML
diagram of the interactions.
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Figure 10-10. The design of the Filter API provides an inherent chaining capability. The container
works with each filter to filter and process the request as specified in the deployment descriptor.

Here is an explanation of what happens:

1. The container parses the filter mappings defined in the web.xml file of the application.

2. A request arrives, accessing a resource in the application.

3. The container determines the filter chain that will be applied to this request.

4. The container invokes the doFilter() method of the first filter in the chain, passing in
the request, a response (holder), and a FilterChain object reference. The container
loads the filter chain information into the FilterChain object that is passed in.

5. The filter performs its doFilter() logic.

6. The filter completes its filter logic and calls the doFilter() method of the FilterChain
object reference, passing in the request and response. All filters are required to do this,
because all filters are intrinsically chainable.

7. Logic in the doFilter() method of the FilterChain object calls the doFilter() method
of the next filter chain to be called. Steps from step 4 are repeated until the last filter in
the chain has completed its work. The FilterChain.doFilter() call on the last filter in

ce to occur.
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Note that the mechanism of chaining is inherently different from most other conven-
tional filtering or server extension mechanisms (such as Apache modules and Microsoft’s
Internet Information Server and Internet Server API).

Unique Properties of Filter Chaining
Note the following interesting properties regarding this approach to extending server
functionality:

• Each of the FilterChain.doFilter() method calls are stacked upon one another, so
program flow is blocked in a nested fashion across all the filters involved.

• After the actual resource access, the FilterChain.doFilter() method on the chain’s last
filter returns. At this point, the response object is filled with header information and
content from the actual resource access. This last filter now has the freedom to examine
and modify the response header and body content at will. When the filter finishes, the
thread of execution will return from doFilter(). The next filter up the chain then gets a
chance to process the response, and so on.

• The logic in a filter’s doFilter() method has full access to the request in its incoming
flow, prior to the FilterChain.doFilter() call. The logic in a filter’s doFilter() method
has full access to the response in its outgoing flow, after the FilterChain.doFilter() call.

• The local variables declared within the doFilter() method are consistent and available
to both the incoming flow-processing logic and the outgoing flow-processing logic
because the same thread will be executing both pieces of the logic.

These properties of the chaining mechanism are perhaps the hardest filtering concepts 
to understand. In essence, filter chaining is not a “call and forget” mechanism provided by
container intervention, but rather a “nested call” mechanism assisted by the container.

Of course, you must realize that even though filter chaining is built into every filter, the
processing logic within the filter is not obliged to chain to the next filter. In fact, this is one
major application area for filters—blocking access to the actual resource. For example, an
authorization filter can determine that the client isn’t allowed to access a resource and can
generate a refusal response all on its own without further chaining.

A Fly in the Filtering Ointment
The avid reader (and indeed experienced JSP and servlet programmer) will realize that not all
containers buffer their resource response in the response object after the resource completes
processing. JSP pages and servlets may write and flush their output stream as the response is
generated. This places dubious value on the processing window that each filter gets during a
response’s return trip through the filter chain. Although this processing window is perfect for
resources and containers that do encapsulate the entire output in the response object, you
must also deal with the reality of those that don’t.

The way that filters deal with processing resources that generate output on the fly is via a
customized wrapped-response object. That is, the filter will pass a specialized version of the
response object to the FilterChain.doFilter() method instead of the one that it received as
its invocation parameter. 
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This wrapped-response object can then provide its own version of OutputStream and
PrintWriter for downstream filters or resources to work on. You’ll delve into these wrapped-
response and wrapped-request mechanisms in the next chapter.

When working with dispatched requests, note that wrapped-response and wrapped-
request objects will be passed down the processing chain—except in the case of an error
dispatch. In this case, it’s the original container-generated request and response that will be
passed to the error-processing resource (and any filters that may be associated with it). This is
necessary because of the asynchronous nature of the error-handling mechanism.

■Tip Custom wrapped-response and wrapped-request classes can be used to provide downstream proces-
sors with enhanced functionality (through special extended APIs) not available with the default response or
request classes. In these cases, the filter and processing resources must cooperate with one another.

Mapping Requests Through a Filter Chain
The order of <filter-mapping> elements in the web.xml file is significant. This is the order in
which the container will build filter chains. Therefore, filter declarations within web.xml must be
in the order that you want them to be applied to a resource. Applying filter A and then filter B to
a request will not necessarily result in the same outcome as applying filter B followed by filter A.

When the order of chaining for the same set of filters is changed, the final result can be
completely different. This typically happens when a downstream filter depends on the result
of an upstream filter for proper operations. For example, imagine a filter that transforms XML
data from a resource to HTML by using XSL Transformations (XSLT), and another filter that
translates the HTML document via cascading style sheets, level 1 (CSS1, another stylesheet
language, typically for HTML). As shown in Figure 10-11, if you place the XSLT filter first in 
the chain, the XML resource will be translated to HTML and subsequently formatted by the
CSS1 filter. If you place the CSS1 filter first, however, it won’t work on the XML data (see
Figure 10-11). As a result, only the XSLT transformation will be applied in this chain.

Figure 10-11. In some cases, the order in which filters are applied can make a difference in
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The filter application order has been determined by the order that the <filter-mapping>
elements occur in the web.xml file. For example, consider the following set of filter mappings:

<filter-mapping>
<filter-name>Audit Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>
<filter-name>Authentication Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

In this case, both Audit Filter and Authentication Filter are mapped to all resources
served by this server—both filters will be applied to all resources. The order of application will
be Audit Filter followed by Authentication Filter. Remember that the order of chained fil-
ter execution on the incoming request is down the filter stack, whereas the order of chained
filter execution on the outgoing path is up the filter stack.

Given an incoming request, the container will go through the list of filter mappings to
determine which filter to apply on a per-request basis. For example, say you have the follow-
ing filter mappings defined in order:

<filter-mapping>
<filter-name>Audit Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>
<filter-name>Authentication Filter</filter-name>
<url-pattern>/servlet/*</url-pattern>

</filter-mapping>
<filter-mapping>
<filter-name>Visual Audit Filter</filter-name>
<servlet-name>mylocate</servlet-name>

</filter-mapping>

An incoming request for http://tomcathost/myapp/index.html will have the following
filter applied:

• Audit Filter

In contrast, an incoming request for http://tomcathost/myapp/servlet/listprod will
have the following filters applied in order:

• Audit Filter

• Authentication Filter
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Finally, an incoming request for http://tomcathost/myapp/servlet/mylocate will have 
the following filters applied in order:

• Audit Filter

• Authentication Filter

• Visual Audit Filter

Initial Parameters for Filters
You can specify <init-param> as a child element of <filter> to provide initial parameters for
the filter instance, as in the following snippet. This web.xml file segment controls the hours
that the Stop Games Filter may operate (this filter blocks game playing):

<filter>
<filter-name>Stop Games Filter</filter-name>
<filter-class>filters.StopGamesFilter</filter-class>
<init-param>
<param-name>starthour</param-name>
<param-value>10</param-value>

</init-param>
<init-param>
<param-name>stophour</param-name>
<param-value>11</param-value>

</init-param>
</filter>

The container will associate the textual name Stop Games Filter with the StopGamesFilter
filter class. The parameters are accessed within the filter and instruct the filter to restrict gam-
ing activities between 10 and 11 a.m. by default. The starthour and stophour will be accessible
within the filter via a call to the FilterConfig object:

String startHour = filterConfig.getInitParameter("starthour");
String stopHour = filterConfig.getInitParameter("stophour");

Initialization for Multiple Instances of Same Filter
Note that a container will create an instance of a filter for each <filter> definition encountered
within the application. You can therefore define two instances of the same filter within the same
web application—each with different initialization parameters. Of course, the two instances
should have different textual names. For example, you may want to set up an instance of a
StopGamesFilter to block access from 8 a.m. to 10 p.m. for the Administration department,
and another instance to block access from 8 a.m. to 9 a.m. for the Engineering department,
(because if you don’t block access, the engineers will play games right through breakfast):

<filter>
<filter-name>Stop Games Filter For Administration Department</filter-name>
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<filter-class>filters.StopGamesFilter</filter-class>
<init-param>
<param-name>starthour</param-name>
<param-value>8</param-value>

</init-param>
<init-param>
<param-name>stophour</param-name>
<param-value>22</param-value>

</init-param>
</filter>
<filter>
<filter-name>Stop Games Filter For Engineering Department</filter-name>
<filter-class>filters.StopGamesFilter</filter-class>
<init-param>
<param-name>starthour</param-name>
<param-value>8</param-value>

</init-param>
<init-param>
<param-name>stophour</param-name>
<param-value>9</param-value>

</init-param>
</filter>

Interaction with the Filter Life Cycle
When working with filter initial parameters, it’s important to bear in mind that these parame-
ters are set only once per filter instance: when the filter instance is first instantiated and
before the arrival of the first filtered request. Subsequently, all new requests will be processed
through the same filter instance—potentially concurrently via multithreading. In containers
that use multiple Java VMs, there will be one instance of a declared filter per container Java
VM. You can use filterConfig.getInitParameter() to obtain the initial parameters’ values
from inside the doFilter() method when you need them. The handling of these initial param-
eters is very similar to servlets’ parameter handling. If a filter instance is removed from service
by the container (say, due to server system load), the container is responsible for ensuring that
a new instance is created and initialized to process any future requests. Such removals and
reinstantiations should be completely transparent to the filter creator.

This concludes the initial conceptual coverage of filters. It’s time to get your hands on
some code and implement your very own filter.

Hands-On Filter Development
In this section, you’ll discover how to set up a development and testing environment for filters.
You’ll also code, configure, and test some simple filters in this environment.
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The very first version of Tomcat to support the Servlet 2.5 specification is Tomcat 5. While
the 4.x series of Tomcat supports filters, the Servlet 2.4 functionality (namely support for filter-
ing the request dispatcher pipeline) will be available only in the 5.x versions.

Our First Filter—SimpleFilter
Before coding your first filter, let’s take a quick look at one additional interface that you’ll be
using within the filters sample.

The ServletContext Interface
Using the getServletContext() method on the javax.servlet.FilterConfig object, the 
filter can obtain a reference to the current ServletContext that it’s executing under. There is 
a ServletContext for each running web application. Because of this single-instance nature,
the ServletContext is frequently used for sharing information globally.

Using this reference, the filter can utilize the context’s logger service. It can also use this
interface to attach arbitrary attributes to the context during runtime. An attribute can be an
arbitrary object associated with a String name. Attaching attributes to ServletContext is a
popular way to pass information between processing agents during runtime. For example,
state information can be passed between filter instances by using these attributes. Here are
several of the most frequently used methods by filter writers, and you’ll see them used in the
sample filters later:

• Object getAttribute(String name): Obtains the value of a named attribute

• void setAttribute(String name, Object object): Attaches a named attribute to the
ServletContext

• void removeAttribute(String name): Removes a previously attached attribute

• Enumeration getAttributeNames(): Returns a java.util.Enumeration consisting of the
names of all the currently attached attributes

You’ll need to write to the log file in your filters, using the following methods of the
ServletContext object:

• void log(string msg): Writes a string to the currently active logging facility associated
with the context

• void log(String msg, Throwable throw): Writes a string and a stack trace to the log

Coding the Filter
Your first filter is called SimpleFilter. Listing 10-1 shows the source code for SimpleFilter,
which implements the Filter interface. To compile this class, you’ll need to include the
appropriate library JAR for the servlet API. This JAR is named servlet-api.jar and is located
in the Tomcat common\lib directory. This simple filter won’t do anything useful for now. It will
simply make a log entry before calling FilterChain.doFilter() and another one right after it.
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Listing 10-1. SimpleFilter.java

package com.apress.projsp.filters;

import java.io.*;
import javax.servlet.*;

public final class SimpleFilter implements Filter {
private FilterConfig filterConfig = null;

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException {

filterConfig.getServletContext().log("in SimpleFilter");
chain.doFilter(request, response);
filterConfig.getServletContext().log("Getting out of SimpleFilter");

}

public void init(FilterConfig filterConfig) {
this.filterConfig = filterConfig;

}

public void destroy() {}
}

As mentioned before, all filters must implement the javax.servlet.Filter interface, and
the SimpleFilter is no exception. The filter does its work in the doFilter() method. Note the
parameters: a request, response, and a FilterChain object.

However, before the container calls doFilter(), it will pass a FilterConfig object to the fil-
ter through the init() method. If the filter needs to access any resources from the FilterConfig
object, the class must save a reference to that object.

To write to the log, you access the ServletContext from FilterConfig as provided by the
container. The log() method will write a line by using the logger set up earlier for this context.

The rest of the methods are standard trivial implementations required for the Filter
interface.

Declaring the Filter and Configuring Filter Mapping
Now, you need to add a <filter> element to the web.xml file, the deployment descriptor for
your web application. Listing 10-2 shows the web.xml file for this example.

Listing 10-2. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">
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<display-name>ProJSP Example Filters</display-name>
<distributable />
<filter>
<filter-name>Simple Filter</filter-name>
<filter-class>com.apress.projsp.filters.SimpleFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>Simple Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
</web-app>

■Note If you’re working with the source-code distribution downloaded from the book’s website, these
filter definitions and mappings are included but commented out. You should uncomment each set as appro-
priate as you progress through the example.

All that’s left to do now is to create a resource to access. Listing 10-3 shows a simple JSP
page. Because we’re more interested in the filter processing than the JSP processing, this 
JSP page does no processing; it is just a convenient resource we can access to demonstrate
filter processing.

Listing 10-3. index.jsp

<html>
<head></head>
<body>
<h1>Welcome to Filtering Demo Application!</h1>

</body>
</html>

Testing the Filter
You’re now ready to test the filter. Assuming that Tomcat isn’t currently running, perform the
following steps:

1. Go to Tomcat’s logs subdirectory and delete all files.

2. Create a web application with the filter and index.jsp and deploy it.

3. Start Tomcat 5. 

4. Start a browser and navigate to http://localhost:8080/filters1/index.jsp.

5. After the web page has loaded in the browser, shut down Tomcat.
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Now to check that the filter has actually worked for this simple static page, let’s read the
application log file found lurking in the Tomcat logs directory. The log file will be named after
the current date, something like localhost_log.2005-08-04.txt.

Inside, you should find the two log entries written by the filter, one entry created by the
log() method prior to the doFilter() method call, and one created by the log() method after
the doFilter() method call. On our test system, here are the two log entries:

2005-07-27 10:09:58 StandardContext[/filters1]in SimpleFilter
2005-07-27 10:09:59 StandardContext[/filters1]Getting out of SimpleFilter

Experimentation with Filter Chaining
Now you’ll create a second filter called SimpleFilter2 (see Listing 10-4). Like SimpleFilter, it
just logs each request in the log file. Chaining these filters together will give us some insight
into the action of filter chaining under Tomcat 5.

Listing 10-4. SimpleFilter2.java

package com.apress.projsp.filters;

import java.io.IOException;
import javax.servlet.*;

public final class SimpleFilter2 implements Filter {
private FilterConfig filterConfig = null;

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException {

filterConfig.getServletContext().log("in SimpleFilter2");
chain.doFilter(request, response);
filterConfig.getServletContext().log("leaving SimpleFilter2");

}

public void init(FilterConfig filterConfig) {
this.filterConfig = filterConfig;

}

public void destroy() {}
}

Additions to web.xml
You can now add SimpleFilter2 to the chain. Listing 10-5 shows the updated web.xml, with a
new entry for SimpleFilter2, and an updated sequence of <filter-mapping> elements. Ensure
the ordering of <filter-mapping> entries is followed exactly.

CHAPTER 10 ■ INTRODUCTION TO F ILTERING424

513-0 ch10.qxd  11/17/05  8:43 PM  Page 424



Listing 10-5. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= ➥

"http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<display-name>ProJSP Example Filters</display-name>
<distributable />

<filter>
<filter-name>Simple Filter</filter-name>
<filter-class>com.apress.projsp.filters.SimpleFilter</filter-class>

</filter>

<filter>
<filter-name>Simple Filter 2</filter-name>
<filter-class>com.apress.projsp.filters.SimpleFilter2</filter-class>

</filter>

<filter-mapping>
<filter-name>Simple Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>Simple Filter 2</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

This mapping now maps both SimpleFilter and SimpleFilter2 to all resources being
accessed. This effectively chains them for all resources.

Deploy the new web application to Tomcat. Clear the log files, start Tomcat, access the
URL http://localhost:8080/filters1/ again, and then shut down Tomcat. Now, open the log
file again and you should see something similar to the following:

2005-07-27 10:21:52 StandardContext[/filters1]in SimpleFilter
2005-07-27 10:21:52 StandardContext[/filters1]in SimpleFilter2
2005-07-27 10:21:53 StandardContext[/filters1]leaving SimpleFilter2
2005-07-27 10:21:53 StandardContext[/filters1]Getting out of SimpleFilter

Notice the nesting of the log entries, which clearly show that the filter-chaining mecha-
nism consists of a series of nested doFilter() calls on the two participating filters. The
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chaining order is the order of <filter-mapping> declaration within the web.xml file, as
expected.

Creating an AuditFilter
Both SimpleFilter and SimpleFilter2 just write to the log, so now let’s create the first filter
that delivers a little extra. It will audit resource access by logging the time of access, the IP
address of the client, the resource being accessed, and the time spent fulfilling the request.

For brevity, we’ll show the code for only the doFilter() method from the AuditFilter
class here (see Listing 10-6); the rest of the code is no different from the previous filters. This
filter takes advantage of the request object to obtain the required information. It also times the
access to the resource by storing the system time before the FilterChain.doFilter() call. After
the resource processing, it creates the log entry containing all the information.

Listing 10-6. AuditFilter.java (doFilter() Method)

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException 

{
long startTime = System.currentTimeMillis();
String remoteAddress = request.getRemoteAddr();
String remoteHost = request.getRemoteHost();
HttpServletRequest myReq = (HttpServletRequest) request;
String reqURI = myReq.getRequestURI();
chain.doFilter(request, response);
filterConfig.getServletContext().log(

"User at IP " + remoteAddress + "(" + remoteHost
+ ") accessed resource " + reqURI + " and used "
+ (System.currentTimeMillis() - startTime) + " ms");

}

Note the ease with which this summary information is maintained and written, using local
variables in the doFilter() method itself. Thanks to the nested-call nature of filters, maintain-
ing states across the two processing windows before and after resource access is simple.

Edit the web.xml file by adding the following declarations to the file and changing the
<filter-mapping> entries for SimpleFilter and SimpleFilter2 from the previous example:

<filter>
<filter-name>Audit Filter</filter-name>
<filter-class>com.apress.projsp.filters.AuditFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>Audit Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>
<filter-name>Simple Filter</filter-name>
<url-pattern>/index.jsp</url-pattern>

</filter-mapping>
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<filter-mapping>
<filter-name>Simple Filter 2</filter-name>
<url-pattern>/index.jsp</url-pattern>

</filter-mapping>

This new mapping tells the container to apply the audit filter to all resources, and the
simple filters only to requests for index.jsp. To make things more interesting, we’ll use a dif-
ferent JSP resource to do this test.

The FindProd.jsp
Listing 10-7 shows the JSP page that will be accessed to test the audit filter. Again, this JSP
page is very straightforward. It uses an expression language statement to display the DEPT
request parameter value on screen.

Listing 10-7. FindProd.jsp

<html>
<head></head>
<body>
<h1>You have submitted as ${param.DEPT} department!</h1>

</body>
</html>

Deploy the FindProd JSP, AuditFilter, and web.xml. Now we’re ready to test. Follow these
steps:

1. Clear out the Tomcat logs directory.

2. Start Tomcat.

3. Navigate to http://localhost:8080/filters1/FindProd.jsp?DEPT=Engineering.

4. Next, go to http://localhost:8080/filters1/FindProd.jsp?DEPT=Accounting.

5. Open http://localhost:8080/filters1/.

6. Shut down Tomcat.

Now, if you examine the log file, you’ll see the audit trail left by AuditFilter:

2005-07-27 12:46:24 StandardContext[/filters1]User at IP 127.0.0.1 ➥

(127.0.0.1) accessed resource /filters1/FindProd.jsp and used 1578 ms
2005-07-27 12:46:30 StandardContext[/filters1]User at IP 127.0.0.1 ➥

(127.0.0.1) accessed resource /filters1/FindProd.jsp and used 15 ms
2005-07-27 12:46:36 StandardContext[/filters1]in SimpleFilter
2005-07-27 12:46:36 StandardContext[/filters1]in SimpleFilter2
2005-07-27 12:46:37 StandardContext[/filters1]leaving SimpleFilter2
2005-07-27 12:46:37 StandardContext[/filters1]Getting out of SimpleFilter
2005-07-27 12:46:37 StandardContext[/filters1]User at IP 127.0.0.1 ➥

(127.0.0.1) accessed resource /filters1/ and used 563 ms 
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You can glean some interesting data from this. The initial compiling and loading of the
JSP page took 1578 milliseconds to complete, whereas subsequent access required negligible
time. Also, you can see that the requests for FindProd.jsp were processed by only the audit fil-
ter. In contrast, the last request for http://localhost:8080/filters1/ was processed by all
three filters. Notice that because the audit filter did not log anything during the request por-
tion of the processing, its only entry to the log appears after the return from SimpleFilter2
and SimpleFilter1.

Writing this potentially useful auditing filter has been quite painless. You’ll find in general
that, after you’re familiar with the model of operation of the Servlet 2.5 filter, writing highly
functional filters can be quite straightforward.

Other Filter-Like Technologies 
Prior to Servlet 2.4 filters, there had been many server extension mechanisms based on similar
concepts to filtering. In fact, interceptors form a key server-extension mechanism that is used
quite heavily in many Tomcat 3.x-based containers. Tomcat 4.x uses a technology called valves
to perform filter-like processing. However, there are fundamental differences between filters
and these mechanisms: they aren’t the same. This section briefly describes the essential differ-
ences between the technologies.

Filters Aren’t Tomcat 3.x Interceptors
Interceptors are a server-level extension mechanism for servers that support them. Intercep-
tors are not an application-level technology. Being a server-extension technology, it’s specific
to Tomcat. Furthermore, effects of interceptors are typically global to the server—filter effects
are local to the web application that the filters belong to.

The general architectures of interceptors and filters are completely different. Interceptors
are “hooked in” modules that are called at specified points in the processing pipeline by the
container. There are different types of interceptors for different access points. Filters, however,
rely on nested chain calling (and custom wrapping of the request or response) to get their work
done. There is only one “type” of filter. All filters implement the same javax.servlet.Filter
interface.

Filters Aren’t Valves
Valves are a system-level mechanism used extensively within the design of Tomcat 4.x and 5.x.
On an architectural level, they’re almost identical to filters. But that’s where the similarity ends.

Valves are Tomcat-specific and typically aren’t portable to other Servlet 2.5–compatible
servers. On the other hand, filters are portable. Valves are also internal to the Tomcat server
and have privileged access to many structures and resources that application-level filters
cannot access.

Filter Design Best Practices
There are a few rules of thumb that you should consider when designing and writing filters.
Some of these may give you novel ideas on how you can use filters in your own applications,
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while others may save you significant debugging time during the development cycle. This sec-
tion presents an encapsulation of six such guidelines. You’ll see several more in the next
chapter when you explore the design and coding of more complex filters.

Make Code Thread-Safe
Making code thread-safe cannot be stressed enough. Remember that there is typically only
one instance of a filter per Java VM (unless the same filter is declared multiple times with dif-
ferent names or initial parameters). This makes it inevitable that the doFilter() method will
be entered by many threads simultaneously, so your filter code must be thread-safe. This
means the following:

• Local variables in doFilter() may be used freely (except for complex objects that may
hold references to instance variables, in which case the next bullet applies).

• Instance variables in the filter class scope should be read-only, or the scope’s access
must be synchronized.

• Beware of calling methods that may modify instance variables indirectly or outside of
synchronization.

Figure 10-12 provides a spatial representation of this approach.

Figure 10-12. One of the first steps to writing thread-safe filters is to make instance variables
read-only, or access protected. Local variables are generally thread-safe and can be used to store
request-specific information.

Handle State Carefully
State information can be readily maintained via local variables in doFilter(). The prerequest
and postresponse processing window within the doFilter() method has full access to this
state information. To pass state information between filters on the same chain, you can asso-
ciate attributes with the ServletContext, returned by the FilterConfig.getServletContext()
method. The reason why ServletContext attributes rather than request attributes can be used
will be clear when you examine request and response wrapping in the next chapter.
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You should note that, in general, filters should not maintain state across multiple requests
because the very same instance of a filter can service a large number of requests in a given
period. Logic requiring this degree of state maintenance is best served by servlets or JSP pages.
In other words, the filter should depend on little or no session information to process a request
or response.

Think of Filters As In-Series Resource Processors
When designing web applications that follow the well-documented Model-View-Controller
(MVC) design pattern or Model 2 JSP architecture, consider the use of filters as in-series
resource processors in conjunction with the request dispatcher.

For example, in a push-model web application, a filter may perform part of the controller’s
responsibility by fetching data from the model and attaching it to the request in the form of
attributes for the view component to display.

Another interesting example is form processing. When a form is submitted and before the
controller component is called, a filter can be used to perform data validation on the incom-
ing form data.

Reusing a Filter via Chaining
Break up your filter-processing work into reusable, independent, chainable filters whenever
possible. This will enhance the reuse potential of the filters and also allow users to use your
filters in new and innovative ways. Also design your filters to be easily configurable at deploy-
ment time. Often a filter can be reused through the careful planning and use of initialization
parameters.

Avoid Duplicating System Features
Many problems addressed by filters can be solved instead via configuration of standard server
features. This is especially true with Tomcat 5, which has logging, authentication, authoriza-
tion, and fine-grained access control support built-in. Encrypted sessions via Transport Layer
Security (TLS), more commonly known as secure sockets (HTTPS), are also supported natively.

You should avoid duplicating system features in your filter design. Investigate all the
server features first, looking to see whether your filter application can be accomplished by
simple server configuration. Write your filter only after you have determined that it’s the only
appropriate solution, given project requirements and constraints.

Avoid Unnecessary Filter Mappings
When mapping filters, always use the most restrictive mapping possible—use <servlet-name>
instead of <url-pattern> if possible. The overhead of filter operations can be significantly
increased if the filter is consistently applied to web resources that don’t need it.
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Summary
In this chapter, you’ve been introduced to the filtering feature of Servlet 2.5 containers (such
as Tomcat 5). You’ve discovered the following:

• Filters enable web-application programmers to tap into the request-processing
pipeline of the container.

• Filters are packaged code components in a web application, at the same level as
servlets and JSP pages.

• Filters are deployed in the same way as servlets and JSP pages, through the deployment
descriptor for the application.

• The filter has access to incoming requests before they reach the final resource and to
the outgoing response immediately after the resource processing.

• Filters can also substitute their own version of the request and response (typically
wrapped) for consumption of the resource.

• Symbiotic, well-defined interactions between the request dispatcher and filters enable
you to create filters that act as in-series processors for request-switching web applica-
tions and application frameworks such as Apache’s Struts and Turbine.

You’ve explored the life cycle of a filter, as managed by the container. You’ve seen how to
define filters in deployment descriptors, how to supply initialization data to a filter instance,
how to specify its interaction with the request dispatcher, and how to define filter mappings.
You’ve noted how Servlet 2.3 is unable to filter dispatched requests and learned how Servlet
2.4 has remedied the situation.

Next, we discussed the very important concept of filter chaining. You learned that Servlet
2.5 filter chaining uses a nested call mechanism, unlike most other filtering schemes. One
major advantage of this approach is the preservation of thread state throughout the filter
invocation.

Working with code, you’ve created two simple filters and practiced deploying them.
You’ve experimented with filter chaining and observed its effect by using log files. You’ve also
created a useful audit filter and learned how easily it can be constructed.

Finally, we provided some guidelines for you to follow when programming filters and con-
trasted two other filterlike mechanisms (valves and interceptors)—noting the differences in
approach and level of abstraction to that of filters.

This chapter has hopefully provided a sound foundation for proceeding to the next chap-
ter, which will be code-intensive as you explore a variety of filter designs. Along the way, you’ll
create wrapped requests and responses to offer customized dynamic behavior throughout the
request-processing pipeline.
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Advanced Filtering Techniques

In the previous chapter, we discussed Servlet filtering. Filtering offers the ability to intercept
and process requests and responses before and after processing by the underlying resource.
Filters can add great value to many Java EE web applications by transforming the behavior of
existing servlets, JSP pages, or even static pages.

Chaining multiple filters together combines their transformations, offering the application
developer or deployer great flexibility when configuring the final behavior of a web application.
Now that you’ve built and configured some simple filters in the preceding chapter to experi-
ment with the basic concepts, you’ll turn your attention to the more advanced techniques used
in applied filter programming.

This chapter is a cookbook for the application of filters. Our goal is to deliver sample code
that covers a broad spectrum of the most frequently applied areas for filters. We’ve designed
each sample to illustrate several subtleties or important points to consider when you program
each type of filter.

Filters for Five Problem Domains
You’ll build, test, and deploy five filters in this chapter. These five filters, as shown in Table 11-1,
cover five problem domains that you might encounter while developing web applications.
These are not the only domains where filters might be useful. However, looking at these five
filters will give you the tools to develop filters for many other possible uses.

Table 11-1. The Five Filters Developed in This Chapter

Application Domain Filter Sample

Auditing A visual auditing filter that includes audit information inline with every
resource that it services

Authorization A filter that disallows access to the server during certain hours of the day

Adapter (legacy) An adapter filter that allows newly formatted queries to work with a
legacy set of resources

Authentication An ad hoc authentication filter that can add simple login protection to
any (group of) resources

Pipeline processing A data-processing filter that takes advantage of the request flow along
the processing pipeline
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First we’ll present the functionality and design considerations for each filter. Then we’ll
provide the actual code, annotated with detailed comments highlighting the design issues
addressed. Finally, we’ll give detailed deployment, configuration, and testing information for
each filter.

Many filter applications fall into one or more of the five problem domains, so the code
we’ll present serves as a base for your own filter development. Furthermore, during the devel-
opment of several of this chapter’s filters, we’ll pause to cover the main techniques used in
filter programming. These are the very same “filter application patterns” that you’ll see again
and again when designing filters—they’re an encapsulation of the type of work that a filter can
perform, on a conceptual level. An understanding of these patterns can prove helpful in your
own experimentation and application of filters.

Table 11-2 lists the techniques used in the various filter examples of this chapter.

Table 11-2. Techniques and Filters Covered in This Chapter

Technique Illustrated Filter

Transforming incoming request headers Adapter filter

Stopping downstream request flow Authorization filter
Authentication filter

Generating response Authorization filter
Authentication filter

Transforming outgoing response content Auditing filter 

Dynamically adapting filter behavior based on incoming requests Authentication filter

Wrapping request objects Adapter filter

Wrapping response objects Auditing filter

Pipeline processing filter
Authentication filter

Pipeline processing filter

Be warned that this chapter is extremely code intensive. By the end of the chapter, you’ll
be fluent in filter concepts, design, and programming. To boot, you’ll have an extensive code
framework and library to start your filter projects immediately.

Setting Up the Development Environment
If you download the code for this book, you will find that most of the code for the filters in
this chapter is in a package called com.apress.projsp. The classes are located under the
filters2\WEB-INF\classes directory.

In this chapter, several resources will be used to show the results of filter processing. As
with Chapter 10, for the most part we won’t care about the actual resource, so the processing
done by the JSP or other resource will be minimal.

Interacting with the request dispatcher’s include() and forward()
actions

Adding to or modifying the attributes of a request in a processing
pipeline
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The FindProd JSP Page
Let’s start with a simple JSP page. Listing 11-1 shows FindProd.jsp, which you may recall from
the previous chapter. This trivial JSP page is used to test the handling of JSP resources.

Listing 11-1. FindProd.jsp

<html>
<head></head>
<body>
<h1>You have submitted as the ${param.DEPT} department!</h1>

</body>
</html>

This JSP page prints out a message containing the department name by using EL and
expects the client to supply the DEPT parameter. In a new web application, we would control
the client that calls FindProd.jsp to ensure that it does supply the required parameter. (In
Chapter 10, we did that by specifying the URL to be entered to access the resource.)

The FindProd Servlet
Now we’ll simulate a legacy resource. Listing 11-2 shows a servlet named FindProd. This
servlet simulates a legacy resource being accessed by a user. It’s hard-coded to display the
DEPT parameter (department information). We’re going to assume that we’ve had the oppor-
tunity to update the servlet to process this department information. However, we’re also
going to assume that the legacy clients are out of our control, so they can’t be updated to pro-
vide the department information. Later, we’ll create a filter that automatically provides this
parameter even though the client system accessing the legacy resource doesn’t know how to
supply it. Save this code in the WEB-INF\classes directory. To compile the servlet, you’ll need
to add Tomcat’s servlet-api.jar file to your CLASSPATH.

Listing 11-2. FindProd.java

package com.apress.projsp;

import javax.servlet.http.*;
import java.io.*;

public class FindProd extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws java.io.IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<html><head></head>");
out.println("<body><h1>You have called from the "

+ req.getParameter("DEPT"));
out.println(" department!</h1></body></html>");
out.close();

}
}
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The Deployment Descriptor
Now we need to create a deployment descriptor for this simple web application. Listing 11-3
shows a simple version of web.xml that will get us started. As we proceed through the chapter,
we will add more entries to it.

Listing 11-3. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

version="2.5">
<display-name>Pro JSP Example Filters 2</display-name>
<distributable />
<servlet>
<servlet-name>findprod</servlet-name>
<servlet-class>com.apress.projsp.FindProd</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>findprod</servlet-name>
<url-pattern>/findprod</url-pattern>

</servlet-mapping>
</web-app>

A Brief Word on Terminology
Before you read any further, let’s clarify some of the terminology that is used throughout this
chapter. Figure 11-1 shows a request from a client as the request flows through a set of filters
and is handled by a web resource. Notice that Figure 11-1 shows filter 3 being applied twice to
the request/response cycle. Although this is not a common practice, it is technically possible.
For example, you could have an adapter filter that modifies a request. Using initialization
parameters, you could control how the filter modifies the request. Thus one instance of the
filter could modify one aspect of the request, and a second instance of the same filter could
modify a different aspect of the request.

The request originates from the client and goes through a chain of filters before reaching
the final resource processor in this figure. First, the request travels from the client, through
the first filter, through the second filter, and so on. We call this the downstream, or inbound,
trip. The downstream trip is always toward the final goal: the resource processor. After the
resource processor has finished with the request, a response then will travel upstream, or
outbound, back through all the filters and onward to the client. Upstream trips are always
away from the resource processor and toward the client.

New to Servlet 2.4 is the ability of filters to participate in the forward and include redirec-
tion requests of the request dispatcher. This is a very important advance architecturally. We
discuss this new feature in depth in the last section of this chapter.
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Figure 11-1. A request from a client constitutes the downstream (inbound) trip of a
request/response cycle. The response from a web application constitutes the upstream 
(outbound) trip.

Filter 1: A Visual Auditing Filter
The first filter that you’ll tackle is similar to the AuditFilter that you developed toward the
end of Chapter 10. Like the AuditFilter, it will be deployed by using the following web.xml
fragment:

<filter>
<filter-name>VisAudit Filter</filter-name>
<filter-class>com.apress.projsp.VisAuditFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>VisAudit Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Unlike the previous AuditFilter, instead of quietly writing the audit information to the
log, this filter will include the auditing information in the output of the resource. Figure 11-5
in the section “Configuring and Testing the Filter” shows an example of this filter being
applied to a JSP web page. Note the audit information at the bottom of the page—this infor-
mation is inserted by the filter, and it changes with every access to the page.

Wrapping the Response Object for Content Modification
The crucial concept to understand from this example is custom response wrapping. This is
also one of the most difficult techniques to grasp for novice filter programmers. In custom
response wrapping, you provide your own implementation of a custom response object to
downstream filters and resources, with the response object that was passed to you wrapped
inside. This means that you can modify the response content (inside your custom response
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wrapper object) after the resource has completed processing the request. Figure 11-2 illus-
trates the interception.

Figure 11-2. To allow upstream processing of a response, the standard response object is
contained inside a response wrapper.

In the VisAuditFilter example, you’ll use your own custom OutputStream class
(VisAuditOutputStream) and a wrapped response class (VisAuditResponseWrapper). The
classes you’ll use and their relationships are shown in Figure 11-3.

Figure 11-3. This UML class diagram illustrates the classes in the VisAudit Filter example.

Together, these classes will intercept the output of the web resource added to the auditing
information footer. The interaction diagram in Figure 11-4 shows how this interception is
carried out.
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Figure 11-4. This sequence diagram shows how the various VisAudit classes cooperate to filter the
response from a web component.

Note that you must wrap the response with your own custom version during the request’s
inbound trip, before you call Chain.doFilter(). In fact, the following happens:

1. The filter supplies a custom wrapped version of the response to downstream filters
when it calls the Chain.doFilter() method.

2. This custom wrapped response object hands down a custom OutputStream or
PrintWriter object that is actually a byte array managed in your own code.

3. When downstream filters, or the resource processor, write to your custom
OutputStream or PrintWriter, you’re buffering all the output.

4. When downstream filters, or the resource processor, flush or close your custom
OutputStream or PrintWriter, you examine the buffered output for the closing 
</body> tag and insert your auditing information just before it (if found).

Any downstream filters on the inbound trip (including the actual resource processor) 
are writing their data into your custom stream. Of course, it’s possible that some other down-
stream filters may perform further wrapping of your custom response with one of their own.
The filter-chaining mechanism supports this successive nested wrapping of the response (and
the request) as a means of multiple layers of content interception. In this case, your custom
response wrapper object will add the “Big Brother is watching you” visual audit message to all
resources that are accessed through this filter. End users will see this auditing message at the
bottom of every resource that they access and won’t be able to tell that the output originates
from a filter.

Now let’s examine the source code for this filter.
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The VisAuditOutStream Class
Your custom stream is called VisAuditOutStream (see Listing 11-4), which inherits from a class
called ReplaceContentOutputStream (Listing 11-7). ReplaceContentOutputStream is a utility
library (abstract) class for creating custom streams to be used in response wrapping. It takes
care of buffer management and intercepting the write, close, and flush calls by the down-
stream filters and processors. You will examine the source code for ReplaceContentOutputStream
a little later.

The constructor of your VisAuditOutStream takes the output stream to wrap as the first
parameter. The second and third parameters contain the IP address and host name of the
client accessing the page, and are passed directly from the filter when the custom stream is
created.

Listing 11-4. VisAuditOutStream.java

package com.apress.projsp;

class VisAuditOutStream extends ReplaceContentOutputStream
{
String addr;
String host;

public VisAuditOutStream(String inAddr, String inHost) {
addr = inAddr;
host = inHost;

}

public byte[] replaceContent(byte[] inBytes) {
StringBuffer sb = new StringBuffer(inBytes.length);
String result = new String(inBytes);
String srchString = result.toLowerCase();
int endBody = srchString.indexOf("</body>");
if (endBody != -1) {
sb.append(result.substring(0, endBody));
sb.append("<br><small><i>Big Brother is watching you. ")

.append("You have accessed our page from ").append(addr)

.append(" and on a machine called ").append(host)

.append("</i></small></br>")

.append(result.substring(endBody));
} else {
sb.append(result);

}
return sb.toString().getBytes();

}
}

The single method that a child class must override, because the method is declared
abstract in ReplaceContentOutputStream, is the replaceContent() method. This method takes 
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a byte array as input—this is the content written into the buffer by the downstream filters and
processors. The return value is another byte array, which is the content that will be written to
the client. In this case, the code looks for the </body> closing tag to know where to insert the
additional content. If the </body> tag is found, the auditing information is added just before
the end of the document.

The Customized Response Wrapper Class
The next class we’ll define is the response wrapper called VisAuditResponseWrapper (Listing
11-5). It conveniently inherits from javax.servlet.http.HttpServletResponseWrapper. By
using this wrapper class, we can readily wrap any HttpServletResponse object and override
only the methods that we want to customize. The HttpServletResponseWrapper class has pro-
vided trivial implementations of all the methods of the HttpServletResponse interface—they
all call the corresponding method of the class being wrapped.

Listing 11-5. VisAuditResponseWrapper.java

package com.apress.projsp;

import java.io.PrintWriter;
import javax.servlet.*;
import javax.servlet.http.*;

public class VisAuditResponseWrapper extends HttpServletResponseWrapper
{
private PrintWriter tpWriter;
private VisAuditOutStream tpStream;

public VisAuditResponseWrapper(ServletResponse inResp, String inAddr,
String inHost)

throws java.io.IOException
{
super((HttpServletResponse) inResp);
tpStream = new VisAuditOutStream(inAddr, inHost);
tpWriter = new PrintWriter(tpStream);

}

public ServletOutputStream getOutputStream()
throws java.io.IOException

{
return tpStream;

}

public PrintWriter getWriter() throws java.io.IOException {
return tpWriter;

}
}
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The constructor creates an instance of VisAuditOutStream and passes the IP address and
host name of client to the VisAuditOutStream constructor. It also creates a PrintWriter object
based on the stream. The VisAuditOutStream will be used by static pages and servlets; the
PrintWriter is used by JSP pages.

The two other methods that the class overrides are getOutputStream() and getWriter().
These methods hand out your customized stream instead of the response’s actual stream.

The Filter Logic
Finally, we get to the actual filter class in Listing 11-6, VisAuditFilter. You’ll recognize the
general organization from the preceding chapter’s examples. Focus your attention on the
doFilter() method.

Listing 11-6. VisAuditFilter.java

package com.apress.projsp;

import java.io.*;
import javax.servlet.*;

public final class VisAuditFilter implements Filter
{
private FilterConfig filterConfig = null;

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)

throws IOException, ServletException
{
String clientAddr = request.getRemoteAddr();
String clientHost = request.getRemoteHost();
filterConfig.getServletContext().log("in VisAuditFilter");
VisAuditResponseWrapper myWrappedResp = 
new VisAuditResponseWrapper(response,

clientAddr,
clientHost);

chain.doFilter(request, myWrappedResp);

PrintWriter writer = myWrappedResp.getWriter();
writer.close();
response.setContentType(myWrappedResp.getContentType());
ReplaceContentOutputStream rcos = 
(ReplaceContentOutputStream) myWrappedResp.getOutputStream();

byte[] result = rcos.getResult();
response.setContentLength(result.length);
ServletOutputStream out = response.getOutputStream();
out.write(result);
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filterConfig.getServletContext().log(
"Getting out of VisAuditFilter");

}

public void init(FilterConfig filterConfig) {
this.filterConfig = filterConfig;

}

public void destroy() {}
}

Code in the doFilter() method, prior to the chain.doFilter() call, is executed on the
inbound request. The code retrieves the client’s IP address and the host name. This informa-
tion will be passed down to the custom stream. After a little logging, the class creates a new
customized wrapped response, passing in the actual response as well as the IP address and
host name. Then the class calls chain.doFilter(), passing the wrapped response downstream
to other filters and the resource processor.

Some resource processor and downstream filter combinations don’t close the output
stream properly, so after chain.doFilter() returns, the code forces a close on the PrintWriter.
You’ll see shortly that the implementation of the ReplaceContentOutputStream class is guarded
against multiple closes, so this is safe even if the stream was closed previously.

The rest of these methods implement the filter interface and are standard implementations
that you saw within the samples of Chapter 10.

The ReplaceContentOutputStream Class
The custom stream, VisAuditOutStream, depends on the ReplaceContentOutputStream class
(Listing 11-7) to do a lot of its magic. This class wraps an OutputStream and does the following:

• Supplies its own byte array–based stream for the write() method, called by down-
stream filters and the resource processor.

• Handles the close() method by calling a child’s replaceContent() method to transform
the byte array stream.

• Provides the transformed content through the getResult() method. This method is
called by the filter when the filter writes the response.

This class can be used for any filter that transforms or replaces the response content.

Listing 11-7. ReplaceContentOutputStream.java

package com.apress.projsp;

import java.io.*;
import javax.servlet.*;

public abstract class ReplaceContentOutputStream
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extends ServletOutputStream
{
byte[] result;
private ByteArrayOutputStream baStream;
private boolean closed = false;

public ReplaceContentOutputStream() {
baStream = new ByteArrayOutputStream();

}

public void write(int i) throws java.io.IOException {
baStream.write(i);

}

public void close() throws java.io.IOException {
if (!closed) {
processStream();
closed = true;

}
}

public abstract byte[] replaceContent(byte[] inBytes)
throws java.io.IOException;

public void processStream() throws java.io.IOException {
result = replaceContent(baStream.toByteArray());

}

public byte[] getResult() {
return result;

}
}

This abstract class extends another abstract class, called ServletOutputStream, which is the
base class of the OutputStream returned by getOutputStream() on a response. ServletOutputStream
requires the write(int) method to be implemented by its subclass. It implements all the
other write() variants based on this method. The ReplaceContentOutputStream requires the
replaceContent() method to be implemented by all its subclasses.

Note the use of the flag variable closed: Initially false, this variable is used to ensure that
the wrapped stream is closed only once, regardless of how many times the close() method
may be called.

The constructor creates the memory-based ByteArrayOutputStream for the downstream
processors.

Next, the class implements the required write(int) method, which writes to the in-
memory byte array stream called baStream. This ensures that all writes on this stream write 
to baStream (essentially a buffer).
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When close() is called for the first time, the class transforms the output in the in-
memory stream. After the transformation, the class stores the results so the filter can retrieve
them later. Multiple calls to close() don’t cause a problem in this case.

The processStream() method calls the replaceContent() method to transform the 
in-memory stream and write the transformed output to the wrapped output stream. The
replaceContent() method is abstract. Subclasses of this class will provide an implementation
for the method. The intention is for subclasses to transform the input byte array and return
the transformed array. As you saw in Listing 11-4, VisAuditOutStream.java, that subclass
transforms the inBytes byte array by adding additional data to the stream.

This is the end of the code analysis for the ReplaceContentOutputStream abstract class.
You’ll rely on this class for two subsequent filters that transform their outgoing response’s
content.

Configuring and Testing the Filter
To deploy the filter, add the filter definition and filter mapping in Listing 11-8 to the 
web.xml file.

Listing 11-8. <filter> and< filter-mapping> Elements for web.xml

<filter>
<filter-name>VisAudit Filter</filter-name>
<filter-class>com.apress.projsp.VisAuditFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>VisAudit Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

This mapping will apply the filter to every resource served by the application. Start by
loading the JSP page FindProd.jsp, as shown in Figure 11-5, using the appropriate test URL 
for the application you created.

Figure 11-5. The VisAuditFilter can be used to filter JSP pages. It appends an audit message to the
end of the response.
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Next, you’ll try a servlet resource instead. Open http://localhost:8080/filters2/servlet/
findprod (note that findprod is lowercase). Figure 11-6 shows that the output is once again
intercepted and the auditing information is appended.

Figure 11-6. Filters can act upon any web resource including static HTML pages, JSP pages, and,
as shown here, servlets.

If you’re creating filters that must work across many types of resources, you must test
against each type of resource. This is necessary because each type of resource is passed
through a different resource processor, each of which potentially has different assumptions
and behavior from the others (servlets are passed to Catalina, JSP pages are passed to Jasper
first, and so on). 

Filter 2: An Authorization Filter 
A filter can generate its own output and deprive the downstream filters and resource processor
of a chance to see the request altogether. Obviously, there’s very little application for a filter
that does this all the time, but a filter that does this based on some dynamic criterion can be
useful. One example is a filter that blocks resource access based on the time of day. You’ll cre-
ate such a filter in this section.

Generating Your Own Response
The filter you’re going to create falls into the authorization filter application domain. More
specifically, it allows or disallows an incoming request to reach its destined resource processor
depending on the time of day. The application is intended to stop users from accessing game-
playing resources during certain hours. Figure 11-7 illustrates the filter action.

If a request arrives during the allotted time window, the user is allowed through to the
resource processor to play games. If a request arrives outside of the allotted time window, the
filter generates a response of its own, depriving the downstream resource processor of a
chance to see the request. This effectively blocks the use of the game resources.
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Figure 11-7. When a request is made outside the allowable hours, the filter denies access to the
requested resource.

Listing 11-9 shows the code for StopGamesFilter. The filter is designed to allow you to
make the range of allowable hours a configurable parameter, to make the filter flexible enough
for use in different environments. It also gives you a chance to see how to access and work
with initial parameters in filters.

Listing 11-9. StopGamesFilter.java

package com.apress.projsp;

import java.io.*;
import javax.servlet.*;
import java.util.Calendar;

public final class StopGamesFilter implements Filter {
private FilterConfig filterConfig = null;
private int starthour = 0;
private int stophour = 24; // default is to allow all the time

public void doFilter(ServletRequest request, 
ServletResponse response,

FilterChain chain) throws IOException, ServletException {
Calendar myCal = Calendar.getInstance();
int curhour = myCal.get(Calendar.HOUR_OF_DAY);
filterConfig.getServletContext().log(

"in StopGamesFilter cur:" + curhour + ", start: " + starthour
+ ", end: " + stophour);

if ((curhour >= stophour) || (curhour < starthour)) {
PrintWriter out = response.getWriter();

No

CHAPTER 11 ■ ADVANCED FILTERING TECHNIQUES 447

513-0 ch11.qxd  11/17/05  8:39 PM  Page 447



out.println("<html><head></head><body>");
out.println("<h1>Sorry, game playing is not " +

"allowed at this time!</h1>");
out.println("</body></html>");
out.flush();
filterConfig.getServletContext()

.log("Access to game page denied");
return;

}
filterConfig.getServletContext()

.log("Access to game page granted");
chain.doFilter(request, response);
filterConfig.getServletContext()

.log("Getting out of StopGamesFilter");
}

public void init(FilterConfig arg0) throws ServletException {
this.filterConfig = arg0;

}

public void destroy() {}
}

The class has two instance variables to hold the default hours of operation, which allows
game playing all the time. These parameters are used if the filter is configured without initial
parameters, or if the access to the initial parameters failed. It’s always a good idea to set some
usable default value for the filter.

In the doFilter() method, the class obtains the current hour, which depends on a 24-hour
clock to make things simple. The class also assumes that the start and stop hours don’t cross
the 12 a.m. boundary to keep the logic simple. Next, the class makes a log entry to show the
various values, which is useful for auditing or debugging purposes.

If the incoming request arrives outside of the allowed time range, doFilter() simply
generates the content of the response. The generated content lets the user know that access
to the game resource page is disallowed. If the request arrives within the allowed hours, the
filter lets the request through to access the game resource by passing the request and response
to chain.doFilter().

Thread-Safety Considerations
One question that you may have is, “Where do I access the initialization parameters?” The
answer is, generally not in the doFilter() method. This goes back to our discussion in the
previous chapter about thread-safe programming. The starthour and stophour variables are
instance-scoped variables. Modifying the value of instance-scoped variables in doFilter()
requires careful synchronization, because doFilter() will be accessed in multiple threads at
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the same time. Following the filter life cycle, however, there’s a natural place to set the value
of your initialization parameters.

After an instance of a filter has been created, and before the very first doFilter() is called,
the container calls the init() method to set the FilterConfig object for the filter. This is a nat-
ural point at which to perform any initialization required, and it’s conceptually equivalent to
the init() method of a servlet.

In this case, you’ll take advantage of it by setting your instance variables with values from
the filter definition. Listing 11-10 shows the init() method for the StopGamesFilter. The con-
tainer always calls init() in a single thread when it sets up the filter instance. In the init()
method, the filterConfig.getInitParameter() method reads the web.xml file for initialization
parameters. The init() method in Listing 11-10 replaces the init() method in Listing 11-9.

Listing 11-10. init() (To Be Added to StopGamesFilter.java)

public void init(FilterConfig arg0) throws ServletException {
String tpString;
filterConfig = arg0;
if ((tpString = filterConfig.getInitParameter("starthour")) != null)
starthour = Integer.parseInt(tpString, 10);

if ((tpString = filterConfig.getInitParameter("stophour")) != null)
stophour = Integer.parseInt(tpString, 10);

}

Installing and Configuring the StopGamesFilter
To install and configure the filter, first make sure all other <filter> and <filter-mapping>
elements are removed or commented out of the web.xml file. Then add the following entries

<filter>
<filter-name>Stop Games Filter</filter-name>
<filter-class>com.apress.projsp.StopGamesFilter</filter-class>
<init-param>
<param-name>starthour</param-name>
<param-value>8</param-value>

</init-param>
<init-param>
<param-name>stophour</param-name>
<param-value>9</param-value>

</init-param>
</filter>
<filter-mapping>
<filter-name>Stop Games Filter</filter-name>
<url-pattern>/games/*</url-pattern>

</filter-mapping>
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Make sure that you’ve configured the starthour and stophour variables to make the
current time outside of the allowable range, and create a games directory off the filters2
web-application directory that contains an appropriate index.html file. Start Tomcat and try
to access the following URL through a browser:

http://localhost:8080/filters2/games/index.html

You should see an “access denied” message as shown in Figure 11-8.

Figure 11-8. When a request is made outside allowable hours, the filter blocks the request.

This is the custom-generated response straight from the filter. Now, modify the <filter>
element in web.xml to include the current time within the range. Reload the web application
by using Tomcat’s management tool, or restart Tomcat, and try to access the same URL.
Figure 11-9 shows the page you should now see.

Figure 11-9. When a request is made within allowable hours, the filter passes the request down
the chain.
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Filter 3: A Filter for Adapting to Legacy Resources
The next filter you will examine addresses a common problem in the real world that occurs
when two independent systems refer to each other through hyperlinks. Over time, the require-
ment and access changes because of independent evolution. Imagine that because of the size
of the independent projects, or because of political situations, you can’t change the links to
either one of the systems. To keep them working, you’ll create a filter that adapts one system
to another, without modifying a single line of code in either system. Figure 11-10 shows the
action of just such an “adapter” filter within a typical system.

Figure 11-10. Filters can modify requests so that two systems that were not built to work together
can be integrated.

In this example, a JSP page represents the legacy resource. A centralized administrative
server that is accessed by multiple departments in a company services this JSP page. This
legacy system requires the originating department information to be supplied in the form of 
a DEPT parameter in order to work properly. Unfortunately, because of political situations in
this hypothetical company, the links coming into this server don’t and won’t contain the origi-
nating department information (the DEPT parameter). Therefore, you’ll design a filter to adapt
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the two systems. Figure 11-11 shows the result when the FindProd.jsp page receives a request
without the required request parameter.

This filter intercepts the request, examines where it’s from, and generates the required
DEPT parameter for the JSP resource so that it can function properly. It determines the depart-
ment of the incoming client by examining its subnet portion of the IP address corresponding
to the client (assume you have the subnet IP to department-mapping information). Therefore,
this adapter translates an incoming IP address to a required DEPT parameter and allows two
incompatible systems to work together.

You can easily imagine many more complex examples from the real world that may
require significantly more adaptation code; however, the general structure and technique for
creating such adapter filters remains the same.

Figure 11-11. When a request does not contain the necessary department, the resulting web page
does not display correctly.

The reason the message does not contain a department name is because of the missing
DEPT parameter when the URL is accessed. You’ll fix this by creating a filter that will adapt any
incoming requests by detecting the department information and providing the missing
parameter.

Wrapping an Incoming Request with the LegacyAdapterFilter
To perform its work, the filter will add the DEPT parameter to the request before it reaches the
underlying JSP resource. In other words, the filter will modify the request. To do this, the filter
will use a request wrapper. Listing 11-11 shows the LegacyAdapterRequestWrapper class.

Listing 11-11. LegacyAdapterRequestWrapper.java

package com.apress.projsp;

import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletRequestWrapper;
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public class LegacyAdapterRequestWrapper extends HttpServletRequestWrapper {
String myDept = null;

public LegacyAdapterRequestWrapper(HttpServletRequest inReq,
String deptString) {

super(inReq);
myDept = deptString;

}

public Map getParameterMap() {
Map tmpMap = super.getParameterMap();
tmpMap.put("DEPT", myDept);
return tmpMap;

}

public String[] getParameterValues(String paramName) {
if (paramName.equalsIgnoreCase("DEPT")) {
String[] tpAry = new String[1];
tpAry[0] = myDept;
return tpAry;

} else {
return super.getParameterValues(paramName);

}
}

public String getParameter(String paramName) {
if (paramName.equalsIgnoreCase("DEPT")) {
return myDept;

} else {
return super.getParameter(paramName);

}
}

}

In this example, the filter wraps the incoming request. Unlike the VisAudit filter (which
wrapped the response), this filter will actually be modifying header information associated
with the incoming request.

This wrapper class, called LegacyAdapterRequestWrapper, extends the useful
HttpServletRequestWrapper class. HttpServletRequestWrapper will take as an argument 
for its constructor the actual HttpServletRequest to wrap. It implements all of its methods 
by calling the methods of the wrapped request. By inheriting from this class, we can choose 
to override only the methods that we’re interested in.

Note that the class takes the department as an argument for the constructor, and stores
the value in an instance variable.

The methods that the class provides custom implementation for are getParameterMap(),
getParameterValues(), and getParameter(). This ensures that the class can work with most of
the resources that may access parameters. In fact, for the specific JSP that will be filtered, the
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class had to override only the getParameter() method because this is the only method the 
JSP uses. In each of the method overrides, you can see how the DEPT parameter is added. The
downstream filter or processor accessing the headers will have no way of knowing that the
DEPT parameter was added by your filter and not from the original request. This demonstrates
the beauty of filter chaining.

Writing the LegacyAdapterFilter
The filter will perform several tasks:

• Determine the incoming IP address

• Map the IP address from which the request originates to a department

• Add the DEPT parameter to the request before it reaches the underlying JSP resource

The last task in the list is being handled by the LegacyAdapterRequestWrapper class.
Listing 11-12 shows the LegacyAdapterFilter class, which will handle the first two tasks.

Listing 11-12. LegacyAdapterFilter.java

package com.apress.projsp;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;

public final class LegacyAdapterFilter implements Filter {
private FilterConfig filterConfig = null;

public void doFilter(ServletRequest request, 
ServletResponse response,
FilterChain chain) 

throws IOException, ServletException {

String clientAddr = request.getRemoteAddr();
System.out.println("the addr is " + clientAddr);
int idx = clientAddr.indexOf(".");
clientAddr = clientAddr.substring(idx + 1);
idx = clientAddr.indexOf(".");
clientAddr = clientAddr.substring(idx + 1);
idx = clientAddr.indexOf(".");
clientAddr = clientAddr.substring(0, idx);
System.out.println("the subnet is " + clientAddr);
String dept = null;
if (clientAddr.equals("0")) {
dept = "Engineering";
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} else {
dept = "Accounting";

}
LegacyAdapterRequestWrapper aCustomReq = 
new LegacyAdapterRequestWrapper(
(HttpServletRequest) request, dept);

filterConfig.getServletContext().log("in LegacyAdapterFilter");
chain.doFilter(aCustomReq, response);
filterConfig.getServletContext()

.log("leaving LegacyAdapterFilter");
}

public void init(FilterConfig filterConfig) {
this.filterConfig = filterConfig;

}

public void destroy() {
}

}

The filter first determines the department that the request is coming from. It does so by
mapping the subnet of the IP address to a department. In this case, it examines the subnet—if
it’s zero, DEPT=Accounting is used; otherwise DEPT=Engineering is used.

Next, it creates a wrapper request, passing in the department and calling downstream
filters/processor via filter chaining.

Installing and Configuring the LegacyAdapterFilter
To install and configure the filter, first make sure all other <filter> and <filter-mapping>
definitions are removed or commented out (you want to reduce the side effect of chaining
other sample filters). Then add the following entries to the web.xml file:

<filter>
<filter-name>Legacy Adapter Filter</filter-name>
<filter-class>com.apress.projsp.LegacyAdapterFilter </filter-class>

</filter>
<filter-mapping>
<filter-name>Legacy Adapter Filter</filter-name>
<url-pattern>/jsp/FindProd.jsp</url-pattern>

</filter-mapping> 

This will specifically apply the filter to the FindProd.jsp resource. Deploy and, if needed,
reload the application or restart Tomcat. Open the following address:

http://localhost:8080/filters2/jsp/FindProd.jsp

Figure 11-12 shows the result of the filter.
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Figure 11-12. The legacy adapter filter determines the department based on the Internet address
and adds the appropriate department parameter to the request.

Note that the message now prints a department name, even though no department name
is passed as part of the original request. The JSP page is picking up the DEPT parameter from
your wrapped request. If you can do so, you may want to access the JSP page from another
subnet to see the automatic department detection at work.

Filter 4: An Ad Hoc Authentication Filter
Tomcat 5 and almost all Servlet 2.5–compliant containers come with extensive authentication
and authorization support, so in theory there should be little need to implement your own
authentication filter. In fact, we will cover authorization and authentication in detail in
Chapter 12. In practice, however, there’s almost always room to apply an ad hoc authentica-
tion filter on a selected resource without affecting the rest of the application or requiring the
overhead of setting up, say, JDBC realms.

You should always analyze the problem at hand to see whether it would be better solved
by the native authentication support of the server. When you need simple, temporary protec-
tion of selected resources, the AdHocAuthenticate filter can be the best choice.

The action of this filter is straightforward. It triggers basic authentication on the client
browser. Almost all known browsers, including even the earliest versions, support basic
authentication. The authentication process works like this:

1. A client attempts to access a protected resource.

2. The server examines the client’s request to determine whether there’s any authoriza-
tion data in the “Authorization” header.

3. If authorization data isn’t found, the server sends back HTTP status code 401
(unauthorized access) and a header with WWW-authenticate: BASIC realm=<realm>,
where realm is a text string that will be displayed to the client.

4. The client browser pops up a login screen in which the user should enter a username
and password.

CHAPTER 11 ■ ADVANCED FILTERING TECHNIQUES456

513-0 ch11.qxd  11/17/05  8:39 PM  Page 456



5. When the user enters the username and password, the client encodes the username
and password by using simple base64 encoding and sends both to the server.

6. The server examines the client request to determine whether there’s any authorization
data, decoding the base64-encoded password if necessary. If there’s no authorization
data, the process goes back to step 3.

7. The server verifies the password and either allows or rejects access.

■Note Basic authentication isn’t very secure, because base64 encoding can easily be deciphered. How-
ever, for applications that just need to protect resources from casual access, it’s usually sufficient. For more
details on different kinds of authentication, see Chapter 12.

The AdHocAuthenticateFilter Class
The AdHocAuthenticate filter in Listing 11-13 recognizes two passwords: one for “regular”
users and one for privileged, “gold member” users. Both passwords are configured as initial
parameters for the filter. If a user logs on using the “gold member” password, a Boolean
attribute is created and attached to the request. You’ll learn later (in the pipeline-processing
filters section) how this attribute is used. For now, let’s focus on the authentication action of
this filter.

Listing 11-13. AdHocAuthenticateFilter

package com.apress.projsp;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;
import sun.misc.BASE64Decoder;

public final class AdHocAuthenticateFilter implements Filter {
private FilterConfig filterConfig = null;
private String adhocPassword = null;
private String adhocGoldPassword = null;

public void doFilter(ServletRequest request, 
ServletResponse response,
FilterChain chain) 

throws IOException, ServletException 
{
HttpServletRequest myReq = (HttpServletRequest) request;
HttpServletResponse myResp = (HttpServletResponse) response;
String authString = myReq.getHeader("Authorization");
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if (authString == null) {
myResp.addHeader("WWW-Authenticate", "BASIC realm=\"PJSP2\"");
myResp.setStatus(HttpServletResponse.SC_UNAUTHORIZED);
return;

} else { // authenticate
BASE64Decoder decoder = new BASE64Decoder();
String enString = authString.substring(6);
String decString = new String(decoder.decodeBuffer(enString));
int idx = decString.indexOf(":");
String uid = decString.substring(0, idx);
String pwd = decString.substring(idx + 1);
if (externalGoldAuthenticate(uid, pwd)) {
request.setAttribute("goldmember", new Boolean(true));

} else {
if (!externalAuthenticate(uid, pwd)) {
myResp.addHeader("WWW-Authenticate", 

"BASIC realm=\"PJSP2\"");
myResp.setStatus(HttpServletResponse.SC_UNAUTHORIZED);
return;

}
}

}
filterConfig.getServletContext().log("in AdHocAuthenticateFilter");
chain.doFilter(request, response);
filterConfig.getServletContext().log(

"Getting out of  " + "AdHocAuthenticateFilter");
}

private boolean externalAuthenticate(String user, String password) {
if (adhocPassword == null)
return false;

return adhocPassword.equals(password);
}

private boolean externalGoldAuthenticate(String user, 
String password) {

if (adhocGoldPassword == null)
return false; 

return adhocGoldPassword.equals(password);
}

public void destroy() {}

public void init(FilterConfig filterConfig) {
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if (adhocPassword == null)
adhocPassword = filterConfig.getInitParameter("adhocpassword");

if (adhocGoldPassword == null)
adhocGoldPassword = filterConfig.getInitParameter("goldpassword");

this.filterConfig = filterConfig;
}

}

There’s no need to wrap the response or request in this filter. Note the instance variables
that will be used to hold the two read-only passwords: adhocPassword and adhocGoldPassword.
These variables are initialized by the container from the web.xml values via the init() method.

In the doFilter() method, the class casts the request and response to their HTTP servlet
versions to access and manipulate the headers associated with them. The class then attempts
to get the authorization information from the request header. If no information is found, the
filter sends an authorization request to the client.

If the filter finds authorization data, it decodes the username and password. The author-
ization header begins with the token Basic, so the filter uses substring(6) to skip over the
constant string Basic of the authorization header, getting to the beginning of the base64-
encoded username and password.

The filter calls the methods externalGoldAuthenticate() and externalAuthenticate() to
perform the actual authentication for “gold member” users and “regular” users, respectively.
The externalAuthenticate() and externalGoldAuthenticate() methods encapsulate the
authentication mechanism. In this case, each authenticates against a single password from
the initial parameters. You can modify each to perform any type of authentication you desire,
including authentication against some physically external servers. Successful authentication
allows access to the protected resource. In addition, “gold member” authentication will result
in the, ahem, goldmember Boolean attribute being attached to the request. Failed authentica-
tion will cause the login dialog box to pop up again on the client’s browser.

If everything has been authenticated properly, access to the resource is allowed, and the
filter calls the chain.doFilter() method.

Installing and Configuring the AdHocAuthenticateFilter
To install and configure the filter, add the following entries to web.xml:

<filter>
<filter-name>AdHoc Authentication Filter</filter-name>
<filter-class>com.apress.projsp.AdHocAuthenticateFilter</filter-class>
<init-param>
<param-name>adhocpassword</param-name>
<param-value>bestofbreed</param-value>

</init-param>
<init-param>

<param-name>goldpassword</param-name>
<param-value>viponly</param-value>

</init-param>
</filter>
<filter-mapping>
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<filter-name>AdHoc Authentication Filter</filter-name>
<url-pattern>/jsp/*</url-pattern>

</filter-mapping>

Note that if you tried the legacy adapter filter in the previous section, it is now chained
with the AdHocAuthenticate filter. The legacy adapter filter supplies the missing originating
department information for the JSP page. The authenticate filter protects all JSP access with
the passwords bestofbreed and viponly. Deploy the new filter and go to the following URL:

http://localhost:8080/filters2/jsp/FindProd.jsp

You should be prompted with a login dialog box. Enter the username (any username will
do) and an invalid password. You’ll see that you’re barred from accessing the protected
resource until you enter one of the correct passwords.

Filter 5: A Filter in the Request-Processing Pipeline 
Thus far, this chapter’s focus has been on filters that either control the flow of a request
(stopping it or letting it through) or generate the response to a request. Vast as their fields of
application may be, these design styles only partially cover the potential spectrum of filter
applications. The fact that these filters are directly responsible for some portion of the
response HTML page’s final appearance often makes them difficult to compose (that is, to
chain them together in a value-added component fashion). This is because, by definition,
they’re specific to the page output that they directly generate.

The pipeline data-processing model provides a new style of filter that our fifth and final
filter exemplifies. The first enabler for this model is the new <dispatcher> child element of the
servlet <filter-mapping> definition. The new element enables filters to participate in every
stage of the pipeline request-processing model. In this model, filters are themselves bona fide
processors for a request traveling through a pipeline.

Understanding the Pipeline Model
There are many names given to the pipelined data-processing model. It’s often identified as
the enabling element of Model-View-Controller (MVC) web-application design, and some-
times it’s referred to as the push model of application design, in contrast with the more
conventional pull model.

The idea is simple, but you have to think beyond the conventional web-application wis-
dom to get the bigger picture. Consider the illustration of the model shown in Figure 11-13.

A request enters the system and is shuttled along a pipeline. As it traverses the pipeline, 
a sequence of processors has access to the content of the request. Each processor performs
some task on the request, and then it either attaches some new attribute or modifies an exist-
ing attribute as the result of that work. The request remains intact until it hits the final stage 
of the pipeline, in which special processors called renderers examine all the work being done
to the request and produce the final response (renderers are also called the view component
in the MVC paradigm because they alone are responsible for the final presentation to the
user). You can see why this is often called the “push” model; data attributes are fetched by
processors, pushed along the pipeline with the request, and rendered only at the final stage.
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Figure 11-13. In the pipeline model, different processers can act upon a request as it travels
through the system.

Another common analogy for the pipeline model is a conveyer belt or assembly line; each
processor mirrors the workers (or robots) along the belt or line.

Some of the highly desirable properties of a pipeline model are as follows:

• The request stays intact as it traverse the pipeline, with work being carried out only on
the attached attributes (sometimes called decorators).

• Data management, business logic, and presentation logic can be cleanly separated into
different processors and renderers.

• The processors can be designed to be completely composable (that is, chained in any
order) or highly specialized (to work only with specific attributes created or modified by
other processors).

• Multiple renderers can compose the final output (such as data to XML to HTML 
via XSLT).

• The state of the request travels with the request through the pipeline. The processors
and renderers don’t keep track of the request-dependent state at all. This makes it pos-
sible to duplicate or shuttle the request and its state between multiple physical servers
if necessary.

CHAPTER 11 ■ ADVANCED FILTERING TECHNIQUES 461

513-0 ch11.qxd  11/17/05  8:39 PM  Page 461



In general, designing request-handling logic by using the pipeline model provides the
following:

• Processors and renderers that are readily reusable as components

• Strong and clear separation between data management, business logic, and presenta-
tion logic in an application 

• Applications that are more maintainable

• Applications that are more adaptable to changing business requirements

• Robust applications that will be scalable with container technology and hardware
advances

• Web applications whose performance is highly optimizable 

The last point may not be immediately obvious, but any processors in the pipeline that
don’t depend on others’ outcomes can in principle be executed concurrently (perhaps on two
physical processors, for instance) and any grouping of processors that has an outcome inde-
pendent of others can also execute concurrently.

In the past, limitations in container implementation have prevented the use of a clean
pipeline design model. Servlet 2.5 has features that bring the dream of creating a pipelined
application closer to reality.

Inserting Filters into the Pipeline
The <dispatcher> subelement enables you to insert filters into the request-processing
pipeline. Recall that the <dispatcher> element now allows filters to intercept the request 
dispatcher’s forward() and include() calls. These are additional locations in the processing
pipeline previously unavailable with Servlet 2.3 containers, where filters can go to work for
you. You learned in Chapter 10 how this mechanism works, so let’s see it in action here.

First, you’ll revisit the SimpleFilter class that you saw in Chapter 10. All it did was write 
a couple of lines to the log, letting you know that it had been invoked. Now you’ll change it to
process the request traveling through the pipeline.

Instead of directly generating log output, it will now simply change attached attributes.
The modification looks to see whether an attribute named MsgOut exists in the request. If it does
exist, the code will append " : SimpleFilter" ; otherwise, MsgOut will be set to "SimpleFilter"
(without the leading colon). The first time the filter (processor) operates on a request, the
attached MsgOut attribute will be set to "SimpleFilter". After the second time, it will contain
"SimpleFilter : SimpleFilter", and after the third time, "SimpleFilter :SimpleFilter :
SimpleFilter".

Eventually, the MsgOut attribute will be displayed on an HTML page, so you can see the
number of times that this filter has operated on the specific request as it traveled through the
pipeline. Listing 11-14 shows the code for the com.apress.projsp.SimpleFilter class.
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Listing 11-14. SimpleFilter.java

package com.apress.projsp;

import java.io.*;
import javax.servlet.*;

public final class SimpleFilter implements Filter {
private FilterConfig filterConfig = null;

public void doFilter(ServletRequest request, 
ServletResponse response,
FilterChain chain) 

throws IOException, ServletException 
{

filterConfig.getServletContext().log("in SimpleFilter");
Object curVal = request.getAttribute("MsgOut");
if (curVal == null) {
request.setAttribute("MsgOut", new String("SimpleFilter"));

} else {
request.setAttribute("MsgOut", (String) curVal + 

" : SimpleFilter");
}
chain.doFilter(request, response);
filterConfig.getServletContext().log("leaving SimpleFilter");

}

public void init(FilterConfig arg0) throws ServletException {
this.filterConfig = arg0;

}

public void destroy() {
}

}

We’ll also revamp the FindProd.jsp file (the renderer processor in your pipeline) to display
the new attribute. Expression language is great for creating renderers—that is, JSP pages that
render HTML from attached attribute values. Listing 11-15 shows the new JSP page, which
we’ve renamed Sub.jsp.

Listing 11-15. Sub.jsp

<html>
<head></head>
<body>
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<h1>You have accessed this page 
from the ${param.DEPT} department!</h1>

${param.MsgForwarder}<br/>
${requestScope.MsgOut}

</body>
</html>

The MsgOut attribute, attached to the request, is displayed using EL here. Note that a
parameter called MsgForwarder is also displayed. You’ll see this parameter used later when you
work with the forward() action of the request dispatcher.

Default REQUEST-Only Filtering: Servlet 2.3 Compatibility
To specify that filtering is to be performed only for requests that come directly from outside of the
container, you can add the following <dispatcher> element inside the filter’s <filter-mapping>
element:

<dispatcher>REQUEST</dispatcher>

For example, you might have the following in web.xml: 

<filter>
<filter-name>Simple Push Filter</filter-name>
<filter-class>com.apress.projsp.SimpleFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>Simple Push Filter</filter-name>
<url-pattern>/jsp/*</url-pattern>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>

Now, if you open the following URL:

http://localhost:8080/filters2/jsp/Sub.jsp?DEPT=Accounting

you’ll see a page similar to the one shown in Figure 11-14.

Figure 11-14. The Simple Filter added a parameter to the request, which was then printed to 
the page when the page was rendered.
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Note the EL rendering of the MsgOut attribute on the page—you know that the filter has
been called once. This behavior is all that you have with filter support prior to the Servlet 2.4
standard. It’s also the default behavior with Tomcat 5 if you don’t specify any <dispatcher>
subelement for compatibility reasons.

INCLUDE-Only Filtering 
With Tomcat 5 and Servlet 2.4 or Servlet 2.5, you can specify that your filter work only on
included requests. Try this out by changing web.xml to this:

<filter-mapping>
<filter-name>Simple Push Filter</filter-name>
<url-pattern>/jsp/*</url-pattern>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

Reload the application, or restart Tomcat, and try accessing Sub.jsp directly via the
following URL:

http://localhost:8080/filters2/jsp/Sub.jsp?DEPT=Accounting

Notice that the MsgOut attribute isn’t present, indicating that the resulting page hasn’t
passed through SimpleFilter.

By specifying INCLUDE in the <dispatcher> subelement, you’re saying that the filter should
map only to included requests. To see this in action, Listing 11-16 shows a new JSP, Master.jsp,
that will include Sub.jsp.

Listing 11-16. Master.jsp

<html>
<head></head>
<body>
<h1>First Inclusion</h1>
<jsp:include page="/jsp/Sub.jsp" flush="true">
<jsp:param name="DEPT" value="Accounting"/>

</jsp:include>
<hr/>
<h1>Second Inclusion</h1>
<jsp:include page="/jsp/Sub.jsp" flush="true">
<jsp:param name="DEPT" value="Engineering"/>

</jsp:include>
</body>

</html>

This JSP file makes two calls to the request dispatcher, each time to include the /jsp/
Sub.jsp that you’ve been working with. The output from both of these include() actions is
merged as the output response. Note that you’re also supplying a different DEPT parameter
with each inclusion.
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Figure 11-15 shows what you should see if you reload the new application and navigate to
the following URL:

http://localhost:8080/filters2/jsp/Master.jsp

Figure 11-15. This page shows what occurs when a filter acts upon resources that are called with
the <jsp:include> standard action.

Note the MsgOut attribute value—it reflects the action of SimpleFilter. The attribute is
"SimpleFilter" after the first inclusion of Sub.jsp and "SimpleFilter : SimpleFilter" after
the second inclusion. The request has been operated on by SimpleFilter twice, once for each
inclusion in Master.jsp.

FORWARD-Only Filtering
To make the filter operate only on forwarded requests, modify the web.xml file as follows:

<filter-mapping>
<filter-name>Simple Push Filter</filter-name>
<url-pattern>/jsp/*</url-pattern>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>
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Because FORWARD is specified in the <dispatcher> element, only forwarded requests will
be passed to the filter. To see this in action, we’ll create one last JSP, Forwarder.jsp, shown in
Listing 11-17.

Listing 11-17. Forwarder.jsp

<jsp:forward page="/jsp/Sub.jsp">
<jsp:param name="DEPT" value="Accounting"/>
<jsp:param name="MsgForwarder" value="Forwarded from forwarder.jsp"/>

</jsp:forward>

This JSP page simply forwards the request to Sub.jsp, and sets the DEPT and MsgForwarder
parameters. Both parameters are displayed in Sub.jsp by using EL.

Reload the application or restart Tomcat. Now try the following URLs in turn:

http://localhost:8080/filters2/jsp/Sub.jsp?DEPT=Accounting
http://localhost:8080/filters2/jsp/Master.jsp
http://localhost:8080/filters2/jsp/Forwarder.jsp

For the first two URLs, notice that direct request and included requests are no longer
being filtered. The third URL should result in a page similar to Figure 11-16.

Figure 11-16. This page results when the filter is applied to resources that are called by using the
<jsp:forward> standard action.

You can see from this experiment that only the forwarded request is filtered.

Combining Dispatcher Actions
Of course, you can use more than one <dispatcher> element to indicate multiple locations for
the filter to apply to. For example:

<filter-mapping>
<filter-name>Simple Push Filter</filter-name>
<url-pattern>/jsp/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
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<dispatcher>INCLUDE</dispatcher>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>

Now, try the three previous URLs, and you’ll observe the following:

• URL 1: The filter is active on Sub.jsp when requested alone.

• URL 2: The filter is active on Master.jsp plus each of the included Sub.jsps.

• URL 3: The filter is active on Forwarder.jsp plus the forwarded Sub.jsp.

Summary
In this chapter, we’ve worked through five complete filter examples covering these application
domains:

• Auditing

• Authorization

• Adapting legacy resources

• Authentication

• Request-processing pipeline

Working through the code to these filters, we’ve discussed the following:

• Generating our own response and blocking downstream processing

• Wrapping a response to transform or replace its content

• Wrapping a response to change its headers

• Wrapping a request to modify headers

• Accessing initialization parameters

• Dynamically altering filter behavior based on the incoming request

• Controlling the interaction of filters and the request dispatcher

• Applying filters in a processing pipeline configuration

You now have five examples that you can use as the basis for your own filter implementa-
tion. You also have one versatile class, ReplaceContentOutputStream, that you can use
whenever you need to wrap a response to modify its content.

You should now be fluent in filtering technology, and you should be able to apply filters to
many challenges that the real world may throw at you.
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Security in Web Applications

A web application lives a hazardous existence in the land of 1s and 0s. The Internet—the
virtual environment we all know and love—can be a dark and dangerous place. It’s filled 
with calm, collected programmer types like us, but there are also zealous hackers wandering
through the dark alleys, scanning for open ports and passwords to steal. Is your web applica-
tion safe? Have you protected your resources from the vulnerable, open, and sometimes
dangerous information superhighway? In such a treacherous environment, most web appli-
cations will have security requirements, such as encrypting passwords or protecting certain
pages from unauthorized viewing. Sun Microsystems has come to the rescue and made this
easier for Java developers. In the Java Servlet specification, compliant containers are required
to have built-in mechanisms to support your security requirements.

In this chapter, we will focus on building several examples that show different methods
for authentication and access control. A more common name for these methods is declarative
security, which basically involves changing an XML file (web.xml) to control who can log in
and who can do what. This allows you to keep an application’s security configuration separate
from your servlet and JSP code. Declarative security can be very helpful in making your appli-
cation more portable across application servers, as well as making it easier for a deployer
(versus a developer) to change.

This chapter covers the aspects of security that we’ve encountered as web developers,
particularly with JSP-based web applications. In this chapter, you will look at the following:

• Authentication mechanisms (form, basic, digest, and client certification)

• Secure Sockets Layer (SSL) and security certificates

• Java Authentication and Authorization Service (JAAS)

• Form-based authentication tips and tricks

• Servlet 2.5 changes

Overview of Application Security
First, we should define “authentication” and “authorization.” Authentication is the process
by which a web application verifies that you are who you say you are. For example, when a
user logs in to a web page with a username and password, the web application validates the
entered credentials against its user data store (for example, file-, database-, or Lightweight
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Directory Access Protocol [LDAP]-based) and the login succeeds or fails. Authorization, on
the other hand, occurs when the application checks to see whether you’re allowed to do
something. For example, to delete a user from the database, you need to be an administrator.

Having security built into servlet containers isn’t something new in the Servlet 2.5
specification—it’s been around since Servlet 2.2 with the advent of the web.xml deployment
descriptor. The security features that all servlet containers provide are as follows:

• Authentication: The process of proving your identity to an application

• Access control for resources: The means by which interactions with resources are lim-
ited to users, roles, or programs for the purpose of enforcing integrity, confidentiality,
or availability constraints

• Data integrity: The means for proving that a third party hasn’t modified information
while it was in transit

• Confidentiality or data privacy: The means used to ensure that information is made
available only to users who are authorized to access it

So far, you’ve learned how to develop the different components in a web application. Now
we’ll show you how to use the built-in mechanisms of the servlet and JSP APIs to configure
authentication and authorization. It’s really quite simple. Container-managed authentication,
where you configure or declare in your web.xml deployment descriptor file who can access
your web application, is one of these built-in mechanisms, and it takes only about 5 minutes
to set up when you’re using a Java EE–compliant server.

■Note When we refer to an “application” in this chapter, we’re speaking about a web application unless
otherwise specified. When we refer to “application servers” or “servlet containers,” we’re speaking about
Java EE application servers that have a servlet container.

In this chapter, we’ll concentrate on securing the front end of an application. However,
security is important in all tiers of an application, from the presentation layer (JSP pages,
HTML, JavaScript) to the underlying hardware and the network that the application uses. You
must ask yourself whether your database, network, and operating system are secure. If you
leave any of these open to attack, there would be no point in securing the front end of your
application.

■Note For more information on securing your database, network, or operating system, see http://
www.owasp.org and http://online.securityfocus.com.

As a web developer, you shouldn’t be tasked with the security in these areas, but it’s
something you should be aware of. You also need to prevent your application from a denial
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of service (DoS) attack, in which your application or site is attacked by an enormous number
of hits at the same time. Most good application servers have mechanisms to handle this, but
it’s a good idea to test for DoS if you’re developing a highly visible site or application.

In this chapter, you will see how to build a secure application, complete with user
authentication and authorization. Using the security mechanisms in this chapter will further
translate into the other layers of your application, particularly if you’re using Enterprise
JavaBeans (EJBs).

We’ve worked on projects in the past in which we rolled our own security mechanism.
Although it worked well (interfacing with LDAP), it was a real pain to maintain and difficult for
new developers to understand. By using container-managed security, your application will be
much easier to maintain and comprehend. You can easily add new roles to your application by
adding or altering a few lines in your application’s deployment descriptors. Using container-
managed security also makes it easy to switch from using a file-based user data store (or realm)
to a database or LDAP-based realm. If you use what Java EE provides—and a new developer
should be familiar with Java EE—then understanding your application’s architecture will be 
a breeze.

In the Servlet 2.5 specification, not much is new regarding security. The specification still
recommends that you use the deployment descriptor as your primary vehicle to implement
security. This is so the application developer doesn’t get bogged down with implementation
details, and the application deployer has control over matters such as which roles to allow,
which resources to protect, and so on. It’s easy to roll your own security mechanism when you
fulfill both the application developer and application deployer roles on your development
team. However, if you work in a large team or you’re developing a product for customers to
install, an application with declared security will be much easier to maintain. Read on, and
we’ll show you how easy it is to develop and maintain container-managed security. 

Using Authentication
One of the most popular JSP/servlet sample applications produced today is the “how to log
in” application. This application usually consists of a couple of JSP pages, some Java Data-
base Connectivity (JDBC) code to access a database, and possibly a tag library that rejects or
allows users on the basis of their logged-in status. Although these elements make for easy-to-
understand applications, they promote an overly difficult method of performing authentication.

Container-managed authentication has existed since the Servlet 2.2 specification, but
unfortunately many application server vendors didn’t implement it correctly. Tomcat has 
an awesome implementation of container-managed authentication. All that is needed is
some deployment descriptor manipulation, and your resources are protected. The beauty of
container-managed authentication is that the level of security is up to the developer or the
deployer.

First, we’ll define a couple of terms that we use throughout this section. According 
to the Tomcat documentation (http://jakarta.apache.org/tomcat/tomcat-5.5-doc/ 
realm-howto.html), “A Realm is a ‘database’ of usernames and passwords that identify valid
users of a web application (or set of web applications), plus an enumeration of the list of roles
associated with each valid user. You can think of roles as similar to groups in Unix-like operat-
ing systems, because access to specific web-application resources is granted to all users
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possessing a particular role (rather than enumerating the list of associated usernames). A
particular user can have any number of roles associated with their username.”

All configuration settings (servlet or filter mappings, URL patterns, and so on) in the
web.xml file relate to the root directory of your web application. They don’t include your appli-
cation’s context path. To prove how easy it is to use container-managed authentication, you
can add the following lines to your web.xml file to protect your entire application. The follow-
ing <security-constraint> and <login-config> elements should be entered toward the
bottom of your web.xml file:

<security-constraint>
<web-resource-collection>
<web-resource-name>My Application</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>*</role-name>

</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>

</login-config>

The significant elements in the preceding code are <url-pattern>, <role-name>, and
<auth-method>:

• The <url-pattern> element defines the characters to look for in a client’s request. This
value can be a path-based pattern (such as /admin/*) or an extension-based pattern
(such as /admin/*.jsp), and it doesn’t include the context path. Any resources that
match this path will be secured by the container.

• The <role-name> element indicates the roles allowed to view the secured resource(s).
There can be one or more role names defined, and an asterisk (*) indicates all roles
defined in the realm. 

• The <auth-method> defines the type of authentication mechanism to use, such as basic
(a simple dialog box with the username/password) or form (a redirect to an HTML-
based login page).

Figure 12-1 shows an illustration of the <security-constraint> element adapted 
from a similar illustration in the Servlet 2.5 specification. As you can see, there are very 
few required elements. The <security-constraint> element can occur zero or more times
within the <web-app> element of the deployment descriptor. If it occurs, then it must have 
a <web-resource-collection> subelement. The <web-resource-collection> element is
required to have <web-resource-name> and <url-pattern> subelements. More details on how
to use the <security-constraint> element can be found in the Servlet 2.5 specification.
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Figure 12-1. The <security-constraint> element of the deployment descriptor is used to provide
descriptive security to a web application.

When you add the <security-constraint> element to the deployment descriptor of a web
application installed in Tomcat, the application will be protected by Tomcat’s default memory
realm. The <security-constraint> element, through the use of the wildcard for <role-name>,
allows all roles to access the web application.

There should already be a tomcat user in %TOMCAT_HOME%\conf\tomcat-users.xml with a
role tomcat and password tomcat. Thus, if you accessed a web application protected by the
preceding <security-constraint>, you could access it with the username and password 
tomcat/tomcat. The tomcat-users.xml file in our release has the following entries by default:

<tomcat-users>
<role rolename="tomcat"/>
<role rolename="role1"/>
<role rolename="manager"/>
<role rolename="admin"/>
<user username="tomcat" password="tomcat" roles="tomcat"/>
<user username="both" password="tomcat" roles="tomcat,role1"/>
<user username="role1" password="tomcat" roles="role1"/>
<user username="admin" password="hinkar" roles="admin,manager"/>

</tomcat-users>

Here, username represents the username used for logging in, and the roles element 
is a comma-delimited list of roles for the given user. A role in this list should match the
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security-role in your web.xml file. To add a new user named projsp with the password 
test to this file (aka realm), simply create a new line:

<tomcat-users>

<user name="projsp"    password="test"   roles="tomcat" />
</tomcat-users>

You will need to restart Tomcat for this change to take effect.
In the <security-constraint> example shown earlier, we used an * to indicate that all

roles were allowed to access the web application. Keep in mind this is a simple example of
how to protect your entire application and how to allow all roles in your realm. If you do add
roles by name in the <auth-constraint> subelement, you’ll also need to add the following
<security-role> element to the deployment descriptor. For example, if the <role-name>
subelement of <auth-constraint> specified the role apress, then the <security-role>
element of the deployment descriptor would include the following:

<security-role>
<role-name>apress</role-name>

</security-role>

Also, if you want to name your realm so the user sees a friendly name in the login dialog
box, you can add a <realm-name> element to <login-config>:

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>My Test Application</realm-name>

</login-config>

When the client displays the login dialog box (see Figure 12-2), the dialog will display the
specified realm name.

Figure 12-2. When you provide a realm name in the deployment descriptor, it is used in the 
login dialog box displayed to the user.
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If you don’t define a realm-name, the realm’s value will be server:port, such as localhost:8080.
This simple example of basic authentication in an application brings us to the authentication
options. 

Authentication Options
Using a deployment descriptor, a web client can authenticate to a web server by using one of
the mechanisms listed in Table 12-1.

Table 12-1. Authentication Mechanisms for Web Applications

Mechanism Configuration

HTTP basic authentication <auth-method>BASIC</auth-method>

HTTP digest authentication <auth-method>DIGEST</auth-method>

HTTPS client authentication <auth-method>CLIENT-CERT</auth-method>

Form-based authentication <auth-method>FORM</auth-method>

When using HTTP basic authentication, the server will authenticate a user by using a
username and password from the client. In a web environment, the client browser uses a pop-
up dialog box (see Figure 12-2) to collect the user’s username and password. Figure 12-3 shows
the sequence of interactions between a client and server when basic authentication is used.
The authentication is based on a username and password, and the password is sent by using
simple base64 encoding, but it isn’t encrypted.

Figure 12-3. When a client requests a protected page, the server returns the HTTP status 401.
The client collects username and password data from the user and sends the data to the server.
If the user is authorized to view the resource, the server sends the requested resource.
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The target server isn’t authenticated; therefore, this isn’t a secure mechanism. The client
has no proof that the server is who it says it is. For a server to prove its identity, it needs to
obtain an SSL certificate from a certificate authority (such as VeriSign). If you need greater
security but still wish to use basic authentication, you can combine it with SSL or a virtual
private network (VPN).

HTTP digest authentication also authenticates a user on the basis of a username and
password. However, the client transmits the password in an encrypted form, such as Secure
Hash Algorithm (SHA) or Message Digest 5 (MD5). In the web arena, HTTP 1.1–enabled
browsers will support this. According to the Servlet 2.5 specification, HTTP digest authentica-
tion isn’t currently in widespread use; therefore, servlet containers are encouraged but not
required to support it. Tomcat, JBoss, and Resin support this authentication method. When
you use HTTP digest authentication, the user is prompted with a username/password dialog
box that looks similar to the basic authentication dialog box shown in Figure 12-4. However,
the digest authentication dialog box indicates that the user is accessing a secure site.

Figure 12-4. When digest authentication is used, the dialog box indicates that the user is 
accessing a secure site.

HTTPS client authentication requires the user to possess a Public Key Certificate (PKC)
and is based on HTTP over SSL, hence the name HTTPS. To use this, users will have to apply
for, receive, and then install into their browser a certificate. This verifies the browser’s identity
and often prompts the user for a password even if the certificate is present. PKCs are useful 
in applications with strict security requirements and also for single sign-on from within the
browser. Servlet containers that you want to be Java EE compliant are required to support the
HTTPS protocol.

Form-based authentication is the final option when using declarative security. It seems 
to be the most desirable and it’s also our favorite. Unlike the others, it allows the developer 
(or web designer) to customize the look and feel of the login screen. This is what most people
expect when using a web application, so it fits into the web paradigm nicely. It also allows for
simple instructions on the login screen and usability features such as password hints and help
links. All the web applications that we’ve developed (that required user authentication) have
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used an HTML-based implementation. For this reason, we show you how to implement
form-based authentication along with a few tricks.

Form-Based Authentication
To understand how form-based authentication works, let’s look at the five steps that occur in a
successful login. Figure 12-5 shows those steps again, along with numbered keys that will guide
the discussion that follows the figure.

Figure 12-5. When a client requests a protected page, the client and server work together to
provide the resource only if the client is authenticated and authorized to view the resource.

Here are the steps in the interaction between a client and server when the client attempts
to access a protected resource. Each numbered item in the following list corresponds to a
number in Figure 12-5.

1. A user requests a protected resource (defined as protected in web.xml) by clicking a
link, selecting a bookmark, or typing in a URL.

2. The login form associated with this protected resource is sent to the client, and the
container stores the URL that the client tried to access. This is to say that the container
remembers that the client originally requested /do/mainMenu.

■Tip The current servlet API doesn’t allow you to get the URL the user originally tried to access. However,
some servlet containers will store this value as a hidden field in the form. View the servlet container docu-
mentation to see whether yours does.
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3. The user populates the form with her username and password and submits it.

4. The container attempts to authenticate the user with the form’s information.

5. If authentication succeeds, the client is redirected to the resource by using the stored
URL path.

Unfortunately, this authentication mechanism was designed to resemble HTTP basic
authentication, meaning that when a user enters an incorrect username or password,
the server returns an HTTP status code of 401. HTTP status code 401 means “This
resource requires HTTP authentication.” Therefore, your deployment descriptor will
contain entries for a login form and an error page; the error page is served up when a
401 error is encountered. This process (see Figure 12-6) includes the same steps as
those described previously, except the last step changes to the following:

6. If authentication fails, the error page is returned and the status code of the response is
set to 401.

Figure 12-6. When form-based authentication is used, the last step in the process is
changed slightly.

To implement form-based authentication, the first thing you need is a page with a 
form. The only requirements mandated by the specification are that the form’s action is
j_security_check, and that the username and password fields are named j_username and
j_password, respectively. Listing 12-1 shows an example of how this might be coded in an
HTML or JSP page.

CHAPTER 12 ■ SECURITY IN WEB APPLICATIONS478

513-0 ch12.qxd  11/17/05  4:15 PM  Page 478



Listing 12-1. login.jsp

<html>
<body>
<form id="loginForm" method="post" action="j_security_check">
<p>
Username: <input type="text" name="j_username" id="j_username" />
<br/>
Password: <input type="password" name="j_password" id="j_password" />
<br/>
<button type="submit">login</button>

</p>
</form>
</body>
</html>

The form error page can contain anything, but most likely the page will explain that the
user entered an invalid username or password.

To configure form-based authentication in the deployment descriptor, let’s build upon
the earlier example. The following code snippet is a <security-constraint> element where the
<auth-method> has been changed to FORM, and a login page and error page have been defined:

<security-constraint>
<web-resource-collection>

<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>

<role-name>*</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.jsp</form-login-page>
<form-error-page>/loginError.jsp</form-error-page>

</form-login-config>
</login-config>

You’ll notice we removed the <realm-name> from the <login-config> block, mainly because
it won’t be displayed anywhere and is therefore useless. If you’ve never configured form-based
authentication before, we encourage you to try entering these lines in the web.xml of one of the
example applications from this book. If you decide to try this, don’t forget to create login.jsp
and loginError.jsp in the root directory.

Although the preceding <security-constraint> element works fine on Tomcat, it may not
work on other application servers. This is because the <security-constraint> in the preceding
code snippet uses /* as the <url-pattern> to protect all resources. Therefore, you might need
to adjust the <url-pattern> to protect only certain resources, rather than all of the applica-
tion’s resources.
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After a user has successfully logged in, an instance of HttpSession is created for him or
matched up with an existing session he created. This session is active for the duration that
the <session-timeout> value specifies in the deployment descriptor (web.xml). This value
determines how long the server retains a user’s session between interactions. Thus, if the user
clicks a link or somehow sends a request to the application, the server will recalculate how
long it will wait to expire the session. After the session expires or is killed by a reboot of the
application server, the user will be required to log in again. If a <session-timeout> value isn’t
specified, a default of 30 minutes is used. Some application servers have the ability to persist
sessions to the file system (or a database), so a session can live through a reboot (provided it
hasn’t timed out).

It’s important to note that it isn’t currently possible to configure logout declaratively. Log-
ging out is usually done by using a JSP page or servlet that calls session.invalidate(). When
you use session.invalidate(), all objects bound to the session are removed. If the user tries
to access a protected resource again, he’ll be prompted for a username/password again. In
most instances, logging out is accomplished by placing a link on a page that calls logout.jsp
or a Logout.java servlet. Other ways that a user can log out are by closing the browser or by
exceeding the minutes of inactivity specified by the <session-timeout> parameter.

In an early draft of the Servlet 2.4 specification, a logout() method was proposed for the
HttpSession interface. This method would log the client out of the web server and invalidate
all sessions associated with this client. However, the method was dropped from the final draft
of the specification.

Tomcat Realms
This section illustrates how to set up different realms in Tomcat. As mentioned previously, a
realm is a “database” of usernames, passwords, and user roles. We’ll show you how to set up a
MemoryRealm, a JDBCRealm, a JNDIRealm, and later in this chapter, a JAASRealm.

MemoryRealm

If you have a fresh Tomcat installation that you’ve been using to run these examples, you
should be able to log in by using tomcat/tomcat for the username/password. These values are
specified in %TOMCAT_HOME%\conf\tomcat-users.xml. This file is considered a MemoryRealm,
which stores basic user information. This is the default realm for Tomcat, as specified in its
server.xml file (located in the same directory).

In Tomcat 5.0.30, the realm and its database are specified like this (we’ve deleted irrele-
vant information from the excerpt):

<Server port="8005" shutdown="SHUTDOWN" debug="0">
<GlobalNamingResources>
<Resource name="UserDatabase" auth="Container"

type="org.apache.catalina.UserDatabase"
description="User database that can be updated and saved">

</Resource>
<ResourceParams name="UserDatabase">
<parameter>
<name>factory</name>
<value>org.apache.catalina.users.MemoryUserDatabaseFactory
</value>
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</parameter>
<parameter>
<name>pathname</name>
<value>conf/tomcat-users.xml</value>

</parameter>
</ResourceParams>

</GlobalNamingResources>
<Service name="Catalina">
<Engine name="Catalina" defaultHost="localhost" debug="0">
<Realm className="org.apache.catalina.realm.UserDatabaseRealm"

debug="0" resourceName="UserDatabase"/>
</Engine>

</Service>
</Server>

Note that in the <ResourceParams> element, you can configure the location of the user
database.

Tomcat 5.5.9 has streamlined the elements:

<Server port="8005" shutdown="SHUTDOWN">
<GlobalNamingResources>
<Resource name="UserDatabase" auth="Container" 

type="org.apache.catalina.UserDatabase" 
description="User database that can be updated and saved" 
factory="org.apache.catalina.users.MemoryUserDatabaseFactory" 
pathname="conf/tomcat-users.xml" /> 

</GlobalNamingResources>
<Service name="Catalina">
<Engine name="Catalina" defaultHost="localhost">
<Realm className="org.apache.catalina.realm.UserDatabaseRealm" 

resourceName="UserDatabase" />
</Engine>

</Service>
</Server>

Other application servers will likely support a similar file-based mechanism for storing
user information, but we doubt you’d ever see this on a production system. One of the main
problems with using a file-based mechanism is that most servers require a shutdown and
restart to pick up any changes. It’s great to use for prototyping, but if you decide to add more
user information, you’ll likely want to use a database or directory service. Although it’s possi-
ble to use a file-based realm for usernames and passwords, and a database for the rest of the
users’ information, the realm will be easier to maintain if everything is kept in the database.
For that, Tomcat provides you with the JDBCRealm.

JDBCRealm

The JDBCRealm allows you to configure declaratively the location for storing your users’ informa-
tion. When we say “declaratively,” we mean that the location is typed in an XML file, rather than
programmed and compiled into a Java class. Tomcat also supports a JNDIRealm for looking up
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and authenticating users in an LDAP directory server. When using either of these methods, you’ll
have to create a Context for your application, so you can override the default MemoryRealm.
Listing 12-2 shows a file named context.xml, which you can place in the META-INF directory of
the web application. It shows an example of using a JDBCRealm to authenticate with a MySQL
database named security.

Listing 12-2. context.xml

<Context path="/security" docBase="security" debug="0">
<Realm className="org.apache.catalina.realm.JDBCRealm" debug="99"

driverName="com.mysql.jdbc.Driver"
connectionURL="jdbc:mysql://localhost:3306/security?autoReconnect=true"
connectionName="test" 
connectionPassword="test"
userTable="users" 
userNameCol="username" 
userCredCol="password"
userRoleTable="user_roles" 
roleNameCol="role_name" />

</Context>

By placing context.xml in the META-INF directory of the web application, you are protecting
only the given application. Tomcat also allows you to place this file in various other locations.
See the Tomcat documentation (http://jakarta.apache.org/tomcat/tomcat-5.5-doc/config/
context.html) for more information about using context.xml.

Listing 12-2 defines two tables for users and roles. The userTable attribute in Listing 12-2
defines the users table to be a table named users. The users table must contain at least two
columns, identified by the userNameCol and userCredCol attributes; the userNameCol is the col-
umn that contains usernames, and the userCredCol is the column that contains the user’s
password. The roles table (user_roles) also has at least two columns. The roles table contains
one row for every valid role that is assigned to a particular user. A user can have zero, one, or
many roles. The column that contains the role data is identified by the roleNameCol attribute.
The username from both the users table and the roles table should match the value a person
enters as a username. The role name value will match up to roles specified in the application’s
web.xml file.

The following example SQL script in Listing 12-3 creates the needed tables. This script has
been tested only on MySQL. 

Listing 12-3. security.sql

create database if not exists security;
grant all privileges on security.* to test@localhost identified by "test";
grant all privileges on security.* to test@"%" identified by "test";
use security;

create table users (
username         varchar(50) not null primary key,
password         varchar(25) not null
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);
create table user_roles (
username         varchar(50) not null,
role_name        varchar(20) not null,
primary key (username, role_name)

);

Now you need to add a user to both the users and user_roles tables. You can do this with
the following SQL:

insert into users (username, password) values ('tomcat', 'jdbc');
insert into user_roles (username, role_name) values ('tomcat', 'developer');

■Tip A script to create the security database and a default user is located with the code download for this
book, at the Source Code area of the Apress website (http://www.apress.com/book/download.html).

The next step is to place a copy of the JDBC driver you’ll be using inside the %TOMCAT_HOME%\
common\lib directory. You can download the latest MySQL JDBC driver JAR file at www.mysql.org.

Next, create Listing 12-4. This will be a test page that we will try to access.

Listing 12-4. index.jsp

<html>
<body>
Congratulations, you've authenticated successfully!
</body>
</html>

As with all web applications, we need a deployment descriptor. Listing 12-5 shows the
deployment descriptor for this example. Note that you’re allowing all roles to log in to this
application.

Listing 12-5. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

version="2.5">
<display-name>Security Example</display-name>
<description>Web Application Security Example</description>
<security-constraint>

<web-resource-collection>
<web-resource-name>My Application</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
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<auth-constraint>
<role-name>*</role-name>

</auth-constraint>
</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>My Test Application</realm-name>

</login-config>
</web-app>

To demonstrate that this code works, perform the following steps:

1. Create a security directory in the webapps directory, and copy the index.jsp file shown
in Listing 12-4 to this directory.

2. If you are using Tomcat 5.5, enter Listing 12-2 into a file named context.xml and save 
it to the %TOMCAT_HOME%\webapps\security\META-INF directory. If you are using Tomcat
5.0, take the <Realm> element from Listing 12-2 and add it to server.xml.

3. Create a WEB-INF directory in the security directory, and add the deployment descrip-
tor from Listing 12-5. 

4. Ensure that a JDBC driver library for the database has been copied into the common\lib
directory. We used mysql-connector-java-3.1.10-bin.jar for this example.

5. Start Tomcat and navigate to http://localhost:8080/security. You should be prompted
with a dialog box that looks like Figure 12-7.

6. After you enter a username of tomcat and a password of jdbc, you should see a screen
like that in Figure 12-8.

Figure 12-7. The login dialog box for the security web application
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Figure 12-8. When you successfully log in to the security application, you should see 
this JSP page.

You can also use JDBC to protect all the applications of a Tomcat server. To do this, you
take the <Realm> element from Listing 12-2 and put it into Tomcat’s conf\server.xml file in
place of the existing <Realm> element. Note that if you do this, you need to ensure the data-
base contains the admin and manager users and roles to keep using the existing Tomcat
applications.

If you’d rather authenticate with an LDAP server, you can configure a JNDIRealm in
Tomcat. On most large projects we’ve worked on, an LDAP server was involved in storing
user information. 

JNDIRealm

Configuring a JNDIRealm is similar to configuring a JDBCRealm; however, the realms’ attributes
are slightly different. For this example, we installed OpenLDAP version 2.2.19 on a Microsoft
Windows XP Pro machine.

We installed the OpenLDAP server according to the quick start guide at http://
www.openldap.org/doc/admin/quickstart.html. Then we edited the slapd.conf file. At the top
of the file, we had to include two additional schema entries. By default, only core.schema was
included; we added cosine.schema and inetorgperson.schema:

include         C:/openldap/etc/schema/core.schema
include         C:/openldap/etc/schema/cosine.schema
include         C:/openldap/etc/schema/inetorgperson.schema

Obviously, you may need to adjust the paths based on your system. Regardless of whether
you are trying this example on a Windows system or a Unix-based system, the include direc-
tives in the slapd.conf file must be the correct paths to the files being included.

In the same file, at the bottom, we changed the settings as follows:

database bdb
suffix "dc=raibledesigns,dc=com"
rootdn "cn=Manager,dc=raibledesigns,dc=com"
rootpw secret
directory C:/openldap/var/openldap-data
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You would, of course, modify the settings as needed for your system. For example, you
might have a different directory location for the openldap-data file, or the root password may
not be secret, or your domain may be different from raibledesigns.com.

Then we created an LDAP Data Interchange Format (LDIF) file to create our top-level
organization entry, the organization units for groups and people and, finally, the tomcat user
with a password of jndi and the developer role (see Listing 12-6).

Listing 12-6. entries.ldif

# Define top-level entry
dn: dc=raibledesigns,dc=com
objectClass: dcObject
objectClass: organization
o: Raible Designs, Inc.
dc: raibledesigns

# Define Manager Role to authenticate with
dn: cn=Manager,dc=raibledesigns,dc=com
objectclass: organizationalRole
cn: Manager
description: Directory Manager

# Define an entry to contain people
# searches for users are based on this entry
dn: ou=people,dc=raibledesigns,dc=com
objectClass: organizationalUnit
ou: people

# Define a user entry for Tomcat User
dn: uid=tomcat,ou=people,dc=raibledesigns,dc=com
objectClass: inetOrgPerson
uid: tomcat
sn: user
cn: tomcat user
mail: tomcat@raibledesigns.com
userPassword: jndi

# Define an entry to contain LDAP groups
# searches for roles are based on this entry
dn: ou=groups,dc=raibledesigns,dc=com
objectClass: organizationalUnit
ou: groups

# Define an entry for the "developer" role
dn: cn=developer,ou=groups,dc=raibledesigns,dc=com
objectClass: groupOfUniqueNames
cn: developer
uniqueMember: uid=tomcat,ou=people,dc=raibledesigns,dc=com
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We named this file entries.ldif, placed it in the root user’s home directory, and
imported it by using the ldapadd command:

ldapadd -x -D "cn=Manager,dc=raibledesigns,dc=com" -W -f ~/entries.ldif

Following this procedure should result in a number of adding new entry lines displayed
in your console window, as shown in Figure 12-9.

Figure 12-9. As the LDAP server processes each entry in the LDIF file, it will display a message to
the console.

If you get any errors, we found that it was easy to start over by stopping LDAP (using the
kill command) and removing the contents of the usr\local\var\openldap-data directory.

The slapd.conf and entries.ldif files used for this example can be found with the code
download for the book; the files are located with the code for this chapter in the directory
jndi. To enable use of the JNDIRealm (instead of the JDBCRealm), replace the previous realm
configuration with the following:

<Realm className="org.apache.catalina.realm.JNDIRealm" debug="99"
connectionName="cn=Developer,dc=raibledesigns,dc=com"
connectionPassword="secret"
connectionURL="ldap://localhost:389"
userPassword="userPassword"
userPattern="uid={0},ou=people,dc=raibledesigns,dc=com"
roleBase="ou=groups,dc=raibledesigns,dc=com"
roleName="cn"
roleSearch="(uniqueMember={0})" 

/>

CHAPTER 12 ■ SECURITY IN WEB APPLICATIONS 487

513-0 ch12.qxd  11/17/05  4:15 PM  Page 487



You’ll need the JNDI drivers for LDAP in your CLASSPATH for this to work. You can
download the latest LDAP Service Provider (version 1.2.4) from http://java.sun.com/products/
jndi/downloads/index.html. After you’ve downloaded it, extract ldap.jar into %TOMCAT_HOME%\
common\lib.

As with the JDBC realm, you can protect a single application by nesting the <Realm>
element in a <Context> element in the file context.xml in the META-INF directory of the appli-
cation. Optionally, you can set the default realm for your entire server to be a JNDI realm. To
do this, edit Tomcat’s server.xml file (in %TOMCAT_HOME%\conf), and replace the default realm
(shown next) with your desired realm’s information. Note that if you still want to use the
Tomcat Manager or Admin applications, your LDAP server will need appropriate user and 
role entries to allow this.

If everything has been installed and configured correctly, then when you try to access a
protected web page, you will see the same login dialog or form (depending on whether you
have specified basic or form authentication). After you enter a username and password, 
Tomcat will make a JNDI call to the LDAP server to authenticate the username. 

JAASRealm

Tomcat has support for a JAASRealm as well. We show you how to configure a JAASRealm in the
“Java Authentication and Authorization Service” section later in this chapter. For the purposes
of this chapter and its associated example application, we will generally use a JDBCRealm.

Using Secure Sockets Layer
So far, we’ve discussed setting up a form-based login and configuring it to talk to a realm.
One problem with the example so far is that the communication between the browser and
server isn’t secure. If someone were listening with a password sniffer, your security would be
compromised. Furthermore, these sniffers are easy to come by—try searching Google for
“password sniffer.”

According to “The Guide to Building Secure Web Applications, Version 1.1.1” from the
Open Web Application Security Project (http://www.owasp.org), “The most common method
of securing the HTTP protocol is to use SSL. The Secure Sockets Layer protocol, or SSL, was
designed by Netscape and was introduced in the Netscape Communicator browser in 1994.
It’s most likely the widest-spoken security protocol in the world, and is built into all commer-
cial web browsers and web servers. The current version is version 2. Since the original version
of SSL is technically a proprietary protocol, the Internet Engineering Task Force (IETF) took
over responsibilities for upgrading SSL, and have now renamed it Transport Layer Security
(TLS). The first version of TLS is version 3.1, and has only minor changes from the original
specification.”

SSL is a technology that allows web browsers and web servers to communicate over a
secure channel. In SSL, data is encrypted at the browser (before transmission) and then
decrypted at the server before reading the data. This same process takes place when the
server returns data to the client. This process is known as the SSL handshake. There cur-
rently are three levels of encryption supported by this protocol: 40-bit, 56-bit, and 128-bit.
The more security you need, the more bits you should use. For more on the SSL handshake,
visit http://medialab.di.unipi.it/doc/JNetSec/jns_ch11.htm.

The best way to gain a good understanding of SSL is to implement it. The first step to set-
ting up SSL on your web server (in this case, Tomcat) is to generate a certificate. Keep in mind

CHAPTER 12 ■ SECURITY IN WEB APPLICATIONS488

513-0 ch12.qxd  11/17/05  4:15 PM  Page 488



that if you are proxying your JSP/servlet requests through a traditional web server (such as
Apache or IIS), you’ll need to set up SSL on those servers. The documentation for setting up
Tomcat’s SSL support is excellent, but we’ll go over it here so it’s familiar to you.

Secure Sockets Layer on Tomcat
If you’re using Java 1.4, or Java 5 Standard Edition, Java Secure Socket Extension (JSSE) has
been integrated into its core, so no additional download is needed.

■Note More information about JSSE can be found at http://java.sun.com/products/jsse/.

Create a certificate keystore by executing the following command:

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

Specify a password value of changeit. This process should resemble the session shown in
Figure 12-10.

Figure 12-10. The output of the keytool program when creating a certificate keystore for Tomcat

The keytool application will prompt you for information such as first and last name, city,
state, and so on. We’ve used localhost as the first and last name values, because this is the
value matched by your browser when verifying authenticity of the certificate. It actually shows
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up as the certification path in the resulting certificate. For testing purposes, you can accept the
default values for most of the other prompts. When the tool prompts you to verify the data, type
yes and press Enter. Finally, press Enter to accept the keystore password as the user password.

This is still not a valid certificate because you’re generating it yourself. To get a valid certifi-
cate, you must purchase one from a certificate authority (CA) such as VeriSign. In this example,
using localhost will result in one less warning in the user’s browser.

Now, edit %TOMCAT_HOME%/conf/server.xml and remove the comments around the SSL
HTTP/1.1 Connector entry. After you’ve set this up, you should be able to access Tomcat by
using https://localhost:8443. Don’t forget the s after http. The port has to be specified
because it isn’t the default port for HTTPS (port 443).

Tomcat expects the .keystore file that was created by the keystore tool to be in a particu-
lar location (the user’s home directory). If you are having trouble accessing Tomcat over SSL
(particularly if the error log has messages about not being able to access the .keystore file),
you can tell Tomcat where the .keystore file is by adding this attribute to the SSL <Connector>
element of servler.xml:

keystoreFile="path_to_keystore\.keystore" 

If you don’t want to specify your port numbers on your URLs when using Tomcat, you can
easily change them in the server.xml file. When accessing Tomcat for the first time on its SSL
port, you should be prompted with a security alert (see Figure 12-11).

Figure 12-11. When accessing a secure site over SSL by using a certificate that was created by
someone other than a CA, the browser will display a security alert informing you of that fact.

If you use your real name rather than localhost when generating this certificate, the secu-
rity alert will warn you that the certificate’s name doesn’t match the name of the page you’re
trying to view (see Figure 12-12).
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Figure 12-12. If the name on the certificate has a problem, the security alert will also display 
that information.

■Caution We’ve encountered problems when running Tomcat on 80/443 and IIS on a Windows machine
at the same time. Shutting down IIS allowed us to run Tomcat on 443. The strange part is that IIS was run-
ning on port 81 and we had no secure port running. When you see Tomcat start and then immediately shut
down, a port conflict is often the cause of the problem.

One thing you’ll probably notice after setting this up is that your browser warns you about
the certificate. This is because the issuer of the certificate is unknown (you) and the browser
doesn’t recognize you as a CA. CAs, such as VeriSign (http://www.verisign.com), Thawte
(http://thawte.com), and TC TrustCenter (http://www.trustcenter.de/set_en.htm), are
trusted organizations that verify and certify that a server is who it says it is. Also, you can
obtain client certificates if you want to set up both client and server certificates. This may be
necessary in highly secure, top-secret, X Files–flavored applications, but it’s not necessary for
most web applications.

One drawback to using SSL in a web application is that it tends to significantly decrease
the throughput of the server. This is mainly due to the encryption and decryption process on
each end of the connection. Therefore, we recommend that you use SSL only for the parts of
your application that really need it—for instance, when a user logs in or when a user submits a
credit card number.

■Note You can find more information on performance degradation with SSL at http://
www.computerworld.com/securitytopics/security/story/0,10801,58978,00.html. This article
also contains links to other articles and options for SSL acceleration.
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Later in this chapter, we’ll show you how to do SSL switching upon user login and also
before the user logs in. 

Java Authentication and Authorization Service
You might be wondering how Java Authentication and Authorization Service (JAAS) fits into
all of this. JAAS provides a framework and standard programming interface for authenticating
users and for assigning privileges. Together with Java 2, an application can provide code-
centric access control, user-centric access control, or a combination of the two. JAAS was
invented to make login services independent of authentication technologies and allow Plug-
gable Authentication Modules (PAM). Most modern application servers use JAAS under the
covers to configure container-managed security—you’re using it without even knowing that
you are!

JAAS can be helpful when you need to use complex authentication schemas or when you
grant resource-specific privileges to users (for example, inserting a row in the database or
assigning write permissions to a file). At its core, JAAS is essentially a security mechanism
that allows you to specify authentication and authorization via policy files. It became an inte-
gral part of Java starting with J2SE 1.4. When you run your application server with a security
manager, a policy file is checked, and then the user is allowed to run your application or is
prompted for credentials. As we mentioned, JAAS does allow for complex login schemas,
such as a Windows NT domain or smart cards (for example, RSA SecurID).

■Note You can find more information on the login schemas supported at http://java.sun.com/j2se/
1.4/docs/guide/security/jaas/JAASRefGuide.html#AppendixB.

To set up your application server to use JAAS specifically for your application, rather than
its own authentication mechanism, you usually have to select a JAAS custom realm and then
perform a few additional steps. The following steps set up a JAASRealm on Tomcat 5 (on a
Windows machine) to authenticate with an NT domain.

The easiest way to do this is to download Andy Armstrong’s JAAS login modules from
http://free.tagish.net/jaas/. These modules were written specifically for authenticating
with a Windows NT domain and are similar to the helper classes that make the JDBCRealm work
behind the scenes. After you’ve downloaded the ZIP file, extract the contents of the down-
loaded file to a jaas-modules directory. At the time of this writing, version 1.0.3 was the latest
available download.

After you’ve downloaded the login modules, copy the file NTSystem.dll file to the Tomcat
bin directory. Copy the tagishauth.jar to the Tomcat common\lib directory.

In the Samples config folder of the Tagish JAAS distribution, you’ll find a tagish.login file
and a java.security.sample file. Copy the last few lines from java.security.sample and put it
at the end of the java.security file (located in $JAVA_HOME\jre\lib\security). This line looks
as follows:

# Login configs
login.config.url.1=file:${java.home}/lib/security/tagish.login
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Replace the token ${java.home} with the actual path to Java home on your system. For
example, if ${java.home} evaluates to C:\Program Files\Java\jre1.5.0_03\, the entry would
be as follows:

login.config.url.1=file:C:/Program Files/Java/jre1.5.0_03/lib/security/tagish.login

Then move the tagish.login file into the same directory ($JAVA_HOME\jre\lib\security).
If your users always log in to the same domain (which is what we’ve configured here), just set
the defaultDomain property in tagish.login as follows:

NTLogin
{

com.tagish.auth.win32.NTSystemLogin required returnNames=true 
returnSIDs=false defaultDomain=NT_DOMAIN_OR_WORKGROUP;

};

where NT_DOMAIN_OR_WORKGROUP is the NT domain of your login, or the Windows Workgroup of
your login.

■Tip Make sure to change the defaultDomain value from NT_DOMAIN_OR_WORKGROUP to the domain you
want to communicate with.

After you’ve completed these setup steps, you need to change your context to have the
following realm configuration:

<Realm className="org.apache.catalina.realm.JAASRealm" debug="10"
appName="NTLogin"
userClassNames="com.tagish.auth.win32.typed.NTUserPrincipal"
roleClassNames="com.tagish.auth.win32.typed.NTGroupPrincipal" />

Listing 12-7 shows the context.xml file for Tomcat 5.5. If you are using Tomcat 5.0, put the
<Realm> element in the server.xml file. If you are using Tomcat 5.5, nest the <Realm> element
in a <Context> element in the file META-INF\context.xml.

Listing 12-7. context.xml

<Context path="/5130ch12_jaas" docBase="5130ch12_jaas" debug="99">
<Realm className="org.apache.catalina.realm.JAASRealm" debug="10"

appName="NTLogin"
userClassNames="com.tagish.auth.win32.typed.NTUserPrincipal"
roleClassNames="com.tagish.auth.win32.typed.NTGroupPrincipal" />

</Context>

Next, add the entry in Listing 12-8 to the deployment descriptor.
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Listing 12-8. <security-constraint> and <login-config> Elements for web.xml

<security-constraint>
<web-resource-collection>
<web-resource-name>Security Example</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>*</role-name>

</auth-constraint>
</security-constraint>

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/loginError.jsp</form-error-page>

</form-login-config>
</login-config>

The file login.jsp was shown in Listing 12-1; we’ve left loginError.jsp for you to write as
you please.

■Caution There appears to be a bug in the Tagish distribution that causes basic authentication to fail. That
is why we use form authentication for this example. For more information, see http://blog.cmaeda.com/
?p=22.

We tested this setup and configuration on a Windows XP machine, and everything worked
smoothly. We were able to log in using the same username/password combination we used for
logging onto Windows XP. Also, we didn’t have a domain, just a workgroup, and everything
worked flawlessly there as well.

If you don’t want to use Andy Armstrong’s JAAS login modules, you can create your own
file-based JAAS LoginModule by performing the following steps.

First, create a LoginModule class as shown in Listing 12-9 that implements javax.security.
auth.login.LoginContext.

Listing 12-9. MyLoginModule.java

package com.apress.projsp;

import java.io.IOException;
import java.security.Principal;
import java.util.Map;
import javax.security.auth.Subject;
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import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.LoginModule;

public class MyLoginModule implements LoginModule
{
protected CallbackHandler callbackHandler = null;
protected boolean committed = false;
protected boolean debug = false;
protected Map options = null;
protected Principal principal = null;
protected Map sharedState = null;
protected Subject subject = null;

protected void log(String message) {
System.out.print("MyLoginModule: ");
System.out.println(message);

}

public boolean abort() throws LoginException {
log("abort");
return (true);

}

public boolean commit() throws LoginException {
log("commit phase");
// If authentication was not successful, just return false
if (principal == null) {
log("no principal commit fails");
return (false);

}
if (!subject.getPrincipals().contains(principal))
subject.getPrincipals().add(principal);

// add role principals
subject.getPrincipals().add(new MyRolePrincipal("admin"));
committed = true;
log("commit successful");
return (true);

}

public void initialize(Subject subject,
CallbackHandler callbackHandler,
Map sharedState, Map options)

{
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// Save configuration values
this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

}

public boolean login() throws LoginException {
log("login phase");
// Set up our CallbackHandler requests
if (callbackHandler == null)
throw new LoginException("No CallbackHandler specified");

Callback callbacks[] = new Callback[2];
callbacks[0] = new NameCallback("Username: ");
callbacks[1] = new PasswordCallback("Password: ", false);
// Interact with the user to retrieve the username and password
String username = null;
String password = null;
try {
callbackHandler.handle(callbacks);
username = ((NameCallback) callbacks[0]).getName();
password = new String(((PasswordCallback) callbacks[1])

.getPassword());
} catch (IOException e) {
throw new LoginException(e.toString());

} catch (UnsupportedCallbackException e) {
throw new LoginException(e.toString());

}
if (!authenticate(username, password))
return false;

principal = new MyPrincipal(username);
return true;

}

public boolean logout() throws LoginException {
subject.getPrincipals().remove(principal);
committed = false;
principal = null;
return (true);

}

boolean authenticate(String s, String p) {
if (s == null || p == null)
return false;

return (s.compareTo("jaas") == 0) && (p.compareTo("jaas") == 0);
}
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static public void main(String args[]) throws Exception {
LoginContext ctx = new LoginContext("TomCatAdminApplication");
ctx.login();

}
}

Note that the valid username and password are hard-coded into the authenticate()
method. Obviously, in a real-world application, the class would verify the username and
password by using a more robust technique.

Now we need to write a class to represent a user and a user role. Listing 12-10 shows the
MyPrincipal class that implements java.security.Principal.

Listing 12-10. MyPrincipal.java

package com.apress.projsp;

public class MyPrincipal implements java.security.Principal
{
String m_Name = new String("");

public MyPrincipal(String name) {
m_Name = name;

}

public boolean equals(Object another) {
try {
MyPrincipal pm = (MyPrincipal) another;
return pm.m_Name.equalsIgnoreCase(m_Name);

} catch (Exception e) {
return false;

}
}

public String getName() {
return m_Name;

}

public int hashCode() {
return m_Name.hashCode();

}

public String toString() {
return m_Name;

}
}

Listing 12-11 shows a role class (which extends the MyPrincipal class from Listing 12-10).
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Listing 12-11. MyRolePrincipal.java

package com.apress.projsp;

public class MyRolePrincipal extends MyPrincipal
{
/** Creates a new instance of MyRolePrincipal */
public MyRolePrincipal(String s) {
super(s);

}
}

Compile these three classes and make them accessible to your web application. You can
do this by putting them in WEB-INF\classes, or by putting them in a JAR file, and copy the JAR
file to the application’s WEB-INF\lib or to Tomcat’s common\lib. Now you’ll need to configure
your application’s context to use these newly created (and compiled, of course) classes.

<Realm className="org.apache.catalina.realm.JAASRealm" debug="99"
appName="ProJSP"
userClassNames="com.apress.projsp.MyPrincipal"
roleClassNames="com.apress.projsp.MyRolePrincipal" />

If you are using Tomcat 5.0, put the <Realm> element in the server.xml file. If you are using
Tomcat 5.5, nest the <Realm> element in a <Context> element in the file META-INF\context.xml.

Create a login configuration file for the MyLoginModule. (See http://java.sun.com/j2se/
1.4.2/docs/guide/security/jaas/JAASRefGuide.html for more information about login con-
figuration files.) The Tagish distribution named its file tagish.login; as Listing 12-12 shows,
we’ll name ours projsp.login.

Listing 12-12. projsp.login

ProJSP {
com.apress.projsp.MyLoginModule required;

};

There are a couple of things to note here. First, the appName attribute in the <Realm> element
must match the application name in the login configuration file. Second, the configuration file
can list multiple login modules. Just add each additional login module sequentially, using a
semicolon to separate each entry.

Finally, we need to tell the JVM where to find this login configuration file. As with the
tagish.login file, we do this in the java.security configuration file, jre\lib\security\
java.security:

login.config.url.n=file:${path/to/projsp.login}

The security configuration file consists of a set of security properties that you can config-
ure. The n in the preceding line is replaced with a unique integer so that you can list multiple
config URLs. The value of the login.config.url.n property is the path to the login configura-
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tion file. So, if JAVA_HOME is c:\java, then the entry in the java.security file for projsp.login
would be as follows:

login.config.url.1=file:c:/java/jre/lib/security/projsp.login

Finally, edit or create the <security-constraint> and <login-config> elements of the
deployment descriptor. 

Form-Based Authentication Tips and Tricks
Now that we’ve discussed how to use form-based authentication with your server’s realms,
we’d like to share some tips and tricks. Many of these have been client requests or usability
enhancements, and we think they’ll make developing your secure application easier.

Using the Welcome File
It’s important in a web application to configure the opening page that users will see. Adding
the following <welcome-file-list> element to your web.xml file can do this:

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

In some application servers, the default welcome file is already configured to be
index.html and index.jsp, but it doesn’t hurt to specify this and increase your application’s
portability. Also, note that your welcome file can be named with any arbitrary name; you are
not restricted to naming the welcome file index.jsp or index.html. After you’ve configured
your welcome file, it’s easy to add a few simple lines to forward the user to a protected
resource:

<% response.sendRedirect("/welcome.do"); %>

One nice addition to the Servlet 2.4 specification is that you can actually set your wel-
come file to use a servlet; you were unable to do this in earlier versions. This is to say that the
following will work when using a Servlet 2.4– or Servlet 2.5–compliant container:

<welcome-file>/welcome.do</welcome-file>

When you use form-based authentication and you forward to a protected resource, you’re
presented with the page specified in your web.xml file—in this chapter’s example application,
it’s login.jsp. To make this page friendlier than just a login form, we usually do one of the
following:

• Include a welcome message on this page

• Include a welcome message from another JSP by using <jsp:include>

• Use a templating mechanism such as Tiles or SiteMesh to combine the two pages and
the appropriate URL in the redirect’s value
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■Note You can find more information on Tiles and SiteMesh at http://jakarta.apache.org/
struts/userGuide/dev_tiles.html and http://www.opensymphony.com/sitemesh/, respectively.

Allowing Login on an Error Page
With HTTP basic authentication, users may find it frustrating when their login fails. If you
enter invalid credentials when using some browsers (Internet Explorer for the Mac, for exam-
ple), an HTTP status code (401 – Unauthorized) is returned and an error message is displayed
on the screen. Mozilla handles this better by prompting you again for valid credentials. This is
the ideal situation and is what most usability experts recommend. The default behavior with
form-based authentication is similar to the undesirable behavior previously described.

Don’t worry, though—a couple of techniques can help solve this problem. The first uses
one JSP page to serve up both the login page and the error page. The second uses cookies to
capture the requested URL and reuse it.

Using the same page as your form-login-page and form-error-page is as simple as config-
uring your web.xml to handle this:

<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/login.jsp</form-error-page>

</form-login-config>

One problem with this approach is that the user will see the same page again—with no
error information—if the login fails. So let’s add a little indicator to the form-error-page to
indicate that the login has failed:

<form-error-page>/login.jsp?error=true</form-error-page>

Now it’s possible to grab this parameter in your JSP page and display an error message if
authentication fails:

<c:if test="${param.error != null}">
<div class="error">

Invalid username and/or password, please try again.
</div>

</c:if>

Though this seems easy enough, it has been known to fail on some containers. When this
happens, the containers are still complying with the specification. However, you can work a
little magic to attempt to log in again from the error page.

In working with iPlanet Application Server 6.x, which required two separate pages in
<login-config>, we stumbled upon this solution when viewing the source of the login.jsp in
the browser. The HTML source showed all kinds of good information, in particular the original
URL requested as a hidden field. Using this hidden field, we were able to set this value as a
cookie and reuse it in our form’s action on the login-error-page.
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■Note You can find the details of this procedure at http://husted.com/struts/resources/
fb-auth.htm.

Unfortunately, there’s no portable mechanism to acquire the URL that was originally
requested, and there’s no guarantee that this is even possible. All you know is that the con-
tainer has detected that a protected URL was requested and that there was no user currently
authenticated. One solution might be to use a filter to track all recently requested URLs and
get the last requested URL from it. You’ll want to make sure your login form is a *.jspf (JSP
fragment) file so you can include it in both the form-login-page and form-error-page. 

Using Secure Sockets Layer for Login Only
As mentioned earlier, using SSL can slow the performance of your application, so it’s wise to
use it only when it’s needed. A good use of SSL is when a user logs in. This means that a user
who accesses the login page by using the HTTP protocol (http://) will be switched over to
HTTPS (https://) when the username and password are sent across the wire. In this example,
you’ll use a Login servlet to process the initial login request, switch to SSL, and then redirect to
the container’s authentication mechanism.

The code download for this book comes with a fully featured application for demonstrat-
ing security techniques. Unfortunately, it is too lengthy to fully list here. We provide extracts 
as we explain the application in the following pages. This application, which we refer to as
security-example.war for simplicity’s sake, is designed to hold all the security mechanisms
described in this chapter. Both source code and binary versions of this application are avail-
able for download. You can complete most of these exercises by using the binary version and
tweaking the security-example.xml file and the application’s web.xml file.

Using a Servlet

The first feature that this application offers is an SSL-based login. To provide this SSL-
based login, the application has a servlet that will intercept login requests. This servlet is
called LoginServlet, and it maps to a <url-pattern> of /auth/*. Then, rather than using
j_security_check for the login form’s action attribute, you’ll use auth/. Here’s what the form
looks like on the login page:

<form id="loginForm" method="post" action="auth/">

To turn secure login on, you need to edit the web.xml file that ships with this application,
setting the isSecure init-parameter to true:

<servlet>
<servlet-name>login</servlet-name>
<display-name>Login Servlet</display-name>
<servlet-class>org.appfuse.webapp.action.LoginServlet</servlet-class>
<init-param>

<param-name>authURL</param-name>
<param-value>j_security_check</param-value>

</init-param>
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<init-param>
<param-name>isSecure</param-name>
<param-value>true</param-value>

</init-param>
<init-param>

<param-name>encrypt-password</param-name>
<param-value>false</param-value>

</init-param>
<init-param>

<param-name>algorithm</param-name>
<param-value>SHA</param-value>

</init-param>
<load-on-startup>3</load-on-startup>

</servlet>

If you’re building the security-example project from source, the parameters for the login
servlet are specified at build time. The default settings are contained in the app-settings.xml file
and can be overwritten from the command line by using –Dname=<value> (which would mean
–Dsecure.login=true in this case). The secure.login is turned off by default, so you’ll need to
add secure.login=true to your build.properties file or pass it in on the command line.

Now let’s dig into this servlet and see what makes it tick. First, we must confess that we
did get some of the magic that makes this work from a JavaWorld article by Steve Ditlinger.
We’re using two classes from this article: SslUtil and RequestUtil.

■Note You can find Steve Ditlinger’s article, titled “Mix Protocols Transparently in Web Applications,” online
at http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-ssl.html.

If your HTTP and HTTPS ports are different from the defaults, 80 and 443, you’ll need to
change the two context parameters in web.xml for the HTTP and HTTPS ports. In the source
distribution, you can edit web.xml in the web\WEB-INF folder. Currently, these values are set as
follows:

<context-param>
<param-name>listenPort_http</param-name>
<param-value>8080</param-value>

</context-param>
<context-param>

<param-name>listenPort_https</param-name>
<param-value>8443</param-value>

</context-param>

These values, along with the servlet’s initialization parameters, are loaded when the
servlet starts. We don’t provide the code here, because we’re guessing you already understand
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how to retrieve context and initialization parameters. Here’s the LoginServlet.init() method,
which retrieves these values from web.xml:

public void init() throws ServletException
{

// Get the container authentication URL for form-based Authentication
// J2EE specification says should be j_security_check
authURL = getInitParameter(Constants.AUTH_URL);
// Get the encryption algorithm to use for encrypting passwords before
// storing in database
algorithm = getInitParameter(Constants.ENC_ALGORITHM);
/* This determines if the login uses SSL or not */
secure = Boolean.valueOf(getInitParameter("isSecure"));
/* This determines if the password should be encrypted programmatically */
encrypt = Boolean.valueOf(getInitParameter("encrypt-password"));
if (log.isDebugEnabled()) {

log.debug("Authentication URL: " + authURL);
log.debug("Use SSL for login? " + secure);
log.debug("Programmatic encryption of password? " + encrypt);
log.debug("Encryption algorithm: " + algorithm);

}
// ensure the authorization url parameter is present
if (authURL == null) {

throw new ServletException(
"No 'authURL' Context Parameter supplied in web.xml");

}
initializeSchemePorts(getServletContext());
getServletContext().setAttribute(Constants.HTTP_PORT, httpPort);
getServletContext().setAttribute(Constants.HTTPS_PORT, httpsPort);
getServletContext().setAttribute(Constants.SECURE_LOGIN, secure);
getServletContext().setAttribute(Constants.ENC_ALGORITHM, algorithm);
if (log.isDebugEnabled()) {

log.debug("HTTP Port: " + httpPort);
log.debug("HTTPS Port: " + httpsPort);

}
}

In this servlet’s execute() method—which both doGet() and doPost() call—you have 
the following code to determine whether the current protocol is correct and, if not, to switch
protocols:

String redirectString = SslUtil.getRedirectString(request,
getServletContext(), secure.booleanValue());

if (redirectString != null) {
// Redirect the page to the desired URL
response.sendRedirect(response.encodeRedirectURL(redirectString));
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if (log.isDebugEnabled()) {
log.debug("switching protocols, redirecting user");

}
}

In the preceding code, secure.booleanValue() is the value set by the isSecure <init-param>
of the servlet. After you have the correct protocol (in this case, HTTPS), you execute the servlet
again, and this time the redirectString will be null. Therefore, the rest of the code will execute:

/* URLEncoder.encode is called to convert any non-allowed characters to
* their URL Safe equivalent - response.encodeURL only adds the session id
* The URLEncoder.encode method has changed its signature between J2SE 1.3.1
* and 1.4, and therefore we use the org.apache.struts.util.RequestUtils class
* from Struts. This class uses reflection to determine the appropriate 
* encoding.
*/

String req = authURL + "?j_username=" + RequestUtils.encodeURL(username)
+ "&j_password=" + RequestUtils.encodeURL(encryptedPassword);

if (redirectString == null) {
// signifies already correct protocol
if (log.isDebugEnabled()) {

log.debug("Authenticating user '" + username + "'");
}
response.sendRedirect(response.encodeRedirectURL(req));

}

Using a Tag Library

If you’re running your application on the default HTTP (80) and HTTPS (443) ports, you can
use a tag library to force the use of a protocol on that particular page. A nonstandard port for
HTTPS causes problems in Internet Explorer and results in a Server Not Found error. The
preceding “Using a Servlet” section describes a nice workaround for this problem.

In the example application, we have a Secure.java tag library (written by Jon Lipsky,
http://www.javablogs.com/views/ViewBlog.action?id=13055) that can be used to force SSL 
or non-SSL on a particular JSP. Its syntax is as follows:

<security-example:secure mode="secured"/>

Here, mode can be secured, unsecured, or either. Also, if you leave out the mode attribute, it
will default to secured mode.

Building on the Servlet example, where the variable secureLogin is set in the application
scope, you can retrieve it and use it on your login.jsp page to force SSL:

<c:if test="${applicationScope.secureLogin == 'true'}">
<security-example:secure />

</c:if>
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Secure Sockets Layer Summary

Hopefully, this section has given you an idea of how you can control SSL for a specific servlet
in your application. If you need to guarantee SSL for your entire application, we recommend
setting the <transport-guarantee> element in the web.xml file to INTEGRAL or CONFIDENTIAL.
This value is used to specify how data should be sent between the client and server. In the
example application, this value is set as illustrated here:

<user-data-constraint>
<description>

Encryption is not required for the application in general.
</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

Table 12-2 shows how the Servlet specification defines each of these.

Table 12-2. Meaning of <transport-guarantee> Values

Value Description

NONE The application doesn’t require any transport guarantee. This is the same as
not including the <user-data-constraint> element in web.xml.

INTEGRAL The application requires that the data sent between the client and server be
sent in such a way that it can’t be changed in transit.

CONFIDENTIAL The application requires that the data be transmitted in a fashion that prevents
other entities from observing the contents of the transmission.

Most servlet containers will switch the client to SSL when this value is set to INTEGRAL or
CONFIDENTIAL. Although this switch is great for applications that require it, you have to be care-
ful when implementing it. On most servlet containers, if you set this value to either INTEGRAL
or CONFIDENTIAL, your application will be available only on the SSL port. The slick thing is that
the server will automatically redirect you to https://serverName:443 when you try to access
your application. However, if you’re running your secure server on a port other than 443, you’ll
get a Server Not Found error in Internet Explorer. This leads into our next trick: using a filter to
inspect requests to your protected resources. 

Using a Filter on Protected Resources
When you filter protected resources, it’s possible to use the same SSL switch to make your
entire application secure on any port and also to retrieve a user’s information. After the user
has authenticated with your application, you’ll probably want to get more information about
that user. One limitation of container-managed security is that all you’ll know about a user is
her username and what roles she belongs to. To solve this, we suggest using a filter that checks
for a User object in the session and populates it if it’s null. To demonstrate this, you need to
create a User object, a database access code, and a database to talk to.
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■Note In the security project, you can create a populated MySQL database by using a setup-db Ant task.
The download has a security-example.sql file in it that you can use to create and populate the database
as well.

Now that you’ve populated the database, you can get information from it by using your fil-
ter. We’ve created a filter named ActionFilter.java that is mapped to the same <url-pattern>
(*.do) as our protected resources. This way, it will get called only after someone has authenti-
cated successfully. We like to use a helper class for calling the persistence layer—this class is
named UserManager.java, and it uses the Business Delegate pattern.

■Note You can find more information about the Business Delegate pattern at http://java.sun.com/
blueprints/corej2eepatterns/Patterns/BusinessDelegate.html.

It’s important to hide the implementation details from your filter by using a Business
Delegate so that you can switch to a new persistence layer (for example, EJBs) at any given
time. We don’t go into the details behind the UserManager and how it works, so you’ll have to
trust us when we say that the UserManager.getUser() method returns a populated JavaBean of
user properties. Take a look at the deployment descriptor for this filter: 

<filter>
<filter-name>actionFilter</filter-name>
<display-name>Action Filter</display-name>
<filter-class>com.apress.projsp.filter.ActionFilter</filter-class>
<init-param>

<!-- Change this value to true if you want 
to secure your entire application. -->

<param-name>isSecure</param-name>
<param-value>false</param-value>

</init-param>
</filter> 
...
<filter-mapping>
<filter-name>actionFilter</filter-name>
<url-pattern>*.do</url-pattern>

</filter-mapping>

In the doFilter() method, the following code executes before chain.doFilter() is called:

UserForm userForm = (UserForm) session.getAttribute(Constants.USER_KEY);
ServletContext ctx = filterConfig.getServletContext();
String username = request.getRemoteUser();
// user authenticated, empty user object   
if (username != null && userForm == null) {
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try {     
ses = getSession(); // get persistence session
UserManager mgr =

new UserManagerImpl((String) ctx.getAttribute(Constants.DAO_TYPE));
UserForm user = mgr.getUser(ses, username);
session.setAttribute(Constants.USER_KEY, user);
} catch (Exception e) {

log.error("Error getting user's information " + e);
e.printStackTrace();

RequestDispatcher dispatcher =
request.getRequestDispatcher("/error.jsp");

dispatcher.forward(request, response);

return;
}}

The UserManager retrieves the user’s information and hides the dirty work (which is the
filter, in this case) from the client. In this example, the getUser(ses, username) method call
throws an exception when the user isn’t found. The catch block gets a RequestDispatcher and
forwards to a JSP page that explains the problem.

It’s important to hide the implementation of retrieving the user’s details so that you have
the ability to switch to LDAP at a later date, or to another type of user database. To use LDAP,
all you’d need to do is create a new class that implements UserManager and talks to LDAP,
rather than to a database. To make it even better, you can add a context parameter in your
web.xml to allow switching between a database and LDAP. The nice thing about using a direc-
tory server such as LDAP is that you get encrypted passwords as part of your data store. With
file and database realms, you have to either encrypt passwords programmatically or configure
your servlet container to do it for you. 

Encrypting Passwords
In Tomcat, it’s easy to encrypt passwords by adding the digest attribute to a realm definition.
The value must be one of the digest algorithms supported by the java.security.MessageDigest
class (SHA, MD2, or MD5). To expand on the earlier example, the XML snippet shown next adds SHA
encrypting to a file-based realm:

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
debug="0" resourceName="UserDatabase" digest="SHA" />

To log into the application, you now need to encrypt the password stored in
tomcat-users.xml to its encrypted form. You can do this by executing the following command:

java org.apache.catalina.realm.RealmBase -a SHA {cleartext-password}

where catalina.jar is in the CLASSPATH. Now, copy and paste this new password into the
%TOMCAT_HOME%\conf\tomcat-users.xml file.

The problem with this method of password encryption is that it might not be portable.
Let’s take a look at programmatic encryption. The good news is that you’ve already created a
LoginServlet, so you can use it to encrypt passwords. Because it’s off by default, you’ll need to
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add encrypt.password=true to the build.properties file, pass it in from the command line
with ant –Dencrypt.password=true, or edit the default setting in app-settings.xml. If you’re
using the binary version (.war file) of this application, simply edit the following <init-param>
of the LoginServlet (in the web.xml file):

<init-param>
<param-name>encrypt-password</param-name>
<param-value>true</param-value>

</init-param>

Next, you need to actually encrypt the password within your servlet. To do this, create an
encodePassword(String password, String algorithm) method in a StringUtil.java class. This
method uses the MessageDigest class from JSSE to encrypt a string:

import java.security.MessageDigest;
public static String encodePassword(String password, String algorithm) {

byte[] unencodedPassword = password.getBytes();
MessageDigest md = null;
try {

// first create an instance, given the provider
md = MessageDigest.getInstance(algorithm);

} catch (Exception e) {
log.error("Exception: " + e);
return password;

}
md.reset();
// call the update method one or more times
// (useful when you don't know the size of your data, e.g. stream)
md.update(unencodedPassword);
// now calculate the hash
byte[] encodedPassword = md.digest();
StringBuffer buf = new StringBuffer();
for (int i = 0; i < encodedPassword.length; i++) {

if (((int) encodedPassword[i] & 0xff) < 0x10) {
buf.append("0");

}
buf.append(Long.toString((int) encodedPassword[i] & 0xff, 16));

}
return buf.toString();

}

This method encrypts a string based on the algorithm you pass in. This algorithm is
defined in LoginServlet and configurable when building via the ${encrypt-algorithm} vari-
able. The default setting is SHA.

■Note More information on these algorithms and how they work is available at http://theory.lcs.
mit.edu/~rivest/crypto-security.html#Algorithms.
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If you’re using password encryption and also have a retrieve password feature, you’ll
probably want to add a password_hint column in your user store. It’s hard enough to remem-
ber all the passwords you keep, and it’s annoying when you have to create a new password, so
the “send me a hint” tactic is useful.

Servlet 2.5 Security Changes
The Servlet 2.5 specification has a whole chapter on security, but not much has changed. The
JSP 2.1 specification doesn’t contain any security-related information. It simply points out
helpful information for programming security via the HttpServletRequest interface, giving
you the following methods:

• getRemoteUser()

• isUserInRole(String roleName)

• getUserPrincipal()

The getRemoteUser() method returns the authenticated user’s login name or null if no
authenticated user exists. The isUserInRole() method is helpful in determining a role’s
authorization to certain resources.

One important thing to remember about roles, if you’re coding them into your servlets, is
to create links by using the <security-role-ref> element in web.xml. Here’s an example:

<security-role-ref>
<role-name>admin</role-name>
<role-link>accounting</role-name>

</security-role-ref>

This way, you can code your servlets without worrying whether the admin role changes
from the accounting group to the IT department. All you have to do is configure/code with
admin and know that your code will be safe from change. Of course, we recommend placing
this value in a Constants.java file so you can change it easily if the need does ever arise.

The HttpSession interface has the session.invalidate() method for logging out users. 
It has worked fine for us. When you call session.invalidate(), it invalidates the session and
then unbinds any objects bound to it. 

Other Authentication Options and Considerations
There are alternative options to container-managed authentication if you aren’t satisfied with
its ease of development or you have stricter security requirements. The most common option
is to build a custom authentication mechanism. If you decide to go this route, we highly rec-
ommend you look into JAAS and try to use its APIs.

Security Filter
Security Filter (http://securityfilter.sourceforge.net/) is an open-source project that
mimics container-managed security. It looks exactly like container-managed security, and it
supports the programmatic security methods of HttpServletRequest. Unfortunately, it doesn’t
automatically propagate the Principal object for a user to EJB calls.
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Secure Sockets Layer Extension for Struts
The SSL Extension for Struts (http://sslext.sourceforge.net/) is good for HTTP/HTTPS
switching. It is an open-source project that allows you to configure HTTP/HTTPS switching
by using modified Struts tag libraries and configuration settings in the Struts configuration
file. It was written by Steve Ditlinger, who also authored the previously mentioned SSL
switching article.

Remembering Passwords
You’ve probably seen the “remember my password” feature on many portal sites (such as
Yahoo!). Usually, this is done by storing the user’s username and password combination in a
cookie. If you have an application that requires a login, and you’d like to add this feature, it
would be fairly simple to do, especially with Servlets 2.5. You could use a servlet as your wel-
come file and check for the cookie’s existence. Of course, you could also use a JSP to mimic this
same behavior, grab the username and password cookies, and redirect to the LoginServlet with
these cookies as parameters. The nice thing about most modern browsers is that they offer to
remember your passwords, and this is probably more secure than a cookie.

Remember Me Feature
As an example of how this functionality might be implemented, you’ll add a Remember Me
feature to the example application that comes with the code download. You do this by using
cookies to remember the username and password, and looking for these when the user first
accesses the application. If the cookies exist, you attempt to authenticate the user. Three
cookies are involved in this process; the first two were mentioned previously. The third cookie
is used to indicate that the user wants to use the Remember Me feature. You then use a filter to
detect whether these cookies are present and, if so, attempt to log in the user.

First, add a check box to the login.jsp page to allow the user to indicate that he wants the
application to remember his password:

<input type="checkbox" name="rememberMe" id="rememberMe" /> Remember Me

If this box is selected, set a cookie to indicate that the user wants to use this feature. 
Also, set a cookie to remember the user’s username and password. Because you’re using
LoginServlet to forward the login request to j_security_check, you add the code to set these
cookies in the execute() method:

if (request.getParameter("rememberMe") != null) {
response =

RequestUtil.setCookie(response, "rememberMe", "true", false);
response =

RequestUtil.setCookie(response, "password",
StringUtil.encodeString(encryptedPassword),
false);

}
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For the password cookie, you use an encodeString() method from the StringUtil.java
class. This is a simple method that encrypts the password cookie’s value by using the sun.
misc.BASE64Encoder():

public static String encodeString(String str) throws IOException {
sun.misc.BASE64Encoder encoder = new sun.misc.BASE64Encoder();
String encodedStr = new String(encoder.encodeBuffer(str.getBytes()));
return (encodedStr.trim());

}

The base64 encoding works well for this feature because it can be decoded (you’ll need
this for autologin) and it ensures clients’ passwords aren’t stored in plain text.

If you’re not using a LoginServlet, and you’re simply using j_security_check as the action
on your form, you can still use this feature. Just use a little JavaScript to set these cookies in the
onsubmit() handler of your form. You’ll lose the encrypted password functionality, but this
feature will still work.

The real meat of this feature resides in the BreadCrumbFilter.java class. This class does
the checking and autologin if the required cookies exist. In the doFilter() method for this
class, the following code handles this logic:

// Get the relevant cookies for the "remember me" feature
Cookie rememberMe = RequestUtil.getCookie(request, "rememberMe");
Cookie passCookie = RequestUtil.getCookie(request, "password");
String password =

(passCookie != null)
? URLDecoder.decode(passCookie.getValue(), "UTF-8") : null;

// Detect if authentication has failed - indicated by the error=true
// parameter from the <form-error-page> in web.xml
// StringUtils.equals is a convenience method from commons-lang that handles
// nulls gracefully. 
boolean authFailed =

StringUtils.equals(request.getParameter("error"), "true");
// Check to see if the user is logging out, if so, remove the
// rememberMe cookie and password cookie.
if ((authFailed ||

(request.getRequestURL().indexOf("logout") != -1)) &&
(rememberMe != null)) {

if (log.isDebugEnabled()) {
log.debug("deleting rememberMe-related cookies");

}
response =

RequestUtil.deleteCookie(response,
RequestUtil.getCookie(request,

"rememberMe"));
response = RequestUtil.deleteCookie(response, passCookie);

}
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// Check to see if the user is logging in. If so, check to see
// if he/she has enabled rememberMe functionality.
// Only attempt to authenticate when "login" is requested
if ((request.getRequestURL().indexOf("login") != -1)) {

// Check to see if we should automatically log in the user
// container is routing user to login page, check for remember me cookie
Cookie userCookie = RequestUtil.getCookie(request, "username");
String username =

(passCookie != null)
? URLDecoder.decode(userCookie.getValue(), "UTF-8") : null;

if ((rememberMe != null) && (password != null)) {
// authenticate user without displaying login page
String route =

request.getContextPath() +
"/auth?j_username=" + username +
"&j_password=" + StringUtil.decodeString(password);

if (log.isDebugEnabled()) {
log.debug("I remember you '" + username +

"', attempting authentication...");
}
response.sendRedirect(response.encodeRedirectURL(route));
return;

}
}

That’s it! It even handles password changes in the realm by checking for the error
parameter—a slick feature that we’ve added into most of the recent applications we’ve
worked on. 

Authorization
After a user has logged in to the application, you might have requirements for what the user
can do or see. This is made much simpler with container-managed security, as you’ll have the
user’s role available to you. Using your own authentication architecture, you could probably
get a similar result, but you might not be able to take advantage of the wealth of available
plug-ins. By plug-ins, we are referring to tag libraries and other Java-related packages that
allow for role configuration. For instance, the Struts Logic tag library has a <logic:present>
tag that allows you to perform logic based on a user’s role. The Tiles templating framework
also allows you to configure showing/hiding sections of your template based on roles.

In this section, we’ll supply a few recommendations and tricks for controlling who sees
what within a web application. Most of these techniques are much easier to implement if
you’re using container-managed authentication, but it’s not required.

The first thing you’ll want to consider is what choices a user should have after that user
has logged in. Usually these choices are in the form of links, but they can be other menu-type
systems, such as pick lists or DHTML drop-downs. One simple way to control what links a
user might see is to show or hide links on the basis of a user’s role. However, this is just hiding
the link, and it might still be reachable by typing in the URL.
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One recommended practice is to place your JSP files and fragments under the WEB-INF
directory when deploying your application. By doing this, you’ll prevent browsers from
directly accessing JSP pages by using a URL, and it also forces you (as a developer) to follow
the MVC pattern. Your JSP pages will be protected, because all resources under WEB-INF are
secluded and not accessible from a URL. The Servlet specification mandates that security be
provided inside WEB-INF, and it also ensures good separation of controller and view by forcing
each request to go through a servlet controller. However, we’ve seen some containers that
don’t support this—they either allow access to WEB-INF through the browser or don’t allow you
to render JSP pages that live under WEB-INF. If your servlet container is Java EE–compliant, it
should allow you to do this.

If you’re working with a framework that allows configuration of your servlet-to-JSP map-
pings, this is fairly easy to do. We usually develop JSP pages in a directory alongside directories
for stylesheets, JavaScript files, and images. Then when we deploy, we move the directory con-
taining the JSP pages (pages) into a directory under WEB-INF.

By placing your JSP pages under WEB-INF, you ensure that the necessary application logic
will be executed before displaying them. After all, users will have to navigate through this logic
to get to your JSP.

After securing the locations of your pages, you’ll need to secure access to them so that
unauthorized users can’t execute the logic to get to them. You can do this in a couple of ways.
The method built in with servlets is to use a different <security-constraint> for each servlet
(or group of servlets) that you want to protect. To do this, you’ll have to create servlet mappings
for each servlet or group—your web.xml may become quite large if you have many servlets. An
easier way is to proxy all requests through an initial servlet that checks permissions and for-
wards appropriately, or even better, use a filter. We’ve also seen another alternative in which
you put a tag library at the top of every JSP file. This tag library does a check to see whether the
user has access to that page.

The problem with programmatically checking for user roles and dispatching accordingly,
or displaying an error message in the case of the JSP page, is that it can become a mainte-
nance nightmare. We’ve been on projects where we used this type of architecture, and
maintenance became much easier after we moved to container-managed authentication. 

Summary
We hope we’ve convinced you that security is pretty easy to add to a web application. It 
offers many benefits after it’s been added: customization based on role, an auditing log, and
password encryption. In our experience, using container-managed security has made our
development existence more enjoyable. We’ve done it programmatically by using LDAP and
lots of application logic to show or hide links and to allow or deny access to pages. Even
though it worked, and it worked well, it took much longer to program initially, and it was
quite a nuisance to maintain. On the other hand, if you already have an authentication and
authorization framework that offers you all the same benefits, you should, by all means, use
it, and if it’s portable and works well, share it!

Our biggest issues with container-managed security have been related to the servlet con-
tainer’s implementation of the Servlet specification. We recommend testing your application
on Tomcat if you’re experiencing problems with configuring security. If your application works
on Tomcat, your container might have some problems, and it’s time to do some research or
write a workaround, or even to move to a different container (if that’s an option). Developing
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Improving Web-Application
Performance and Scalability

The distributed and multiuser nature of web applications makes performance and scalability
an important concern. Web applications are distributed systems. Users access web applica-
tions from remote clients distributed across a network, and web applications typically depend
on remote systems such as databases, enterprise information systems, and web services. Net-
work connection overhead, slow network connections, and slow remote systems can cause
your web application to exhibit poor performance.

Web applications are often called upon to scale up to meet the needs of an increasing
number of users. After a web application is put into production, it seems very easy to add more
users because there is no client-side software required for access, other than the ubiquitous
web browser. Adding more users is easy, but ensuring that your application will perform well
with these additional users takes some effort.

In this chapter, you’ll look at some of the steps you can take and techniques you can
employ to improve the performance and scalability of your web applications. Before you get
started, we should clarify the terms used in this chapter:

• Performance: Each application will have its own definition of performance. For a web
application, a common performance metric is response time—the time taken for the
application to complete any given request from the end user. So, you might demand of
your application a maximum response time of 3 seconds. However, to be complete, any
such metric must account for the number of users that are likely to be interacting with
the application at any given time. So, a more complete performance statement might
read: The application must support 100 simultaneous users, with a maximum response
time of 3 seconds.

• Scalability: With reasonable coding skills and enough hardware, you may find it fairly
easy to meet a performance target such as the preceding one. However, suppose that
your application is a success and, as a result, is suddenly required to support 200 users.
If you double your processing power, in the form of additional Java VMs on each server
or additional server computers, will your application be able to support (roughly) dou-
ble the number of users, while continuing to meet performance requirements? If the
answer is yes, then your application is scalable.
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So, how do you go about ensuring that your JSP applications meet their performance and
scalability requirements? As a software developer, you’re probably familiar with the following
classic performance quote attributed to Donald Knuth:

We should forget about small efficiencies, say about 97% of the time: premature opti-

mization is the root of all evil.

In this chapter we won’t focus on small efficiencies and we’ll avoid premature optimiza-
tion; instead, we’ll focus on the larger steps that you can take to ensure you meet your JSP
application performance goals. We’ll start by covering two specific techniques that can defi-
nitely enhance the performance and scalability characteristics of JSP applications: page
caching and database connection pooling. We’ll move on to discuss more general perfor-
mance tips and best practices, before finishing with a discussion of how you can actually go
about testing the performance and scalability of your application to ensure that you’re really
meeting your requirements.

General Principles
The following items apply to the development of high-performance web applications in gen-
eral and thus are guiding principles for your JSP application design:

• Don’t execute code unnecessarily. One of the best ways to improve code performance
is to simply avoid executing it. Don’t execute code unless absolutely necessary. We’ll
discuss how page caching can help in this regard.

• Don’t create objects unnecessarily. Creating new objects is an expensive operation,
both in terms of the processing time to create them and the memory required to store
them. As you write your code, try to minimize the number of objects that you create.
Where possible, reuse the objects that you do create. One of the most expensive objects
in a JSP application is the database connection object. In this chapter, we’ll discuss how
to use database connection pooling to avoid repeatedly creating database connection
objects.

• When you must create objects, create them in the right scope. In a web application,
there are three levels of scope: request, session, and application. To scale a web appli-
cation to meet the needs of a large number of users, carefully consider what is to be
stored in the session scopes. We’ll discuss this and other ways to ensure that your appli-
cation is ready to scale.

Now that we’ve covered the general principles, we’ll next discuss the details of how you
can apply the concepts of page caching and database connection pooling to JSP applications.

Page Caching
In a typical JSP application, web pages are dynamically generated by Java code that pulls data
from a database and formats that data for display. This processing takes time, causes the cre-
ation of Java objects, and uses network resources. If we could find a way to avoid regenerating a
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page for every incoming page request, we could not only speed up the page response time, but
also improve the overall performance and scalability of our JSP application. What we would
really like to do is save each dynamically generated page in cache memory. When a request
comes in for a page that we’ve already generated, we could just pull that page out of the cache
and send it out to the browser. This technique is called page caching and it can dramatically
improve the performance of a JSP application.

When Should You Use Page Caching?
You’ve probably used caching before, perhaps by writing your own simple cache. If you’re
using an MVC framework such as Struts, you could use a simple cache for objects that you
built from database data and have little need for page caching. When do you need page
caching?

Page caching is useful when you can’t put all the data needed for a web page into context
before the JSP page or servlet that’s responsible for emitting the page is called. Also, page
caching is useful when your JSP pages are composed of multiple JSP tags or other components
that themselves are responsible for expensive operations such as fetching data or rendering
complex HTML.

How Long Should You Cache Data?
To reduce the load on your servers, you’ll want to cache pages for as long as possible. How long
is that? The answer depends on the nature of your application. Of course, for highly interactive
pages, you might not be able to use caching at all, or you may be able to cache only some small,
fairly static portions of the pages. You might decide to cache some pages for a very long time
but to flush some portion or all of the cache every time your site’s database is updated.

To get a better understanding of page caching technology, let’s take a closer look at one of
the most popular open-source Java caching packages: OSCache.

OSCache
OSCache is an open-source caching library that’s available free of charge from the
OpenSymphony organization (the downloading and installation instructions can be found 
at http://www.opensymphony.com/oscache). OSCache includes a set of JSP tags that make it
easy to implement page caching in your JSP application, along with a ServletFilter-based
cache implementation so that you can cache content that’s generated by any servlet, not just
JSP pages.

OSCache applies the following general page caching concepts:

• Cache entry: An object that’s stored into a page cache is known as a cache entry. In a
JSP application, a cache entry is typically the output of a JSP page, a portion of a JSP
page, or a servlet.

• Cache key: A page cache is like a hash table. When you save a cache entry in a page
cache, you must provide a cache key to identify the entry. In a JSP application, you
might combine several request parameters together to form a cache key, or you might
use a page’s request URI as its cache key.
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• Cache duration: This is the period of time that a cache entry will remain in a page
cache before it expires. When a cache entry expires, it’s removed from the cache, and
the application that placed it in the cache will be forced to regenerate it. For a JSP page
that displays frequently updated data, you should set a short cache duration so that
the cache is updated frequently and users aren’t presented with stale information. For
a JSP page that displays data that’s infrequently updated, you can set a longer cache
duration.

• Cache scope: This is the scope at which the cache is stored. In a JSP application, it
makes sense to store cache entries at either the application scope, so that cache entries
are shared by all users, or at the session scope, so that cache entries are stored on a per-
user basis.

OSCache JSP Tags
Using the OSCache tags is simple. Assuming you have installed and configured OSCache, all
you need to do is place the <os:cache> tag around the sections of your JSP pages that you wish
to have cached. The example JSP page in Listing 13-1 indicates how to do this.

Listing 13-1. longop-cached.jsp

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/oscache.tld" prefix="os" %>
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head><title>Long operation - cached</title></head>
<body>
<h1>Long operation - cached</h1>
<os:cache time="60">
<% Thread.sleep(10000); %>
<p>Woke up at: <%= new java.util.Date().toString() %></p>

</os:cache>
<p>
The reason this JSP page took so long to load is because 
it contains a 10 second sleep.

</p>
<p>
This page uses page cache with a 60 second timeout, 
so if you run this page again in the next 60 seconds
it will take less than a second to run.

</p>
</body>

</html>

In the preceding example, you have a JSP page that sleeps for 10 seconds and then displays
a wake-up time and some other text. As you can see, the call to the sleep() method and the
wake-up time message are enclosed inside <os:cache> tags with a cache time of 60 seconds.
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The first time that this page is executed, it takes 10 seconds. However, it caches a copy 
of the output that was produced inside the <os:cache> tags. If you run the page again, within
60 seconds, it will take less than a second to run because it will return the output from the
cache instead of executing the code inside the <os:cache> tags. If you wait 60 seconds and
then run the page again, you’ll have to wait for the 10-second sleep to complete because the
cache entry will have timed out and the output will have to be regenerated.

In this example, you didn’t specify a cache key so, by default, OSCache will use the request
URI to key the cache entry. You also didn’t specify a cache scope so, by default, application
scope will be used. 

OSCache Servlet Filter
You can also use OSCache to cache the output of servlets, using the OSCache servlet filter
class, com.opensymphony.module.oscache.web.filter.CacheFilter. All you have to do is add
this filter to the application’s web.xml file and add filter mappings for all the URL patterns that
you wish to have cached.

For example, the code download for this chapter includes a servlet that takes 10 seconds
to run. This LongOpServlet produces almost the same output as the longop.jsp page that we
discussed in the previous section. To cache the output of the LongOpServlet in the same way
as you cached the JSP page, you need to add the OSCache CacheFilter to your web applica-
tion. Listing 13-2 shows an example deployment descriptor with an entry for the OSCache
CacheFilter.

Listing 13-2. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

version="2.5">
<context-param>

<param-name>debug</param-name>
<param-value>true</param-value>

</context-param>
<filter>

<filter-name>CacheFilter</filter-name>
<filter-class>

com.opensymphony.module.oscache.web.filter.CacheFilter
</filter-class>
<init-param>

<param-name>time</param-name>
<param-value>60</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>CacheFilter</filter-name>
<url-pattern>/servlets/*</url-pattern>
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</filter-mapping>

<servlet>
<servlet-name>LongOpServlet</servlet-name>
<servlet-class>

com.apress.projsp.servlets.LongOpServlet
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>LongOpServlet</servlet-name>
<url-pattern>/servlets/longop</url-pattern>

</servlet-mapping>
</web-app>

The <filter> element configures the CacheFilter itself. It specifies the class name for the
filter and sets one parameter: the cache time. As with the longop.jsp example in the previous
section, the cache time is set to 60 seconds. Other parameters, such as the cache key and cache
scope, have been omitted, so default values will be used. The <filter-mapping> element config-
ures the CacheFilter so that it will cache the response output for all request URLs that match
the pattern /servlets/*. This works well for the LongOpServlet, because it’s mapped to the URL
/servlets/longop.

For more information on servlet filters, refer to Chapters 10 and 11. For more information
on OSCache, visit the following URLs:

• OpenSymphony website: http://www.opensymphony.com

• OSCache website: http://www.opensymphony.com/oscache

• OSCache WIKI: http://www.opensymphony.com:8668/space/OSCache

Database Connection Pooling
Page caching can help reduce the frequency of database access in a JSP application, but it
can’t eliminate database access entirely. Eventually, the application will have to open a data-
base connection to query, create, update, and delete records in the database. Unfortunately,
opening a database connection is an expensive operation that consumes processing time,
memory, and network resources.

One of the most effective ways to boost JSP application performance is to use a technique
called database connection pooling. By using this technique, you keep a pool of database
connections open at all times. When you need a connection, you take it from the pool, and
when you’re done with it, you return it to the pool.

Database connection pooling is a very well-known technique that’s available in almost
every Java EE application server. It’s also built into many JDBC drivers and some persistence
frameworks. For example, the Hibernate persistence framework discussed in Chapter 9
includes an easy-to-use database connection pool.

There are a lot of database connection pool alternatives, and we won’t discuss them all
here. Instead, we’ll discuss the common database connection pool configuration parameters
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and then present an example. Most database connection pools allow you to set the following
configuration parameters:

• Maximum active connections: This is the maximum number of connections that are
allowed to be open in the pool. If a request is made for a connection while all connec-
tions in the pool are in use, then the call to the getConnection() method will block until
a connection is released by another thread or until a configurable maximum wait time
is reached.

• Maximum idle connections: This is the maximum number of connections that are
allowed to be open but not in use in the pool. If you set this parameter to zero, no maxi-
mum limit will be set.

• Maximum wait time: This is the maximum length of time that a call to getConnection()
will block while waiting for a connection to released. If the wait exceeds this time, the
getConnection()call will throw an exception, or you can use some other technique to
indicate that a connection isn’t available.

• Abandoned connection timeout: In some cases, an application may fail to properly
release a database connection. This is called abandoning a connection and is a serious
problem because until a connection is released, it isn’t returned to the pool for reuse.
Some database connection pools monitor unreleased connections, and if one has been
idle for longer than the abandoned connection timeout, it’s considered to be aban-
doned and is automatically released and returned to the pool.

Jakarta Commons Database Connection Pool
It isn’t possible for us to cover all the options for database connection pooling, so instead we’ll
give you a close look at Jakarta Commons Database Connection Pool (DBCP). DBCP is the
database connection pooling technology built into the popular open-source Tomcat servlet
engine. Because it’s included with Tomcat, you don’t need to download or install any files or
libraries.

Normally, to deploy an application to the Tomcat servlet engine, you just copy the appli-
cation’s WAR file, or deployment directory, to the Tomcat webapps directory. However, to
configure DBCP for your application, you need to do a bit more work: you need to add the
application to the Tomcat server configuration file conf/server.xml.

To do this, you need to add a new <Context> entry to the Tomcat server.xml file. Open the
server.xml file with your favorite editor and look for the Tomcat Root Context. You need to add
the <Context> entry in the correct part of the server.xml file. For example, you can add it after
the ROOT context and before the examples context, as in the snippet shown here:

<!-- Tomcat Root Context -->
<!--
<Context path="" docBase="ROOT" debug="0"/>

-->
<Context path="/myapp" docBase="roller" debug="0">
<Resource name="jdbc/mydb" auth="Container" type="javax.sql.DataSource" />
<ResourceParams name="jdbc/mydb">
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<parameter>
<name>factory</name>

<!--  Use the following value for Tomcat 5.0:
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

-->
<!--  Use this value for Tomcat 5.5: -->

<value>org.apache.tomcat.dbcp.dbcp.BasicDataSourceFactory</value>

</parameter>
<parameter><name>maxActive</name><value>100</value></parameter>
<parameter><name>maxWait</name><value>100</value></parameter>
<parameter><name>username</name><value>scott</value></parameter>
<parameter><name>password</name><value>tiger</value></parameter>
<parameter>
<name>driverClassName</name>
<value>org.gjt.mm.mysql.Driver</value>

</parameter>
<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/mydb?autoReconnect=true</value>

</parameter>
</ResourceParams>

</Context>
<!-- Tomcat Examples Context -->
<Context path="/examples" docBase="examples" debug="0"

reloadable="true" crossContext="true">
<Logger className="org.apache.catalina.logger.FileLogger"

prefix="localhost_examples_log." suffix=".txt" timestamp="true"/>

The preceding example shows how to configure DBCP for an application called myapp.
The first entry inside the <Context> element is the <Resource> declaration. The <Resource>
declaration declares a javax.sql.DataSource and binds it to the JNDI name jdbc/mydb. The
<ResourceParams> element and the nested <parameter> elements within specify the DBCP
parameters for the application’s database connection pool. We’ve already discussed the
maxActive and maxWait parameters. The driverClassName and url parameters are standard
JDBC connection parameters. (More information on JDBC is in Chapter 9.)

■Note The value for the factory parameter will vary based on the Tomcat distribution. Tomcat 5.0 and
earlier versions used the Jakarta Commons DBCP library. Starting with Tomcat 5.5, the DBCP library has
been changed from the Commons version to a Tomcat-specific library. If you want to double check that
the value you use is correct, check the Tomcat JAR files in Tomcat’s common\lib directory, find the
BasicDataSourceFactory class, and use the fully qualified class name of the class you find.
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The next code excerpt shows how to obtain a connection from the previous connection
pool. First, you use JNDI to look up a javax.sql.DataSource interface, and then you ask that
interface for a connection. When you’ve finished with the connection, you close it and return
it to the pool for reuse. Closing the connection doesn’t actually close the underlying physical
connection; it just returns the connection to the pool.

javax.naming.InitialContext context = new InitialContext();

// Look up the data source
javax.sql.DataSource dataSource = 
(javax.sql.DataSource)context.lookup ("java:comp/env/jdbc/mydb");

// Get a connection from the pool
java.sql.Connection conn = dataSource.getConnection();
// ...Use the connection...
// Close the connection to return it to the pool
conn.close();  

For a working example that uses DBCP, see the section “Obtaining a JDBC Connection in a
Web Application” in Chapter 9.

Designing for Scalability
Java application servers are designed to support scalability. By using your application server’s
administrative console or by editing configuration files, you can increase the amount of mem-
ory devoted to each server process, increase the number of request-processing threads within
each process, add additional server processes, and configure additional server machines to
run server processes.

No matter how you design your application, you’ll probably be able to make it run faster
and serve more users by running it on a more powerful computer. If your server is a multi-
processor machine, you can configure your application server to use more threads to process
requests. If your server has lots of memory, you can configure your application server to devote
more memory to each server process. Your application server documentation should provide
some guidelines to help you decide how to configure these thread and memory settings.

There is a limit to what you can do with one server process running on one server
machine. Your Java application server will allow you to scale up beyond a single process run-
ning on a single machine, but to take advantage of this, you need to follow some simple
guidelines in the development of your JSP applications:

• Minimize the data that’s stored in each session. In a typical JSP application, a session
object of type javax.servlet.HttpSession is created for each user. As the amount of
data stored per session increases, the number of users that can be supported by each
server decreases. This is just simple arithmetic. For example, say the application server
is running in a Java VM that’s configured for a 100 MB heap. If the application server
itself uses 10 MB of memory, and each user session consumes 1 MB of memory, then
you can support a maximum of 90 simultaneous users per application server instance.
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• Where possible, avoid creating sessions. Each session that’s created uses some mem-
ory so, wherever possible, try to handle requests without creating sessions.

• Store only serializable objects in the session object. Java EE application servers sup-
port scalability by running JSP applications in parallel across multiple servers. When a
session is created, it’s assigned to one server. A technique called load balancing is used
to ensure that sessions are distributed evenly across all participating servers. Some Java
EE application servers, such as IBM WebSphere, support a special load-balancing tech-
nique called session migration. If session migration is enabled and one server becomes
overloaded, sessions from that server may be migrated to another, less busy server. Ses-
sion migration is usually implemented by serialization, so in order for a JSP application
to work with session migration you need to make sure that every object stored in the
session implements the interface java.io.Serializable.

• Don’t write to the file system. If a JSP application is running across multiple servers,
you can’t use the file system for storage. Files that you write to one server may not be
available on all of the other servers running the application. In this case, use a database
rather than the file system for storage.

Other Performance Tips and Resources
A good source of information for best practices for performance and scalability is the IBM
website. A search for “performance” on the WebSphere and developerWorks website (http://
www.ibm.com/developerworks) reveals a series of white papers and best practices guides for
WebSphere development. Most of the information on WebSphere also applies to other Java 
EE application servers and to JSP applications in general.

The white paper “WebSphere Application Server Development Best Practices for
Performance and Scalability” (http://www-306.ibm.com/software/webservers/appserv/
ws_bestpractices.pdf) is especially useful. Again, most of the best practices in this white
paper apply to any Java EE application server. Many of the recommendations apply to EJB
applications only, but a good number apply to JSP applications, for example:

• Avoid thread synchronization and single-threading. Synchronizing methods and
blocks of code can make a JSP application behave as if it is single-threaded, and this
results in lower throughput. It’s important that JSP pages and servlets are thread-safe,
so don’t be tempted to use the isThreadSafe=false page directive. When you write a
servlet, don’t be tempted to implement the javax.servlet.SingleThreadModel interface.
(In fact, as of Servlet 2.4, the SingleThreadModel interface is deprecated.)

• Avoid use of System.out.println(). The seemingly harmless System.out.println()
method is actually pretty harmful. According to the IBM white paper, “Because
System.out.println() statements and similar constructs synchronize processing for
the duration of disk I/O, they can significantly slow throughput.” Instead of using
System.out and System.err, consider using a logging system such as log4j.
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• Avoid string concatenation. This is widely known, but it bears repeating. Using the +
and += operators to concatenate strings is slow and results in the creation of unneces-
sary temporary objects. Instead, use the java.lang.StringBuffer class to concatenate
strings. 

Measuring JSP Application Performance
In addition to implementing the best practice design advice that we’ve been discussing, 
you need to be able to prove that your application will meet the performance criteria set by 
your customers. You need to be able to profile your application and root out and fix any code
that’s taking up undue resources or memory, or is causing contention issues that will reduce
scalability.

A wide variety of web-application performance-testing tools and products are available,
and any of these can be applied to measuring JSP application performance. Typically, a
performance-testing tool will support the following features:

• Customizable test plans to simulate what users are doing as they use a particular JSP
application

• Response time statistics to measure and collect the minimum, maximum, and average
response time of each page

• Load testing to simulate any number of users accessing a site

• Error detection to detect and log when errors occur on any page

One option for performance testing is the open-source Apache JMeter product. JMeter
allows you to develop test plans for testing HTTP-, FTP-, and JDBC-accessible database servers.
JMeter can handle servlet authentication by using cookies and URL rewriting, so it works well
for testing JSP applications. The biggest advantage of JMeter is that it’s free. You can download
it, try it out, learn about performance testing, and if you like it you can keep it. If you find that
it’s unsatisfactory, you can evaluate one of the other performance-testing tools. At the end of
this section is a list of some of the popular performance-testing products.

■Note You can download JMeter from the Apache Jakarta website (http://jakarta.apache.org/
jmeter).

Let’s take a look at JMeter and use it to test one of the performance recommendations
that we discussed earlier in this section. You’ll use a very simple JSP page with a 3-second
runtime, which is shown in Listing 13-3.
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Listing 13-3. threesec.jsp

<%@ page language="java" %>
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head><title>Three second operation</title></head>
<body>
<h1>Three second operation</h1> 
<p>
The reason this page JSP took 3 seconds to load is because 
it contains a 3 second sleep.

</p>
<% Thread.sleep(3000); %>

</body>
</html>

The page takes 3 seconds to run because it includes a 3-second sleep. To test this page in
JMeter, you first create a thread group with five threads and a loop count of 100. This will sim-
ulate the effects of five browsers, each running through the test plan 100 times. You do this by
right-clicking the Test Plan icon in the tree and then choosing the Add ➤ Thread Group menu
option to add a thread group. Figure 13-1 shows the Thread Group page of the JMeter tool.

Figure 13-1. The JMeter application lets you create any number of threads that can execute your
web application as many times as desired.

You’re going to test only one page, so under the thread group you’ll create one HTTP
request and configure it to access your threesec.jsp page. Next, add an Aggregate Report so
you can view the minimum, maximum, and average response times for running the test page.
Figure 13-2 shows the test plan, with the HTTP request editor loaded into the right pane.
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Figure 13-2. After configuring the threads, JMeter displays a page that lets you configure which
resource will be tested.

The next step is to run the test plan. Use the JMeter Run ➤ Start menu item to do this.
The test should take a couple of minutes to run. As the test runs, you can watch the results 
in the Aggregate Report window, and when the test completes that window should look like
Figure 13-3. Your results will differ depending on your hardware, operating system, and
servlet engine.

Figure 13-3. After running a test, you can view the results in JMeter.
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Looking at the Aggregate Report window results, you can see that 500 requests were
processed with an average response time of 3024 milliseconds. This makes sense because the
page included a 3-second sleep and almost nothing else. You can see that no errors occurred
and that you achieved a throughput rate of 1.7 requests per second, or 102 requests per minute.

One of our performance recommendations was to avoid single-threading. There may be
an occasion when you feel it’s necessary to serialize access to a certain call in a JSP page. How-
ever, you should be aware that, if this call is made often, it could have drastic performance
consequences. Let’s see what happens when you run the same test, but with a single-threaded
JSP page. To do this, you need to make a simple modification to your threesec.jsp page. You’ll
add a lock to the class so that all access to the Thread.sleep() call is synchronized. Listing 13-4
shows the new threesec-single.jsp page.

Listing 13-4. threesec-single.jsp

<%@ page language="java" %>
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head><title>Three second operation: single-threaded</title></head>
<body>
<%! static String lock = new String(); %>
<h1>Three second operation: single-threaded</h1>
<p>
The reason this page JSP took 3 seconds to load is because 
it contains a 3 second sleep.

</p>
<% synchronized (lock)
{
Thread.Sleep(3000);

}
%>

</body>
</html>

Now run the test again. This time, it takes about 20 minutes rather than 5 minutes. The
results are shown in Figure 13-4.

Figure 13-4. Synchronizing the JSP causes its performance to deteriorate significantly.
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As expected, the performance of the single-threaded page is much worse than that of the
multithreaded page. The throughput of the single-threaded page is 20.1 requests per minute
compared to 102 requests per minute for the thread-safe JSP.

For more information on web-application performance testing, visit the following prod-
uct sites:

• Apache JMeter: http://jakarta.apache.org/jmeter/

• Mercury LoadRunner: http://www.mercury.com/us/products/performance-center/
loadrunner/

• Web Performance Inc.: http://www.webperformanceinc.com/

The Web Performance Inc. site in particular is a good resource. It includes a glossary of
performance-testing terms, presentations on performance testing, and a report that com-
pares the performance of Java EE servlet engines including Tomcat, WebSphere, Orion, Jetty,
and Resin.

Testing the Performance Techniques
Now you’ll put the techniques we covered in this chapter into practice by applying them to a
realistic example program. You’ll use an enhanced version of the data access example from
Chapter 9 because it’s a simple but fairly typical database-driven web application.

As you may remember, the Chapter 9 example is a web-based RSS newsreader program
called Ag. Ag allows you to sign in by entering a username, maintain a list of subscriptions to
RSS news feeds, fetch the news items for your subscriptions, and view the headlines for each
of your news feeds.

For the purposes of this case study, we’ve added a new front page to Ag. This new front
page displays the most recent news feed items from all users and allows visitors to view the
items in reverse-chronological order or by the number of hits that each item has received. With
this new front page, Ag is a lot like the popular community news feed aggregation websites
JavaBlogs.com (http://javablogs.com) and Weblogs at ASP.NET (http://weblogs.asp.net).
Figure 13-5 shows a screen shot of the new front page.

With a small number of users hitting the new Ag front page, performance seems to be
fine. The page is displayed in a second or less. However, when you use JMeter to simulate a
large number of users hitting the site, the performance drops to an unacceptable level. The
page takes 5 to 10 seconds to display, and the load on the server rises to an unacceptable level
(see Figure 13-6.).

Each page is taking an average of 4 seconds to run. On top of this, during this test, the
CPU meter is at 100%. Ag is dragging the whole server down. Why is Ag performing so poorly?
For each incoming request, Ag must obtain a database connection, make a database query,
and render the results as HTML. How can you reduce the amount of work per request? Let’s
start by applying database connection pooling.
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Figure 13-5. The front page of the news reader application from Chapter 9

Figure 13-6. JMeter shows the dismal performance of the news reader application under a load.
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Applying Database Connection Pooling
Database connection pooling should help improve performance because it will eliminate 
the overhead that surrounds opening and closing database connections. When the applica-
tion needs a database connection, it will obtain it from a pool of already opened database
connections.

So, how do you go about applying database connection pooling to the Ag application?
Well, it turns out that because Ag uses Hibernate for all database access, Ag is already using
database connection pooling. Hibernate has built-in connection pooling. Hibernate connec-
tion pooling is configured in the Hibernate configuration file, hibernate.properties, in which
you specify your application’s database connection parameters. The following is the Hibernate
configuration file for the Ag application:

hibernate.connection.driver_class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:hsql://localhost
hibernate.connection.username=sa
hibernate.connection.password=  
hibernate.connection.pool_size=30
hibernate.statement_cache.size=6
hibernate.dialect=net.sf.hibernate.dialect.HSQLDialect

Hibernate’s built-in connection pooling is convenient, no doubt, but it isn’t always the
right answer. Your application server administrator may prefer that you configure your appli-
cation to use the database connection pooling capabilities of your application server or those
of your JDBC driver. How do you do that?

If you’re using Hibernate, you specify the name of the JNDI data source, provided by your
application server administrator, in the Hibernate configuration file. You’ll also have to specify
the database dialect. The following example is configured for accessing an Oracle data source
that’s bound to the JNDI name java:comp/env/jdbc/oracle. There’s no need to specify a JDBC
driver class, connection URL, or anything else because those were specified by your server
administrator when he configured the data source. For more information on data source
usage and configuration, see the section “Obtaining a JDBC Connection in a Web Application”
in Chapter 9.

hibernate.connection.datasource=java:comp/env/jdbc/oracle
hibernate.dialect=net.sf.hibernate.dialect.Oracle9Dialect

Adding database connection pooling isn’t going to do you any good because you’re
already using it, so let’s move on to applying page caching.

Applying Page Caching
The new Ag front page is rendered by the JSP file main.jsp, so that’s where you’ll add your
caching. You’ll use OSCache JSP tags that we discussed earlier in this chapter.

You already have the OSCache JAR file in your application’s WEB-INF\lib directory and the
oscache.properties file in the WEB-INF\classes, so all you need to do is add the OSCache JSP
taglib declaration to the top of main.jsp and the OSCache tags around the part of the page
that you wish to cache. Listing 13-5 shows the code for main.jsp with the new OSCache
additions.
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Listing 13-5. main.jsp

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/c-rt.tld" prefix="c" %>
<%@ taglib uri="/WEB-INF/oscache.tld" prefix="os"%>
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en"><html>
<head>
<style type="text/css"><jsp:include page="/ag.jsp" /></style>
<title>Ag - RSS Newsreader and Aggregator</title>

</head>
<body bgcolor="#FFFFFF"> 

<h1>Ag - RSS Newsreader and Aggregator</h1>
<hr />
<p>News Items from all users Subscriptions are aggregated below.</p>
<p>You may login to <a href="subs">Manage your Subscriptions</a>.</p>
<os:cache time="3600" key="${param.mode}">
<c:choose> 

<c:when test="${param.mode == 'popular'}" >

<h2>Most Popular Newsfeed Items</h2>
View: Popular | <a href="main?mode=recent">Recent</a>

<c:set var="items" value="${ag.popularItems}" />
</c:when>   
<c:otherwise> 

<h2>Recent Newsfeed Items</h2>
View: <a href="main?mode=popular">Popular</a> | Recent

<c:set var="items" value="${ag.recentItems}" />
</c:otherwise>    

</c:choose> 
<c:forEach var="item" items="${items}">

<c:url var="url" value="/ag/link">
<c:param name="link" value="${item.link}"/>

</c:url>

<h3><a href="${url}">${item.title}</a></h3>
${item.description} <br />
<b>Posted: ${item.time}, Hits: ${item.hits}</b>

</c:forEach>
</os:cache>
<hr />
</body>
</html> 
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The OSCache tags were added around the portion of the page that’s responsible for fetch-
ing the items to be displayed and for displaying those items. Let’s focus on the OSCache tags:

<os:cache time="3600" key="${mode.param}">   . . .
</os:cache>

The cache time is set to 3600 seconds, or 1 hour. This means that the main page will be
refreshed with new data every hour. The cache key is set to use the request parameter mode
because the page has two modes of operation. In “popular” mode, the page displays the items
with the most hits first. In “recent” mode, the page displays the most recent items first. By using
the parameter value as the cache key, you ensure that both versions of the page are cached.

Now that you’ve applied page caching to your page, you’ll rerun the very same JMeter test.
The results, shown in Figure 13-7, indicate a dramatic improvement. The page now runs 10
times faster. It runs, on average, in 0.391 seconds rather than 4 seconds. During the test, the
server’s CPU was running at about 5% instead of 100%.

Figure 13-7. By using caching, the news reader application runs much faster.

Summary
In this chapter, we covered many techniques for improving the performance of JSP applica-
tions. We discussed how to use the OSCache page-caching system to avoid regenerating a
page for every incoming page request. Knowing that a database connection is an expensive
operation that consumes processing time, memory, and network resources, we discussed 
the use of connection pooling to minimize the cost of this operation in JSP applications.

Performance and scalability are primary concerns for any JSP application. After a JSP
application is deployed on a corporate intranet or on the Internet, it may become more popular
than initially envisaged. If you apply the design practices discussed in this chapter, you have a
much better chance of meeting your customer’s performance requirements and continuing to
meet them as your user base expands. We showed you a specific performance-testing tool,
Apache JMeter, which you can use during development to prove that performance and scal-
ability requirements are being met.

As you read about JSP application frameworks in the following chapters, keep in mind
what you’ve learned about designing for performance and scalability.
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Web-Application Design 
and Best Practices

The previous chapters covered a great deal of the functionality provided by the JSP spec-
ification. You’re now in a good position to take this knowledge and start using it to build
Java-based web applications. So then, why should you read this chapter? Well, although
knowing the classes and APIs is important in getting the most out of JSP and servlets, there
are some other key factors that will really help you to achieve success. This chapter brings
together the techniques covered earlier in the book and shows you how to build maintain-
able, extensible Java-based web applications.

In this chapter, you will look at the importance of good design and how it can help you
build high-quality web applications that are easy to maintain and extend in the future. To 
do this, you’ll learn about some of the standard architectures that have been proven to help
achieve these goals. Continuing on the theme of good design, you’ll then take a lower-level
look at how to use design patterns to help implement these architectures. Specifically, we’ll
show you how some of the best practices for building Java-based web applications have been
documented as patterns and explain how you can apply them to your own web applications.

Of course, having a good design is essential, but not if the actual task of implementing the
web application is neglected. Therefore, we’ll present some of the best practices for develop-
ment and testing. We’ll cover topics ranging from the use of logging and debugging to how to
actually test web applications and design them to be testable. Finally, we’ll discuss some gen-
eral guidelines covering topics such as how to enhance the user’s experience with your web
application. By the end of the chapter, you’ll be able to take the knowledge you already have
and apply it in a much more structured way, which will help you build better web applications.

The Importance of Design

When we talk about design, regardless of whether it’s used within the context of software engi-
neering or some other endeavor, what we’re essentially talking about is the thought process
that goes into something before it’s created. This up-front thinking helps us come up with the
best possible way for achieving our end goal. For example, you normally wouldn’t just go and
build a new kitchen without considering the location of items such as water pipes, electricity
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outlets, windows, doors, and so on. Although you could just go ahead and build the kitchen,
without some up-front thought you probably wouldn’t come up with the best solution. This is
equally applicable to software. You could just dive straight in, but some forethought is required.

The software industry is often likened to many other forms of industry, although probably
the best-known analogy is to the building industry. Although this comparison works on many
levels, there are several key differences between making software and creating buildings.
Buildings are designed for a specific purpose and must be designed to withstand known toler-
ances caused by the environment. Software, on the other hand, is much more dynamic. After
all, in general, building software isn’t currently seen as being as precise as building houses.
This isn’t to say that it shouldn’t be—it’s just that it isn’t there as an industry yet. When was the
last time you saw bug-free software? The other point to pick up on here is that software typi-
cally changes throughout its lifetime. Sometimes these changes are simple bug fixes; more
often than not, they’re major functionality changes/additions. It’s this characteristic of the
software industry that makes design important. To try to quantify the importance of design,
let’s look at some of the characteristics that it can directly affect.

Maintainability
Maintainability is the ability to maintain a piece of software. It works at several levels. At its
most basic level, maintainability involves the work needed to keep that particular piece of
software up and running (cleaning up logs, archiving old data, and so on). At another level,
maintaining an application can include fixing bugs as they’re reported and making perfor-
mance enhancements to cope with the increasing demands of the business. Maintainability 
isn’t something that can easily be measured, although it is related to how well the software is
designed and implemented. Well-designed software is easier for anybody maintaining the
software to understand, and those people can make the small changes required with the
knowledge that they aren’t about to break unrelated features. The same can’t be said for badly
designed software.

Extensibility
The other aspect affected by the design of a system is extensibility, the ability to extend and
enhance the software. Again, well-designed software will typically have a defined structure so
that existing features can be changed and new features can be added easily, without causing
side effects to the remainder of the system. Particularly for mission-critical business systems,
extensibility is important because it allows the software to keep up with the business processes
that it’s realizing with a minimum of cost and overhead.

Web-Application Architectures
Now that you understand that design—even just a little design—is important, let’s take a look
at two of the common and proven architectures for Java-based web applications.
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Page-Centric (Model 1)
The first common architecture for building web applications is page-centric, which is more
commonly known within Java web-application circles as the Model 1 architecture (see Fig-
ure 14-1). We’ve mentioned this architecture in several places in this book. This architecture
provides the easiest way to put a web application together. It involves simply building the
application as a set of JSP pages.

Figure 14-1. In a Model 1 architecture, all requests are handled in a single tier of the application.
For example, all the display logic, business logic, and data are contained in JSP pages.

Of course, applications are generally built to share information (typically from some sort
of database) with the users, and in page-centric applications, information is typically repre-
sented in a couple of ways.

The first of these is that any information required by a page is accessed directly from the
database by using embedded Structured Query Language (SQL) statements. Usually this SQL
code is written straight into the page along with the code to make the database connections
and retrieve the results. As a twist on this paradigm, the code to deal with the database con-
nections is often pushed into reusable Java classes or custom tags such as those found in the
JSTL. Of the various ways to build a web application, this is probably the least maintainable
because all the logic to access data is embedded right inside the JSP pages. Any change to the
database schema means potentially opening up every page in the application to fix it.

The other mechanism for accessing data within page-centric applications is to use
JavaBeans to represent the persistent entities within your system. For example, you might
have a JavaBean called Customer to represent the customers within your system. By taking
this approach, data-access code is kept off of the individual pages and can be pushed back
into reusable Java classes (see Figure 14-2). You instantly attain a greater level of code reuse
throughout the application while at the same time you increase the maintainability of the
application. For example, when data access is moved to a separate tier, changes to the data-
base schema require changes to a select few Java classes.
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Figure 14-2. Even a simple change to the application, such as moving data access to a separate
tier, can improve the reusability and maintainability of an application.

So, although you can take steps to increase the maintainability of page-centric appli-
cations, the real limitation lies within your ability to change or modify the end-to-end
functionality provided by the system. In page-centric applications, the pages that the user sees
are all implemented as stand-alone JSPs. In fact, you can also use servlets, but the principle is
the same: building applications this way has limitations. If you want to add some functionality
to every page (such as logging), you have to open up each page and edit it. Want to add a new
flow of functionality through the application? Chances are that you’ll have to open up a large
number of pages to edit links and ensure that the required data is available to the pages. The
main problem is that the pages of the application have too much responsibility. They contain
the business logic to gather the appropriate information (and make changes to that informa-
tion) alongside the presentation logic of displaying that information to the user. Ideally,
changes to the business logic should be independent of the presentation logic and vice versa.

Model-View-Controller (Model 2)
The other major architecture used to build web applications is based on the classic Model-View-
Controller (MVC) architecture and is sometimes also referred to as Model 2. In page-centric web
applications, a single request is generally serviced by a single page containing the business and
presentation logic. MVC, however, uses three major components in the servicing of a request, as
summarized in Figure 14-3.

The first of these is the controller, the component through which all requests are routed
to be serviced. It acts as the gateway to the functionality provided by the web application and
is typically implemented as a Java servlet. Having a single point of access for all requests in
the system has a couple of benefits. First, it provides a common location for systemwide
aspects such as security, logging, and so on. Second, it’s the responsibility of the controller to
find and execute the business logic that will be used to service the request. This responsibility
could range from simply locating information that is to be displayed, to processing an update
request and modifying some data residing in a database. The important point to note about
the controller is that it doesn’t have anything to do with the presentation of information back
to the user.
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Figure 14-3. In an MVC application, separate tiers handle display logic (view), data access
(model), and business logic (the controller and the model).

The next component, or set of components, used by the MVC architecture represents the
model. There are a couple of broadly accepted definitions for the model components, but we
like to think of them as the information that the controller uses to perform its processing. In
other words, the controller contains the business logic, and the model represents the busi-
ness/domain objects upon which that logic operates. If you’ve done any Swing programming,
think of the model as the Swing model components that just provide a representation of the
data being manipulated and displayed. Like Swing, model components are generally imple-
mented as JavaBeans.

The final components in the MVC architecture are the view components. These are solely
responsible for the presentation of information back to the user. Because all business logic is
performed by the controller, the view components only have to present the information pro-
vided by the model to the user. Therefore, view components are typically implemented with
JSP pages because these are most aligned to allow easy presentation of information back to
the user (for example, using a markup language such as HTML).

Although this separation of concerns does seem slightly more complicated than simple
page-centric designs, it gives you the ability to modify each of the three components in isola-
tion. You can modify the data schema, the business logic, or the presentation separately. Not
only is the application more maintainable because there is a centralized place for locating
each specific type of code, but also the system as a whole is now much more extensible. Need
to add a new flow of functionality? Simply add the logic into the controller component and
add a new view to display the relevant information back to the user. Of course, it’s still possible
to build unmaintainable MVC web applications, and for this reason there is a collection of
proven patterns that can be used during design and development.

Design Patterns
A simple way to describe design patterns is that they’re reusable solutions to common prob-
lems within a given context. In addition to this, and through the way that they’re documented,
patterns provide a common language with which to understand and use them.
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Patterns really came into the limelight with the release of Design Patterns: Elements 
of Reusable Object-Oriented Software (Addison-Wesley, 1995) by the “Gang of Four” (Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides). This book details a large number
of reusable solutions to common, language-independent design problems related to struc-
tural, behavioral, and creational contexts. Using these original design patterns as a basis,
many people have extended this work to document new patterns for the design and imple-
mentation of Java EE systems, including many that are relevant to building Java-based web
applications.

At first sight, patterns can be seen to complicate the design of a system, and to a degree
this is true. After all, why implement a feature with a handful of related classes when just a
single class will do? Well, the benefits come at several levels. Using patterns and the common
language that they use allows us, as software developers, to easily communicate about how a
particular part of the application works. For example, if we have a class that’s responsible for
creating other types of classes on demand, using the common name for this pattern (in this
case, “factory”) provides a certain level of common understanding. This is useful, as it helps
other members of the project team, or anybody looking at the code, to come to grips with it
easily.

The ability to use patterns also helps ensure that there’s some consistency in the way that
recurring problems are solved within the application. This practice subsequently promotes
code reuse (and therefore quality) and maintainability, again because the design is easier to
understand. Furthermore, because patterns have the ability to introduce a certain degree of
structure to a design, the extensibility of that design is often greater than if the same function-
ality were built using a single class.

Java EE Patterns and Web-Application 
Components
Probably the most well-known collection of Java EE patterns available to date is that cataloged
by the Sun Java Center at http://java.sun.com/blueprints/corej2eepatterns. The patterns
contained within this catalog cover all tiers of the Java EE 5 architecture, and if you’re building
multitier enterprise applications, they’re well worth taking a look at. For the purpose of this
chapter, you’re interested in only those patterns that are relevant to building the web tier of
Java EE applications. Let’s take a look at some of these and see how they can help you build
well-designed web applications.

Front Controller
As you learned in the discussion of the MVC architecture, the controller component acts as
the gateway into the web application and is the central place from which all requests are
serviced. As it stands, the MVC architecture is programming language independent, and in
translating this to the world of Java-based web applications, the Sun Java Center came up
with the Front Controller pattern, a Java EE–specific version of the controller in MVC.
Listing 14-1 shows a prototypical implementation of this pattern.
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Listing 14-1. FrontController.java

package com.apress.projsp;
import java.io.IOException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.*;
public class FrontController extends HttpServlet {
protected void processRequest(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// Step 1 – perform business logic and manipulate the model
// someObject.someBusinessLogic();
// Step 2 – dispatch to the appropriate view component
RequestDispatcher dispatcher =
getServletContext().
getRequestDispatcher("name of a view component");

dispatcher.forward(request, response);
}
protected void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
processRequest(req, res);

}
protected void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
processRequest(req, res);

}
}

As this example implementation shows, a front controller can be as simple as a servlet
that responds to HTTP GET and POST requests. Although the code doesn’t actually show any
real business logic being called, it does show the steps in servicing the request. First, you
process the request by executing some business logic, and then you redirect to, or dispatch
to, the view component that will be presenting the user with information. The main problem
with this implementation is that if all business logic for an application is wrapped up inside a
single controller, that controller will quickly become bloated and have a vast set of responsi-
bilities. To overcome this problem, you can use the command and controller strategy.

The Command and Controller Strategy
There are many ways in which the Front Controller pattern can be implemented, each of
which is called a strategy. For example, in the previous example the front controller was
implemented as a Java servlet, although there’s nothing stopping that implementation from
being a JSP page. To overcome the problem of the controller becoming bloated with all the
application logic for a particular system, the command and controller strategy combines the
controller servlet with classes that implement the Command design pattern. (The Command
pattern is a more general object-oriented design pattern.) Essentially, the Command pattern
says that the logic required to perform a specific task is wrapped up into a single class with a
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standard interface to execute that code. For example, you might wrap up the logic to locate a
customer’s details into a single class, inside a method called execute(). First, you might define
a standard interface for all of the commands to be used by the front controller. Listing 14-2
shows an interface that does this.

Listing 14-2. Action.java

package com.apress.projsp;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public interface Action {
public String execute(HttpServletRequest request, 

HttpServletResponse response)
throws ServletException;

}

This interface contains a single method with which to execute the logic that will be encap-
sulated within concrete implementations of this interface. Essentially, all you want to do is
delegate the servicing of requests to an Action instance instead of putting that code inside the
controller. Therefore, the method signature is defined to take references to the same request
and response objects that are used when processing an HTTP request with a servlet. By using
this interface, you can then supply an implementation that, given a customer ID, looks up that
customer and places the corresponding domain object into the HTTP request to be displayed
by the view component (see Listing 14-3).

Listing 14-3. ViewCustomerAction.java

package com.apress.projsp;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
public class ViewCustomerAction implements Action {
public String execute(HttpServletRequest request, 

HttpServletResponse response)
throws ServletException {

String id = request.getParameter("id");
Customer customer = CustomerFactory.getInstance().getCustomer(id);
request.setAttribute("customer", customer);
return "/view-customer.jsp";

}
}

Assuming that all the necessary code to look up customers has been written, when a
Customer instance is found, you can use the request object as an area in which to place any
objects that are relevant for the lifetime of this request via the setAttribute() method. The
final point to note about this implementation is that the value returned from the execute()
method is the name of the JSP page representing the view component. In other words, this 
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is the name of the JSP page that will be used to render, or present, the information back to
the user.

With all the business logic then wrapped up inside Action instances, the front controller
itself becomes very small and hence much more cohesive, as Listing 14-4 shows.

Listing 14-4. FrontController.java

package com.apress.projsp;
import java.io.IOException;
import javax.servlet.http.*;
import javax.servlet.ServletException;
import javax.servlet.RequestDispatcher;
public class FrontController extends HttpServlet {
private ActionFactory actionFactory = new ActionFactory();
protected void processRequest(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

Action action;
try {
action = actionFactory.getAction(request);

} catch (ActionNotFoundException anfe) {
throw new ServletException(anfe);

}
// Now process action, finding out which view to show the user next
String nextView = action.execute(request, response);
// and finally redirect to appropriate view, 
// remembering to prefix the path
try {
if (nextView != null) {
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(nextView);

dispatcher.forward(request, response);
}

} catch (Exception e) {
e.printStackTrace();
throw new ServletException(e);

}
}
protected void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
processRequest(req, res);

}

protected void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

processRequest(req, res);
}

}
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In this version of the front controller, you’re simply using a helper class to find which
Action implementation should be used to service this particular request. How does the con-
troller know which action to use? Well, there are various ways to communicate the name of the
action to the controller. These range from using a named parameter within the query string to
encoding the name of the action inside specially mapped URLs. One such example might be
as follows:

http://www.mycompany.com/controller/ViewCustomer?id=123456

The key benefit of using the command and controller strategy is that it allows you to
maintain a central place for accepting requests, while keeping the logic to actually service an
individual request separate from that needed to service other types of requests.

View Components
Before we move on to other patterns, we need to spend a little time discussing View Compo-
nents within Java EE patterns. With the controller responsible for the business logic related 
to servicing a request, you may be asking how to implement the view components. In the
simplest case, the views are implemented as JSP pages that are forwarded by the controller
component. The job of the controller (or an action class if you’re using that strategy) is to per-
form any processing and set up the environment for the view to present the information. In
Chapter 9, you saw that it’s quite possible for JSP pages to contain database code so that they
can find the data they’re supposed to display. However, the MVC architecture turns this on its
head because it’s now the responsibility of the controller to find that data. As you saw in the
previous sample action implementation, it’s possible to use the request object to store infor-
mation that’s required for the lifetime of the current request:

request.setAttribute("customer", customer);

Here, you’re just placing a Customer instance into the map of objects maintained by the
request. When it comes to presenting the information from the view, you can use the JSP EL to
locate that Customer instance and display it. For example, you can use the following expression
to display the name of the customer (assuming that a method called getName() exists):

${customer.name}

This separation of business and presentation logic gives you the ability to easily change
one or the other independently if necessary. Should you need to change the way that the cus-
tomer is presented to the user, this is no problem. You can just modify the JSP page without
danger of breaking the existing business logic of locating that customer.

View Helper
Although the front controller is responsible (possibly through delegation to commands) for
executing the business logic required to service a given request, there is still often logic that is
related to only the presentation of that information. View components such as JSP pages are
great at displaying information, but sometimes some more code is needed. Perhaps a list of
objects needs to be sorted prior to being displayed, or perhaps the information needs to be
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formatted in some specific way. Although that code can simply be embedded into the view
components, the View Helper pattern describes a way to wrap up this code and make it
reusable over multiple views.

You have already seen many examples of view helpers. If you look back to Chapter 7, one
of the tags you saw filtered the domain of e-mail addresses, making it harder for spammers to
obtain addresses. Although extremely useful, such logic isn’t really classed as business logic.
Instead, this is presentation logic—code that helps the view present information back to the
users. Of course, such code could have been written and embedded into the JSP page, but this
is considered bad practice for reasons of quality, maintainability, and so on. Instead, that code
is wrapped inside a custom tag so that it can be used and reused throughout the pages of the
web application. In effect, this custom tag is an implementation of the View Helper pattern. In
this case, the tag is a component that the view uses to help it perform its task.

Service to Worker
Each of the patterns that we’ve covered so far has tackled a different problem within the
design of web applications. The front controller provides a single point of access for requests
to centralize business logic, whereas views and view helpers separate the process of present-
ing information from the process of finding the information and manipulating it. To bring all
these patterns together, the Java EE patterns catalog defines a macro pattern called Service to
Worker, shown in Figure 14-4. By “macro pattern,” we mean that this is really just a combina-
tion of other patterns—in this case, the front controller, views, and view helpers.

Figure 14-4. The Service to Worker pattern is a combination of other patterns.

Bringing all these patterns together is the basis for an extended MVC architecture and
provides a common ground for web applications to be designed and easily understood. It also
helps to emphasize the benefits of the individual patterns and demonstrates that they’re much
more useful if used with one another. As you’ll see shortly, the Service to Worker pattern forms
the basis of many web-application frameworks currently in use.
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Filter
Another useful, although not widely used, pattern worth briefly talking about is called Filter.
The filter API that you saw in the previous chapters is an implementation of this pattern, so
instead of looking at how to implement a filter, let’s see how it can be used in the design of
web applications and talk about some more typical uses.

Filters can play in important role in the design of web applications because they can
have responsibilities unrelated to any particular JSP or servlet. Filters can be seen as chan-
nels through which all requests and responses can be passed.

One way I have used filters in web applications is to interpret user-friendly URLs. To
help me keep my website up to date, I built some web-logging software—a simple date-
based content management system to which I post short entries on a daily basis. The web
log (abbreviated to “blog”) then displays the most recent of these entries in reverse date
order on the front page. In addition, when readers want to locate older entries, they can
simply jump directly to a page containing all the entries for an individual day. In the past,
such websites have been built of static pages, organized in such a way that made it easy to
find the page for a specific day. For example, the blog entries for June 10, 2003, can be found
at http://www.simongbrown.com/blog/2003/06/10.html.

With technologies such as JSP and servlets providing many benefits over writing static
pages, I decided to write my web log as a Java-based web application. All the entries are stored
separately on the filing system, and with the help of the Front Controller pattern, a couple of
JSP pages are used to assemble the individual entries into a page that is presented back to the
user. However, rather than show the user a URL such as http://www.simongbrown.com/blog/
servlet/ViewDailyBlog?year=2003&month=6&day=10, I decided that I’d still like URLs such as
the one shown previously to work. To implement this, I used a filter.

Because a filter can be set up to look at all incoming requests to a web application, all that
the filter needs to do is look for a request matching yyyy/mm/dd.html and forward the request to
the appropriate action via the front controller. The filter is being used to catch these requests
for seemingly static content through user-friendly URLs and convert the requests into dynamic
requests for content through the front controller. This is a simple yet powerful implementation
of the Filter pattern that performs filtering on incoming requests.

Filters can also be used on outgoing responses. One example often cited is a filter that,
after a request has been processed, uses compression techniques to compress the outgoing
stream in an attempt to make more efficient use of the available bandwidth. Another example
is a filter that highlights the usage of search terms in the page. Through the interfaces pro-
vided by the Servlet API, it’s possible to find the complete URL of the website that the user
came from to visit your site. For example, somebody might click a link in Google to get to your
website. Using this information, you could write a filter to check for referrals from Google and
highlight the occurrences of the search terms used before the response is subsequently sent
back to the user. Again, this is another way that you can use filters to enhance the user’s expe-
rience of your web applications.

Other Web-Application Patterns
In addition to the Java EE patterns that we’ve just covered, there are other patterns or best
practices that can help you to build web applications. Also, JSP 2.1 provides a much better and
often easier way to implement some of these patterns, as we’ll describe in this section.
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Including Standard Headers and Footers
Probably one of the most commonly used best practices when building JSP-based web appli-
cations is to separate out the common code used in headers and footers into JSP pages or
fragments that are included wherever necessary. Such files might include all of the HTML
tags to define well-formed HTML headers, the <%@ taglib %> directives to import common
tag libraries, defining objects to be used in the page, and so on. Whatever it is you’re trying to
achieve, you’ll typically implement this practice by using the JSP include directive to stati-
cally include the header on every page:

<%@ include file="header.jspf" %>

On translation of the JSP into a servlet, the JSP compiler inlines the included file into the
source code of the generated servlet class. This is a useful way to make some of the content
reusable, although it does rely on the page author remembering to include the header wherever
possible. Also, often different headers are needed for different parts of the web application. For
example, you might have a different file that is included when the JSP page is from a secure part
of the site.

To address this, the teams behind the new JSP and Servlet specifications have come up
with the idea of preludes and codas. The basic idea is that given any set of one or more JSP
pages, it’s possible to define one or more preludes or codas. Preludes are files that are included
before the main body of JSP pages that match a given URL pattern; codas are files that are
included after the main body of those JSP pages. So, instead of including a header and footer
on every page, you can achieve the same result by using the following fragment within the
web.xml deployment descriptor:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/header.jspf</include-prelude>
<include-coda>/footer.jspf</include-coda>

</jsp-property-group>

This is a great way to further increase the maintainability of your web applications and
reduce the amount of duplicated content that they contain.

Templating
Templating is another common implementation technique in web applications. A template is
a predefined skeleton that you can customize at runtime by using parameters. If you look back
to Chapter 6, one of the examples used to demonstrate tag files was a web page that contained
a number of promotional notices on the homepage. Although the content contained within
each tag was different, the actual structure and code to build them was the same. These are
effectively templates that are being used and customized.

Before the introduction of tag files, templating was fairly hard to achieve with JSP
because there was no easy way to express how templates should be customized. A couple 
of possible options included using short scriptlets or even custom tags to indicate where
dynamic content should be inserted inside the body of the template. However, the problem
with these was that all too often, using such methods introduced some Java code into the
page. Perhaps objects needed to be set up or some presentation logic was needed. After code
is introduced, many people stop calling those pages templates. After all, instead of simply
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indicating where dynamic content should be inserted, you basically have complete control
over how the template works. Another option is to use a specific templating framework such
as Velocity (discussed in the following “Frameworks for Building Web Applications” section).

With the introduction of EL in JSP 2.0, developers gained the ability to perform templat-
ing. Because the EL is an integral part of the JSP specification, templates are now much easier
to build. Simply write the static content inside a JSP file and then insert EL expressions where
the dynamic content is to be inserted. The expressions themselves can be fairly powerful,
although they’re still simple enough for people to understand, and they don’t expose the inner
workings of the template.

Frameworks for Building Web Applications
So far you’ve looked at some proven ways of building web applications and a lot of patterns for
translating these ideas into working code. Do you really have to write all of this every time you
build an application?

A Bespoke Framework
By combining the implementations of the Java EE patterns discussed previously, you basically
have a bespoke framework on which to build an MVC-based web application. In fact, many 
of the web applications that we’ve worked on (open source and for clients) have used these
simple implementations as a basis for a lightweight MVC framework used to service all of the
requests throughout the application. We subscribe to the “keep it simple” approach to soft-
ware design, and using such a lightweight framework has several benefits. The framework is
easy to learn, easy to maintain, and, when necessary, easy to extend, one such example being
to handle validation errors from HTML forms that users submit.

However, writing a bespoke framework isn’t always the best option. The implementation
of the Front Controller pattern presented here is fairly simple and straightforward, but many
improvements can be made. Examples include a standard way to build HTML forms and per-
form validation, more sophisticated components to display information from the model, and
so on. Although such work isn’t particularly complex, it’s time-consuming. Therefore, several
third-party frameworks are available for developers to use as a starting point for their web
applications.

Struts
Struts from the Jakarta Project (http://jakarta.apache.org) is an open-source framework pro-
viding an implementation of not only a front controller, but also a complete implementation
(or framework) of the MVC architecture. The key components are similar to those presented
here, including, for example, a controller servlet (called ActionServlet), Action classes in which
to place functionality for processing a request, and ActionBean classes in which to encapsulate
data coming in from a request. In addition, Struts contains a comprehensive collection of JSP
tag libraries for the easy assembly of HTML-based forms and JSP pages in general.

One of the most important features of Struts is that pretty much everything about it 
is externally configured through the struts-config.xml file. This includes the mappings
between action names and Action classes (called ActionMappings), and also a concept called
ActionForwards. For the simple implementation presented in Listing 14-3, the Action class
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returns a string representing the URI of the JSP page that should be displayed next. In Struts,
however, the Action classes return a symbolic name (wrapped up in an ActionForward
instance) representing which view component should be displayed next. As an example,
consider a login form containing a username and password. On submission of the form, 
the login is either successful or unsuccessful. In this case, the Action class could return sym-
bolic names such as success or failure. These symbolic names are then configured in the 
struts-config.xml file, and it’s here that the physical URI to the appropriate JSP page is spec-
ified. The following snippet shows how two different flows through a login action might be
handled:

<action path="/login" type="com.mycompany.myapp.LoginAction">
<forward name="success" path="/index.jsp"/>
<forward name="failure" path="/login-failed.jsp"/>

</action>

Here, we’re saying that there are two possible outcomes for the login action. The first is
that the login is successful, and if this is the case, the user is directed to the index page. Alter-
natively, a failed login takes the user to a page explaining that the user’s login failed. Generally,
this logic and the page names would have to be hard-coded into the actions. With Struts and
its configuration file, the flows through an application can be easily changed, and it’s another
way that the flow and structure of the web application can be taken out of the code to increase
maintainability. After all, if the structure of the site changes, only the configuration file needs
to change. You will look at Struts in more detail in the next chapter.

Spring
The Spring Framework (http://www.springframework.org) aims to be lightweight but power-
ful, and easy to use. Spring is a layered Java EE application framework, developed by Rod
Johnson. Spring has a lot of features to make enterprise development easier for you.

■Note If you want to learn more about Spring, beyond the short description here, we recommend Expert
One-on-One J2EE Design and Development by Rod Johnson (Wrox Press, 2002), Pro Spring by Rob Harrop
and Jan Machacek (Apress, 2005), or Professional Java Development with the Spring Framework by Rod
Johnson and others (Wrox Press, 2005).

Spring can be used on its own to provide a complete enterprise application framework.
The framework simplifies the work required to build and integrate the presentation tier, busi-
ness tier, and data tier of your web application. Although Spring is powerful enough for
enterprise applications, it does not force you to use Java EE. You can develop Spring compo-
nents from plain old Java objects (POJOs) and use Spring to easily integrate those objects into
a working application. The objects you build can easily be used in a Java EE environment or as
part of stand-alone applications.

On the other hand, Spring is also flexible enough to work with other frameworks to
provide enterprise solutions.
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Spring has its own data abstraction layer for data persistence. But it can also integrate
with other data abstraction technologies such as Oracle TopLink, Hibernate, and Java Data
Objects (JDO). See Chapter 9 for more information about these and other data abstraction
technologies.

Not only does Spring integrate well with the data tier, it also integrates well with other
presentation tier technologies such as JSP, Velocity, and Tiles. So you can use Spring to develop
the business objects, and use your favorite presentation-tier framework to provide the view in
your MVC application.

Finally, Spring works well with other MVC frameworks such as Struts, WebWork, or
Tapestry.

WebWork
WebWork (http://www.opensymphony.com/webwork/) is another MVC framework that is often
compared to Struts. It too uses the concepts of classes that implement the command pattern,
although one of the key differences between Struts and WebWork is that WebWork is built on
top of another framework (XWork) that isn’t actually tied to the Web and concepts such as
HTTP requests and responses. Therefore, it’s possible to share implementations between web
applications and other Java implementations such as a Swing client. In essence, the action
classes are just JavaBeans, and in a web environment, parameters are simply mapped on to
bean properties.

WebWork provides similar features to Struts in terms of user interface components for
building views, customizable validation, an expression language for accessing information
from the model, and so on. However, what makes WebWork more than just a Struts copy is
that it doesn’t rely on just JSP for the presentation tier. The view components themselves can
be JSP, but they can also be written using other technologies, including XML and Velocity (see
the next section for more information on Velocity).

A unique feature of WebWork is that it supports interceptors that can be used to execute
logic before and/or after an action invocation. This is similar to the way that filters can be used
to intercept incoming requests and outgoing responses. Like aspect-oriented programming
(AOP), WebWork interceptors give you a way to insert cross-cutting concerns throughout your
code base without having to open every action class and edit it. By “cross-cutting concerns,” we
mean logic that isn’t specifically tied to the business function provided by the system, such as
logging, security, caching, and so on. Typically, business logic can be seen as vertical in that in
any application you have a collection of vertical slices providing business logic. With intercep-
tors, you can build code that works across all of these vertical slices and, in WebWork, you can
configure this declaratively.

In summary, WebWork is a simpler, although arguably more powerful, alternative to
Struts that provides a quick way to build MVC-based web applications. Additionally, the sim-
ple interface provided by the action classes makes testing WebWork actions much easier than
Struts, without the need for a testing framework such as Cactus. The only downside to using
WebWork is that the user community is currently small and there isn’t much information
readily available. Hopefully, this will start to change.

Velocity
Velocity (http://jakarta.apache.org/velocity/) is a Java-based templating engine that pro-
vides an alternative way to build the view components of web applications. In fact, Velocity is
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capable of much more than this, as it can be used outside of the context of a web application,
perhaps for helping to generate reports or XML. Velocity has its own templating language (the
Velocity Templating Language, or VTL) that provides a way to access pretty much anything
that can be accessed through regular Java method calls. At the time that Velocity was created,
JSP didn’t include its own expression language, and Velocity was an attempt to fill this void
and provide an easy way for developers to build true templates.

Although JSP now includes an EL, Velocity has a large following and has been deployed in
many applications, particularly web applications. With frameworks such as WebWork provid-
ing easy integration with Velocity, it will still be a popular choice for web applications that are
heavily based on dynamic content that can be easily templated.

Testing
Testing plays an important role in the software development life cycle, although when time scales
are short and deadlines loom, testing often doesn’t get the attention that it should. Fortunately,
new development methods such as Extreme Programming (http://www.xprogramming.com/)
are doing a great job of promoting automated testing with tools such as JUnit, in which unit
tests are actually written in Java. So then, how do these principles apply to testing web applica-
tions and what exactly can you test? Web applications are often complex by nature, and this can
lead to confusion over exactly what can and should be tested. From an automated testing per-
spective, two types of testing generally take place: unit testing and functional testing. There are
many tools available to help you perform unit and functional testing, such as JUnit, JUnitEE,
Cactus, TagUnit, and HttpUnit. After looking at these tools, you will learn how to design your
web applications for testing, what the guidelines for a testing strategy are, and why you would
want to perform compatibility testing.

Unit Testing Web Applications
Unit testing is the process of testing software from the perspective that you know how it works.
It’s also called white box testing because you can see how the software works—you can see
inside the box. The opposite of this is black box testing, which we’ll discuss shortly. 

The idea behind unit testing is to ensure that all (or most) of the paths throughout the unit
are sufficiently tested, including things such as boundary conditions on loops and method
calls, correct and incorrect (for example, null) parameters into method calls, and so on. By
doing this, you’re making sure that the unit being tested is correct, does what it’s supposed to
do, and doesn’t break when you throw inputs it just isn’t expecting. 

So, how can you apply unit testing to web applications? The simple answer is that you
unit test all the classes and components that make up the web application—everything from
the JavaBeans representing business objects to the servlets servicing requests. Although this
sounds good in theory, in practice it’s difficult to achieve because of the plumbing required by
many of the Java EE components that live inside a server. With stand-alone Java classes, it’s
straightforward to write automated unit tests with the JUnit framework. Typically, such tests
might create new instances of the class being tested, call methods on that instance, and sub-
sequently perform assertions on the results to ensure that they were correct. However, with
components such as servlets and JSP pages (which get compiled to servlets), this just isn’t
something that can be done in the same way. After all, these components need to be executed
within the context of a server that supports the technologies. In essence, these components
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rely heavily on the plumbing, infrastructure, and services provided by such servers. Fortu-
nately, people have realized this and have come up with some ways of making unit testing
such components easier. However, there will generally be a cutoff point at which unit testing
becomes unfeasible and other testing methods must be used. 

With these thoughts in mind, let’s move on to look at what you can test and the tools you
can use to do so.

JUnit
JUnit (http://www.junit.org), now the de facto standard for building automated tests within
the Java language, is widely used on projects ranging from desktop applications to enterprise-
scale distributed servers. JUnit provides a lightweight framework with which to write tests. At 
a high level, you simply extend one of the provided classes and write one or more methods to
test each aspect of the class or classes that you wish to test. After you’ve compiled the test
classes, you then run the tests through one of the JUnit test runners, and it’s this that keeps a
tally of the passes and fails, issuing a result at the end of the process.

Listing 14-5 illustrates how easy it is to write automated unit tests in JUnit by showing how
you might test a simple JavaBean representing a customer having two properties, firstName
and lastName. In this example, the class has an additional method called getFullName() that
simply joins the first and last names together with a space between them. With JUnit, you
might want to test that the various get methods function as expected by setting the appropri-
ate properties and performing assertions on the results of accessing those properties.

Listing 14-5. CustomerTest.java

import junit.framework.TestCase;
public class CustomerTest extends TestCase {
public void testFirstName() {
Customer customer = new Customer();
customer.setFirstName("Simon");
assertEquals("Simon", customer.getFirstName());

}
public void testLastName() {
Customer customer = new Customer();
customer.setLastName("Brown");
assertEquals("Brown", customer.getLastName());

}
public void testFullName() {
Customer customer = new Customer();
customer.setFirstName("Simon");
customer.setLastName("Brown");
assertEquals("Simon Brown", customer.getFullName());

}
}

All that you’re doing here is extending one of the classes provided by JUnit and imple-
menting testXXX() methods for the various pieces of functionality that you’d like to test. In
this case, you’re testing the ability to set/get the first, last, and full names. Of course, this is a
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simple example and it doesn’t cover exceptional cases such as null values. However, it does
demonstrate how easy it is to write unit tests with JUnit and shows its potential.

Getting started with JUnit can sometimes be tricky, particularly with respect to finding the
motivation to write the tests in the first place. However, after they’ve gotten over the learning
curve and experienced the benefit of JUnit, most people become hooked or, to use a phrase
coined by the JUnit team, “test infected.”

Seeing JUnit for the first time is a little daunting, especially when you start to think about
how much more Java code you have to write for each and every class that you’re building.
However, based on our experience of using JUnit, we’ve found that after you use JUnit for a
while you will start to appreciate the power of automated unit tests and the confidence that it
can give you when refactoring or redesigning parts of a system. The feeling of confidence you
get when you make a big design change and the tests still work is amazing!

When using JUnit, the types of classes that you can test include those representing the
business domain, the business logic, MVC-style action classes, helper classes, and so on.
Essentially, anything that stands alone can be tested using JUnit. In many web applications,
this set of classes will cover the majority of the code being developed and should hopefully
lead to a good level of confidence that the code works correctly. However, at times you may
have stand-alone classes that still need to be run and therefore tested inside of a Java EE con-
tainer environment. For these situations, JUnitEE is useful.

JUnitEE
JUnitEE (http://www.junitee.org) provides a way to run regular JUnit tests inside of a Java
EE container. Why would you want to do this? Well, perhaps you have some classes that
require the use of a database connection that is set up and made available to those classes
through the container’s JNDI tree. Or perhaps those classes need access to some other enter-
prise resource to function properly. With JUnitEE, you can bundle up all of your classes and
their tests into a WAR file that you can then deploy onto a Java EE web container such as
Tomcat. To execute those tests, you then point your web browser to the newly deployed web
application and a servlet runs behind the scenes to execute the JUnit tests and presents the
results back to you.

JUnitEE is effectively a lightweight test runner that allows you to execute tests within a
server environment. However, it doesn’t allow you to test components such as servlets and
JSPs any easier than JUnit. For this you have to look at other options such as Cactus.

Cactus
Cactus (http://jakarta.apache.org/cactus/) is an extension to JUnit that provides a mecha-
nism for running unit tests inside of a running Java EE container. Although you’re able to run
regular JUnit tests within a server environment when using JUnitEE, you still don’t have the
complete infrastructure necessary to test those classes that depend on information delivered
to them on a request-by-request basis. For example, to be able to truly test a servlet, you need
to have a live request and response object available to you because the code inside the servlet
might extract parameters from the request or push out information into the response. Cactus
gives you the ability to test these types of components with the confidence that they’re run-
ning within their real environment.

In Cactus, the testing functionality is broken into two halves. First is a client part. This looks
just like a normal JUnit test and is used to initiate the test. The second part of Cactus lives on the
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server. Here, you can use Cactus-provided test classes to instantiate the components that you
wish to test and invoke their methods. For example, you might choose to create a new instance
of a servlet class and call the doGet() method. Of course, to actually call this method you need
to have access to the HTTP request and response objects, so where do they come from?

The key here is a test redirector component that sits between the client and server test
classes. When a test is initiated by the client, a request is made to the Java EE container and
this is intercepted by a Cactus-provided servlet that must also be running on the server. This
servlet (the test redirector) then determines which server-side test needs to be run and initi-
ates the appropriate test class. As an actual HTTP request has been made to the Java EE
container, Cactus simply wraps this up and passes it on to the server-side test class to use as
necessary. The object representing the HTTP response is also wrapped up for use by the test
class. With access to these, the server-side test class and the class being tested can extract
parameters, write output to the response, and so on. Assertions can then be made that the
class being tested works as expected, with the results of these assertions being passed back to
the client for reporting.

As an example, consider the ViewCustomerAction class that we introduced during our dis-
cussion of MVC earlier in the chapter. Because this class relies on the server for a real request,
it’s a great candidate for testing with Cactus. Listing 14-6 shows how you might achieve this.

Listing 14-6. ViewCustomerTest.java

import javax.servlet.ServletException;
import junit.framework.Test;
import junit.framework.TestSuite;
import org.apache.cactus.ServletTestCase;
import org.apache.cactus.WebRequest;
public class ViewCustomerTest extends ServletTestCase {

public ViewCustomerTest(String theName) {
super(theName);

}
public static Test suite() {
return new TestSuite(ViewCustomerTest.class);

}
public void beginExecute(WebRequest webRequest) {
webRequest.addParameter("id", "123");

}
public void testExecute() {
Customer customer = CustomerFactory.getInstance().getCustomer("123");
ViewCustomerAction action = new ViewCustomerAction();
try {
action.execute(this.request, this.response);
assertEquals(customer, request.getAttribute("customer"));

} catch (ServletException e) {
fail();

}
}

}
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In many ways, this class is similar to the JUnit tests that you saw in the previous section,
except this time you subclass a Cactus-specific class. Again, you write a testXXX() method 
to test the functionality, but Cactus allows you to write a corresponding beginXXX() method
that gets called before your test method. It’s here that you can initialize request parameters
and so on. The class that you’ve subclassed (ServletTestCase) provides you with access to 
a real request/response, and it’s because of this that testing the server-side action is so
straightforward.

Cactus provides a flexible way of testing those components that really do need to be
tested inside a Java EE container, and it currently provides support for testing servlets, JSPs,
custom tags, and filters. The biggest problem with Cactus is that it can seem complicated to
begin with, particularly with respect to setting up the framework. The great thing about 
Cactus is that it provides a way to actually test all of those components that would otherwise
be untested if you used JUnit on its own. On the flip side, Cactus tests do require you to write
some of the code that would normally be executed automatically by the container. If you cre-
ate a servlet instance, you should ideally also call the container-management methods such 
as init() and destroy(). In general, this isn’t too much of a problem because the life cycle of
servlets and filters is straightforward. Custom tags, however, are a slightly different story.

TagUnit 
One of the most complicated parts of custom tags (certainly before JSP 2.0 came along) was
that the life cycle of tag handler instances seemed cryptic and hard to understand. JSP 2.0
addressed these features with the new SimpleTag interface, but before this the JSP specifica-
tion placed some very strict rules around the life cycle and pooling of tag handler instances
that were never widely understood. Because the code to implement these life cycle require-
ments is generally the responsibility of the Java EE container, this usually isn’t a problem. To
test custom tags with Cactus, however, the developer must write this code to accurately mimic
the way that tags are used on the page. Unfortunately, this process can be error-prone, and
therefore the TagUnit testing framework was created.

TagUnit (http://tagunit.sourceforge.net/) is a framework for testing custom tags. It
differs from other testing tools in that it allows tags to be tested within the same environment
where they’ll eventually be used. In other words, the tests themselves are written as JSP pages
with regular JSP syntax. To achieve this, TagUnit provides a tag library of its own that contains
testing and assertion tags that mimic the assertXXX() methods found in JUnit. Therefore,
testing custom tags becomes very easy. You just use your tags on the page and wrap them up
within the TagUnit tags. Examples of assertions include comparing the generated content
with some expected content, looking for the presence of scoped variables/attributes, and
checking that exceptions are correctly handled. 

Listing 14-7 is an example that tests the content generated from the e-mail address filter
tag you saw in Chapter 7, in which you tested that the custom tag does in fact filter out the
domain part of the e-mail address.

Listing 14-7. TestEmailAddressFilter.jsp

<%@ taglib uri="http://www.tagunit.org/tagunit/core" prefix="tagunit" %>
<%@ taglib prefix="x" uri="/WEB-INF/tlds/myTags.tld" %>
<tagunit:assertEquals name="Simple filter test">
<tagunit:actualResult>
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<x:emailAddressFilter>simon.brown@somedomain.com</x:emailAddressFilter>
</tagunit:actualResult>
<tagunit:expectedResult>simon.brown@...</tagunit:expectedResult>

</tagunit:assertEquals>

Unlike JUnit and Cactus, the tests for TagUnit are written as JSPs, with the assertions
written using TagUnit-specific custom tags.

TagUnit tests are wrapped up as a WAR file and therefore can be deployed in any com-
patible Java EE container. As an additional benefit, this makes it easy to deploy the tests onto
another server, which makes cross-vendor testing very easy, particularly when each test can
implement aspects of the tag life cycle and pool in slightly different ways. Although Cactus
provides a much richer framework for testing server-side components, TagUnit is ideally
suited to testing custom tags, especially custom tags that will be reused by other people.

Other Unit Testing Tools
The tools that we’ve mentioned in this chapter are just a sample of the wide variety of testing
tools available. For more information on the tools available to unit test web applications,
take a look at the JUnit web extensions page at http://www.junit.org/news/extension/web/
index.htm.

Now that we’ve covered how to perform unit testing with respect to web applications, let’s
now switch gears and look at functional testing.

Functional/Acceptance Testing Web Applications
The other key method to test web applications is functional testing. In contrast to unit test-
ing, functional testing treats the application as a black box (you can’t see inside it) and tests
that the outputs are correct given a set of inputs. For example, this might include the request
to add an item to your shopping cart in an online store. Here you’re not interested in how the
request works—you just want to know that it does work and that the desired result is achieved.

Functional testing is often broken down into two categories, with the tests being written
by two types of people. The first category is written by developers in addition to the unit tests
that they might write for the classes and components that they’re writing. Unit testing classes
in isolation is undoubtedly useful, but at times developers want to run some functional tests
that span multiple classes and components. Typically, these tests are written with the internal
flows of the application in mind and really help back up the unit tests in proving that the soft-
ware works for a given set of inputs. The second category contains functional tests that are
written by dedicated testing teams. Their responsibilities range from system testing (in which
the end-to-end flows throughout the system are exercised) to writing tests that will be used to
formally state that the functionality meets the requirements and will be accepted by the proj-
ect sponsor or end users.

One of the problems associated with acceptance is that traditionally acceptance testing,
sometimes called user acceptance testing, was performed manually following a textual script.
Although this works and it’s widely used, these manual tests must be reexecuted whenever a
new version of the software is released for whatever reason. Although tools do exist that allow
testers to capture the process of manually testing an application for automatic playback, many
of these tools can be expensive and cumbersome to use. On the other hand, many open-source
options are now available, although these tend to be oriented toward the developer community
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and require tests to be written with programming languages, scripting languages, or XML. This
is an area of flux at the moment and it’s worth bearing in mind your testing audience before
you make a definitive tools selection. Let’s see how functional level testing can be automated
with another widely used open-source framework: HttpUnit.

HttpUnit
HttpUnit (http://www.httpunit.org) is another extension to JUnit, but it’s different from the
others that we’ve discussed because it allows you to write tests at a slightly different level.
Whereas you can use tools such as JUnit and Cactus to test that individual classes and com-
ponents work correctly, HttpUnit is a framework that you can use to test the functionality
provided by a web application. As you’ve seen, unit testing classes is easy, but how do you
test the functionality of a web application?

The answer lies in the tools that HttpUnit gives you. The framework provides a collection
of classes that allows you to simulate the process of a user using a web browser to connect to
and use a website. Under the covers, it does this by making HTTP requests to the website,
passing information that the user would typically type in manually. As far as the functionality
available to you through the framework, HttpUnit allows you to access individual web pages
and perform assertions that the web page contains certain elements. For example, if you’re
testing an online store, you might want to test that all pages contain the current total of your
shopping cart. In addition to these basic features, HttpUnit provides a way to look for HTML
forms on a page and programmatically fill out those forms to be sent back to the server,
where the response can then be checked. Again, for an online store, you might want to test
that a user can add an item to his cart and that the subsequent page shows the user the
updated cart state.

HttpUnit provides a way to use Java code to programmatically test the functionality pro-
vided by a website, and the real benefit of this is that these tests can be rerun to regression test
the web application when new versions are available. In fact, because HttpUnit uses the HTTP
protocol, it can be used to test any other sort of HTML-based web application, including those
written with Active Server Pages (ASP), Perl, PHP, and so on.

Other Functional Testing Tools
To round off your look at functional testing tools, a couple of other frameworks are worth a
quick mention. The first of these is jWebUnit (http://jwebunit.sourceforge.net), which is
really an extension of HttpUnit. The team behind jWebUnit was using HttpUnit on a project
and realized that many of the tests contained duplicate code to set up request objects and
perform assertions. Therefore, the team built a collection of wrapper classes for HttpUnit
that simplified the API for its purposes. This has been refined over time and released into the
open-source community. Some people like the control that HttpUnit gives them, whereas
others prefer the simpler interface provided by jWebUnit. At the end of the day, it’s all up to
personal preference.

The other framework worth mentioning is called Jameleon (http://jameleon.
sourceforge.net). This framework provides a way to functional test an application, but from
the perspective of the features that the application provides. Jameleon differs from HttpUnit
and jWebUnit in that it breaks out testing of the features from the actual test cases. A feature
can be something as fine-grained as logging in, and it might be something that has to happen
before every test. With Jameleon, you write the feature tests separately and then script them
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together into a reusable test case. These test cases can then be made data-driven by associat-
ing them with a particular dataset at runtime, which provides an easy way of running specific
tests on specific environments. Jameleon itself is not specifically designed to test web appli-
cations; instead, it has a plug-in architecture in which testing code can be plugged in and
executed. At the time of this writing, Jameleon provides a plug-in for HttpUnit/jWebUnit;
hence it can be used to functional test web applications. This is a great idea and is something
that has typically been found only in commercial testing tools. As always, the open-source
testing space is worth keeping an eye on as new tools and enhancements are released on a
regular basis.

Now that we’ve presented the various ways that web applications can be tested, let’s look
at how the design can influence the ability to test web applications.

Designing Web Applications for Testing
Although unit testing individual classes is straightforward, as we’ve hinted at, sometimes unit
testing classes within web applications can be tricky. This is particularly true when the various
flavors of business and presentation logic have all been mixed up with components such as
servlets that need to be executed within a web server. To solve such problems, we must again
turn to architecture and design.

Architectural Layering
Although we haven’t explicitly talked about architectural layering, we have talked about the
MVC architecture and how it helps achieve a separation of concerns between the various
components. For example, the controller is the overall component responsible for managing
requests, the model represents the domain information being operated upon, and the views
present information back to the user. Compare this with the Model 1 architecture, in which all
of these responsibilities are embedded in a single component, and you can start to see how
separating these responsibilities can lead to easier testing.

We’ve already said that the hardest part of unit testing web applications is testing those
components that are reliant on the context of a Java EE web server, and one of the things that
you can do to aid testing is to try to make these components as small and lightweight as possi-
ble. By making these components lightweight wrappers for functionality that’s encapsulated
within Java classes, you give yourself a much better chance of being able to unit test the appli-
cation. For example, cast your mind back to the MVC architecture and, specifically, to the
command and controller strategy in which the functionality to service incoming requests was
split among individual command objects. Because each of these is just a stand-alone Java class,
you can now use the same techniques for unit testing as you do with ordinary Java classes—you
can use JUnit to create new instances and call methods on those instances.

One of the keys to being able to unit test web applications is to ensure that each of your
classes has a well-defined role. In the MVC architecture, this involves breaking classes into one
of the main categories of components: controller/action, model, and view/presentation. Fur-
thermore, and regardless of whether or not you adopt an MVC architecture, certain types of
classes are much easier to test than others. We’ve already alluded to this, but to recap, classes
that can stand on their own are generally much easier to test—within a Java EE web applica-
tion, this usually means classes that represent business/domain objects and those classes that
encapsulate some level of business logic and processing.

CHAPTER 14 ■ WEB-APPLICATION DESIGN AND BEST PRACTICES558

513-0 ch14.qxd  11/17/05  8:44 PM  Page 558



On the projects that we’ve worked on, testing web-application components has always
been one of the areas that has come up repeatedly as being difficult. At the end of the day,
breaking components into distinct architectural layers really does improve your ability to test
those components. In addition, it’s often too much effort to try to achieve complete test cover-
age of all the components within your web application. If you’ve broken out the majority of
the functionality into classes that can stand alone from the web server environment, testing
these should provide a satisfactory level of confidence in the code that you’re producing. The
whole point of testing is to provide you with a certain level of confidence that the code will
perform as expected rather than striving to achieve complete coverage. 

A Testing Strategy
When you’re writing regular Java code (not Java EE related), a testing tool such as JUnit gener-
ally suits most of your needs. However, for Java EE applications, it isn’t feasible to get by with
just a single tool. For example, with JUnit and Cactus, it’s possible to test only stand-alone
classes. With TagUnit, it’s possible to test only custom tags. With HttpUnit, you can test only
the end-to-end functionality provided by the application. Because each of these tools provides
a different angle on testing the software, you can’t get away with using only one tool. The pur-
pose of testing is to provide confidence that the software works, and this is just not possible
with a single tool.

Testing can be performed at many layers, and this is also true of web-application testing.
At the very bottom, you have the unit tests that can be performed with tools such as JUnit and
Cactus. Moving up from this, you have slightly larger groups of interacting classes, or compo-
nents. These can also be tested with JUnit and Cactus, although other tools such as TagUnit
start to provide benefits. Moving further up, you start to test more functionality of the system,
and this is where functional testing tools come into play. Testing one of these layers is great,
but it doesn’t guarantee that the system as a whole will work. After all, unit tests tend to be
much more detailed and much more focused on robustness. Functional tests, on the other
hand, tend to be more geared toward checking that the functionality works as expected. You
should view all of these testing tools as complementary, and it’s up to you to pick the ones that
give you the confidence that your software works. 

Compatibility Testing Web Applications
As an additional level of testing, many developers test their applications for compatibility
between servers. By writing to the Java EE platform, you are (at least in theory) guaranteed
that your application will work on any other compliant or compatible Java EE implementa-
tion. For many people, this just isn’t an issue because they’ll run their applications on only a
single type of Java EE server. For others, particularly those building products (regardless of
whether those products are commercial or open source), testing compatibility can be essen-
tial to the success of their web applications.

A few years ago, Java EE compatibility was still very much something that was being
worked on by the server vendors. This was especially true when the specifications were still
maturing. Fortunately, this situation has improved considerably and now most web applica-
tions will run as is on any Java EE-compatible server. However, if you’re building products,
then there’s still some mileage in testing that your web application does function as expected
on some of the various implementations available. For example, small bugs in one vendor’s
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implementation may stop your application from working completely. Other times, you may
have been unknowingly relying on a specific implementation feature or just the way that a
specification point has been implemented. As an example, the Tomcat team has recently
changed some of the default security settings related to the way that servlets could be called
directly through the servlet dispatcher. When upgrading to a newer version of Tomcat, many
developers found that their web applications no longer worked because they had used this
method of calling servlets within their JSP pages.

We were involved on a project in which we were responsible for the web tier of an enter-
prise application for a large investment bank. The licenses for the application server our
team was using, BEA WebLogic, hadn’t yet arrived, so we started building the web tier with
Tomcat. When the licenses finally did arrive, we literally had to port some of the code
between the servers because of incompatibilities in how the JSP/Servlet specifications had
been implemented between the vendors. Thankfully, the implementations have matured a
great deal and most code can be run as is on different Java EE servers.

The moral of the story is that it’s beneficial to run your web applications on other Java
EE–compatible servers, even if you aren’t planning to use one from another vendor. For
anybody building commercial products based on Java EE, Sun has a verification program con-
sisting of a compatibility-testing suite that can test whether your application makes correct
and standard use of the APIs provided by the Java EE specification. See http://java.sun.com/
j2ee/verified/avk_enterprise.html for more details.

Security
Although we covered security in Chapter 12, there are some security best practices worth
recapping within the context of this chapter about web-application design and best practices.

Using the Standard Security Model
Try to use the standard security model if possible. Many web applications use their own custom
security model for authentication and authorization. Although this is sometimes necessary,
perhaps because the standard model doesn’t meet your requirements, many web applications
don’t even integrate with the standard security model. Apart from using the available technol-
ogy, there are many reasons for using the standard security model.

The first of these reasons is related to how secure your web application is. Without the
standard security model, every JSP page, servlet, and resource underneath your web applica-
tion root is effectively public. When using bespoke frameworks, generally developers must
insert scriptlet code into the top of their JSP pages that determines whether the request
should be allowed or denied, perhaps by using the value of a session variable that indicates
whether the user has logged in. But what happens if this code is omitted and users who aren’t
logged in are able to access those resources?

One of the projects that we provided some consultancy for implemented their own secu-
rity model. Although the authorization of resources was complex, the actual authentication of
users was nothing unusual. Rather than adopting the standard model, a bespoke solution was
implemented for both authentication and authorization throughout the entire system. The
system itself was built mostly around an MVC architecture, although parts were simply page
centric. Therefore, and to ensure security, a custom tag was built to be inserted at the top of
every page in order to determine whether the current user should be able to see the contents
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of the page. Although this works, and as we found by reviewing the application, there were
pages where this custom tag hadn’t been inserted and pages were left unsecured. Probably 
the worst of these was a page that allowed anybody to get a report of all the data within the
system. Had the standard security model been used, every single JSP page could have easily
been restricted to only authenticated users.

Not only does using the standard security model simplify the design of web applications,
but it also really does provide an additional level of confidence in the security of your web
applications.

Securing View Components
Even if your web application doesn’t require security in the sense of users logging in and
authenticating themselves, there’s still a need for ensuring that your application is secure and
will work only as expected. For example, take an MVC-based web application. Typically, a
request is serviced by the controller component, which in turn gets forwarded to a view com-
ponent for presenting information back to the user. If the view components were simple JSP
pages, what would happen if the user found out the name and location of that JSP page and
tried to access it directly? In many cases, they would probably get a page containing no infor-
mation or a nasty stack trace. Perhaps your JSP pages contain code that has other side effects
on the system. If you’re authenticating users, perhaps they’ll be able to see somebody else’s
information because their request hasn’t gone through the controller.

To get around this potential problem, one solution is to ensure that the view components
(the JSP pages) are subjected to the standard security model. For example, if all the view com-
ponents are placed within a directory called view-components, you can place the following
code in the web.xml file to disallow all direct access:

<security-constraint>
<web-resource-collection>
<web-resource-name>No direct access</web-resource-name>
<url-pattern>/view-components/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>some-nonexistent-role</role-name>

</auth-constraint>
</security-constraint>

This code specifies that anything under that directory can be accessed only by users in
the specified role. Therefore, if you don’t map that role to any users, nobody can directly
access the pages. Of course, the controller component can still forward to the JSP pages
because it isn’t subject to the same rules. Similarly, another option is to place all view compo-
nents underneath the WEB-INF directory of your web application, which by definition doesn’t
have direct access. Either way, securing your view components can make your web applica-
tion more secure and more resilient.

Troubleshooting
A number of common problems can occur in JSP- and servlet-based applications. In this sec-
tion, we’ll review some of these problems and provide quick pointers to help you debug them.
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The Servlet Engine Runs Out of Memory
If the servlet engine or application server stops responding to requests and you find
OutOfMemoryError messages in the log files, chances are that your application has consumed
all available memory. This could be the result of a memory leak in the application code. Per-
haps the application is holding references to a large number of objects and thus preventing
them from being garbage collected. If this is the case, you’ll need to resort to careful code
reviews to understand where the problem is occurring. Some application servers provide a
workaround for this problem: a feature called server recycling, whereby idle servlet engines
are periodically restarted. Restarting a JVM is a sure way to clean up leaked objects.

Even if there isn’t a memory leak in the code, it’s still possible to run out of memory. Typi-
cally, a session object is created for each concurrent user of a JSP application. Session objects
consume memory, and memory is a limited resource. Therefore, too many concurrent users
can cause the servlet engine to run out of memory. When the server runs out of memory, it will
need to be restarted. One way to address this problem is to configure the servlet engine for a
shorter timeout period. Setting a shorter session timeout usually results in fewer concurrent
sessions and lessens the chances of running out of memory. Other solutions to this problem
are as follows:

• Add more memory so that each server can support more users.

• Add more application server instances to handle a larger total number of users.

• Keep the number and size of objects stored in the session to a minimum.

In addition to these solutions, if you have a completely stateless application, you can tell
the container not to use sessions with the following JSP page directive and save yourself a
great deal of memory:

<%@ page session="false" %>

The memory debugging tools built into commercial performance-tuning products such
as Borland’s Optimizeit (http://www.borland.com/optimizeit) and Quest Software’s JProbe
(http://www.quest.com/jprobe/) can be helpful in tracking down memory leaks, although
such tools are moderately expensive. When you’re running an application under one of these
tools, you can pause the application and examine memory usage statistics for each class of
object in memory, list methods responsible for largest number of object allocations, and
determine where the objects currently in memory were allocated.

The Database Connections Are Exhausted
If an application starts behaving strangely, emitting database connections exhausted or
cannot obtain database connection errors, then it has consumed all database connections.
The cause may be a database connection leak, meaning that database connections aren’t
being properly released after use. If the application is using database connection pooling, you
may be able to turn on features of the connection pool so that you can locate the misbehaving
code that’s taking but not giving back connections. Failing this, careful code reviews and log
files are probably the only options.
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Even if an application isn’t leaking database connections, it can still exhaust your connec-
tions. When using database connection pooling, you might be able to solve this problem by
simply configuring the database connection pool to allow a larger number of maximum con-
nections. If that doesn’t work, talk to a database administrator about increasing the number 
of database connections allowed on the database server.

The Servlet Engine Stops Responding
If the servlet engine or application server stops responding to HTTP requests and there are no
instances of OutOfMemoryError messages in the log files, there are two other possible causes of
this problem:

• There’s a thread deadlock. Deadlock occurs in a multithreaded JSP when two or more
threads can’t continue because each is waiting on a lock held by the other.

• There’s an infinite loop in application code. An infinite loop condition occurs when a
thread becomes trapped in an improperly programmed for, while, or do loop.

Locating the exact location of the cause of the problem can be difficult. Usually, careful
code reviews and examination of log files are the only options. This is one situation in which
detailed debug logs can be very helpful.

You Get a ClassCastException
Servlet engines use special class loaders to isolate web applications from each other and from
the classes used internally by the servlet engine itself. These class loaders can cause problems
that often appear to be incomprehensible. For example, you might get a ClassCastException
that complains that you have incompatible versions of the same class. Often, these types of
problems are caused when JARs that conflict with the JARs provided by the servlet engine are
placed into the application’s WEB-INF\lib directory, although in theory the class-loading
mechanism should take care of this for you. Alternatively, redeploying your applications can
also make this problem occur. Behind the scenes, although the web application reloads all of
the classes, if you have references to objects residing in the session (and use the same browser
instance), when the JSP container tries to cast these existing objects with the old class defini-
tion into the new definition, it will fail, throwing a ClassCastException. Simply restarting the
container will solve the majority of such problems.

The Page Runs Too Slowly
If a JSP page or a servlet is running too slowly, and the performance techniques described in this
chapter haven’t uncovered the cause of the problem, then try a profiler. A profiler will produce a
report on the amount of time spent in each method of your application, allowing you to narrow
your search for the cause of the performance problem. The commercial performance-tuning
tools that we discussed earlier, Optimizeit and JProbe, include profilers. Also, under develop-
ment at the time of this writing is a profiling plug-in called the Eclipse Profiler, for the Eclipse
IDE. You can follow the progress of this project at http://eclipsecolorer.sourceforge.net/
index_profiler.html.
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Debugging
Debugging is often the most difficult and frustrating aspect of programming. JSP- and servlet-
based applications are often rather complex and therefore especially difficult to debug. Why
are JSP applications so complex? Here are a few reasons:

• JSP applications are distributed: When deployed in a production environment, a JSP
application can involve multiple distributed systems, including load-balancing routers,
web servers, application servers, databases, and other back-end systems.

• JSP applications include a mixture of different programming languages: JSP applica-
tions can include HTML, JavaScript, Java code, SQL, XML, and other programming and
markup languages. When you read a JSP page, it’s often difficult to follow which parts of
the page are executed on the server and which are executed on the client.

• JSP applications run in a multithreaded environment: JSP applications need to be
thread-safe to achieve the best performance. Threading is a complex and confusing
topic for many programmers, and threading problems can be difficult to debug.

• JSP applications include many components: A JSP application’s technology stack
typically includes a servlet engine, a JSP compiler, an MVC framework, a persistence
framework, a JDBC driver, a database, and other back-end systems. 

Learning how to solve problems in complex, distributed, and multithreaded programs
takes time and often requires a lot of deep thought, so be prepared to think. If a particularly
difficult problem arises, get some sleep and then think some more. Explain the problem to
another, more experienced programmer. If no one is available, explain it to that plastic
dinosaur sitting on top of your monitor. Often, simply explaining a problem in detail can
spark the thought that leads to a solution.

If you can figure out how to explain your problem in simple terms, or you can isolate the
problem in a simple code example, you might be able to get some help from a newsgroup,
mailing list, or other online forum. Before you post a message to one of these forums, you
should read the previous postings in the forum archive to see whether your problem or ques-
tion has been asked before. Using a search engine such as Google may also be helpful for
some problems.

Logging
Logging is a best practice for any JSP application and is supported by the servlet API, applica-
tion servers, and a wide variety of logging tools. There are many ways to perform logging, from
using simple System.out.println() statements to using a full-featured logging API.

Logging with the Servlet API
The Servlet API includes logging methods in the javax.servlet.ServletContext interface. The
ServletContext interface’s log() methods make it easy to write log messages and exception
stack traces to your application server’s logging system. The advantages of using the servlet
API’s built-in logging methods are as follows:
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• Log messages are automatically prefixed with a timestamp string and written to log
files. This means that you can access them after they scroll off the console and after the
server is shut down.

• The application server manages log files and ensures that they never grow too big and
consume all the disk space.

• Application servers generally provide an administration program so that you can easily
view and search log files even if they’re written to multiple remote servers.

All of this sounds good but, in fact, the servlet API provides only minimal support for
logging. You can log a string message and you can log an exception. However, if you want to
enable and disable logging, you need to add configuration properties and implement the con-
ditional logic by adding a parameter to the web.xml file, for example. However, implementing
your own ad hoc logging as shown previously isn’t the best approach. There are many advan-
tages to be had from instead using a full-featured logging system such as log4j or the Java
logging API.

Full-Featured Logging Systems
A full-featured logging system, such as the open-source log4j framework (http://logging.
apache.org/log4j/docs/), offers several advantages over using System.out.println() calls or
using the logging methods in the Servlet API:

• Control over logging levels: You can log messages at different severity levels. For exam-
ple, log4j supports log levels of DEBUG, INFO, WARN, ERROR, and FATAL (listed in order of
increasing severity). When you set a log level, the system will output messages for that
log level and for all log levels above that. So, for example, the INFO-level logging will
include messages at the INFO, WARN, ERROR, and FATAL levels. By simply changing a config-
uration parameter in the log4j properties file, you can enable DEBUG-level logging to help
you debug a problem. When you’ve found and fixed the problem, you can set the log
level back to ERROR so that only ERROR and FATAL log messages are recorded in the logs.

• Multiple loggers: You can use different logical loggers in different parts of your
application. For example, you might use one logger named com.mydomain.ui in the
presentation tier and another logger named com.mydomain.db in the data-access tier.
This allows you to control the log level in only the part of the application that’s experi-
encing a bug.

• Multiple log destinations: You can configure logging systems to send log messages to
files, operating system logs, databases, message queues, remote systems via TCP/IP,
and other destinations. This can be helpful in production in which an application may
be running in a heterogeneous and distributed environment.

• Better management of log files: Log files can grow to large sizes very quickly, especially
when DEBUG-level logging is enabled. You can configure a logging system to start a new
log when the current log file grows too large. You can configure the logging system to
delete or archive old log files so that your disk space isn’t consumed.

• Control over log formatting: You can configure the format of the log messages pro-
duced by the logging system to suit specific needs.
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Java now includes its own logging API under the java.util.logging package. This new log-
ging API is a welcome addition to Java and is similar to the log4j API in many ways, but it isn’t as
powerful and flexible as log4j. For example, log4j can direct log messages to Unix system logs,
the Microsoft Windows event log, Java Message Service (JMS) message queues, and e-mail. The
Java logging API can log only to the console, files, and sockets. As in many aspects of develop-
ment, people become attached to their favorite logging framework and this is often a problem
when deciding which one to use. Also, there are some technical reasons for choosing one over
another. Perhaps you need the functionality available in a specific API, or perhaps your Java EE
server ships with log4j. Either way, to ensure that you retain the ability to freely switch between
the two, Jakarta Commons Logging provides a solution.

Jakarta Commons Logging
Jakarta Commons Logging (JCL, at http://jakarta.apache.org/commons/logging/) is a thin
wrapper around both log4j and J2SE 1.4 logging, with the sole purpose of providing a common
interface between the two. With the Commons Logging JAR file in your CLASSPATH, the frame-
work will automatically locate either of the two logging frameworks and use whichever one 
it finds in your CLASSPATH. It will first look for log4j and, if it doesn’t find log4j, it will check
whether J2SE 1.4 logging is available. This is a simple trick, but it really works well. If you need
to use log4j in your application, just make sure it’s in the CLASSPATH.

Regardless of which logging framework you use, actually using JCL is easy, as demon-
strated by the following code snippet:

Log log = LogFactory.getLog(MyClass.class);

Following this, and with the log initialized, you can write messages at the various levels
with the following method calls:

log.fatal("Here is some useful information!");
log.error("Here is some useful information!");
log.warn("Here is some useful information!");
log.info("Here is some useful information!");
log.debug("Here is some useful information!");
log.trace("Here is some useful information!");

Like the framework that it ultimately delegates to, JCL has various levels of severity that
map to those used by the underlying logging framework. If you need more control, perhaps
JCL isn’t for you. For many people, the sacrifice in control can easily be negated by the sim-
plicity that JCL provides.

Jakarta Commons Logging has worked well on the projects we’ve used it on, and this is
especially true for our open-source work. After all, you can never tell which logging library
your users might prefer, or perhaps their Java EE server ships with log4j or isn’t supported on
J2SE 1.4. JCL gives you that extra degree of flexibility.

General Guidelines
To wrap up this chapter, you’ll look at some general guidelines for building web applications.
Although these guidelines aren’t specifically related to design, they can be just as important
for building a successful website.
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Error Reporting
One of the things that we as developers like to see when errors happen are stack traces. 
After all, they’re useful for tracking down the source and cause of a problem. Users, on the
other hand, probably don’t want to see them; they certainly don’t add anything to the user
experience.

Seeing stack traces or other forms of technical error messages on websites tends to put
me off from returning to that site. For example, one particular e-commerce site that I visit reg-
ularly presents me with messages about how some Visual Basic component can’t connect to
their database. Though I don’t confess to know anything about Visual Basic, seeing such mes-
sages does make me think twice about ordering from that site.

Unfortunately, even with the most tested of websites, errors will happen and therefore the
JSP specification provides JSP error pages. You already saw these in Chapter 2 and, to recap,
they’re just pages that get forwarded to when an uncaught exception is encountered by the
container. Setting your web application up to use these is a great way to ensure that you have
a standard way to handle errors and that the user doesn’t end up seeing a nasty stack trace in
the process.

On a related note, another recommendation is to use a consistent exception-handling
strategy and make sure that you handle and log all exceptions. This will help you to understand
what went wrong and where it went wrong when an error occurs. Use the exception-handling
facilities built into JSP where appropriate—they’re there to help you. If you’re using an MVC
framework such as Struts, take advantage of its exception-handling facilities as well.

I18n and l10n
Internationalization (I18n) and localization (l10n) are built into the Java platform, and there’s
nothing stopping you from using them within web applications, particularly if you intend to
reach an international audience. Typically, and especially with public websites, a lot of effort is
put into making the site both function correctly and look good. However, often little work is
put into maximizing the appeal for international audiences. After all, the Internet is a global
network and you can never tell exactly who will be using your site.

Putting in such features doesn’t have to be a massive job, with tools such as JSTL support-
ing most of the functionality required to internationalize and localize a web application. For
example, this can range from simply localizing dates and times to providing internationalized
text and/or content. The overriding guideline here is to think about your audience.

Adopting New Technologies and Standards
The Web has changed a great deal over the past few years, and some web applications have
kept up with the changes better than others. Although there’s an argument for not always
adopting the latest and greatest technologies, there’s a fine line between adopting those fea-
tures that make most sense and never adopting at all. With technologies changing on almost
a monthly basis, this provides an opportunity to try out new technologies and standards on
every new web application that you work on. Most web developers have now taken up stan-
dards such as cascading style sheets (CSS), but you won’t find many sites (relatively speaking)
that use newer standards such as XHTML. This does have much to do with the expense of
keeping existing sites up-to-date, but when you start a new web application, take a look

CHAPTER 14 ■ WEB-APPLICATION DESIGN AND BEST PRACTICES 567

513-0 ch14.qxd  11/17/05  8:44 PM  Page 567



around to see what’s happening within the industry and use this to figure out if there are 
any new technologies or standards that can help you achieve your goals.

One of the projects that we worked on involved helping a team inside a client company
build a web application for internal use. The system itself was replacing a “green screen” appli-
cation, and this was the first time that the team had used Java, let alone built web applications.
Although the first prototype of the system was functional, the user interface closely resembled
that found on the original mainframe application. After just a day or so playing with the view
components in conjunction with the team, we came up with something that matched the com-
pany’s corporate image and was much closer to the sort of web applications that you find on
the Internet. We showed them CSS and guided them through how some of the most popular
websites on the Internet work. The result? Not only did the application look and feel much bet-
ter, but also the business sponsors and users of the system suddenly became much more
enthusiastic about the project. It’s amazing what a little HTML and CSS can do!

To sum up, let your previous experiences of building web applications help you, but don’t
let them limit you.

Adopting Existing Components
The final guideline worth talking about is the use of third-party components, particularly
those that are open source. In the past couple of years, the open-source community has really
moved on in terms of adoption and the sheer number of projects that are currently being
undertaken. A quick look at websites such as the Jakarta Project (http://jakarta.apache.org),
SourceForge (http://sourceforge.net), and java.net (http://java.net) confirms this. With
project budgets and timescales decreasing, there’s an opportunity here to take much of what
has been built and use it in your own projects.

As I mentioned earlier in the chapter, I decided to build a blogging system implemented as
a Java-based web application. In building the application, I used several open-source projects,
including Jakarta Commons Logging and log4j for logging, Jakarta Commons FileUpload for
uploading files to the website, Apache XML-RPC for accessing web services, and Lucene to pro-
vide a search facility for users. Implementing all these features myself would have taken an
incredibly long time. As it was, each of these open-source tools took a maximum of a few hours
to integrate, meaning that I could concentrate on the real purpose of the web application.

Let’s take a quick look at some popular open-source tools currently available.

Jakarta Commons
Jakarta Commons (http://jakarta.apache.org/commons/) is an umbrella project for all sorts 
of common functionality that developers build over and over again. You’ve already seen one
component (Jakarta Commons Logging). Others include a servlet-based file upload compo-
nent, an object pool implementation, an expression language, JavaBean utilities, and much,
much more. This is an incredibly useful project, and new components and features are being
added to it all the time.

Lucene
Lucene (http://lucene.apache.org/) is an open-source implementation of a complete search
engine. It’s held in high regard throughout the Java open-source community because it’s so
robust, full-featured, and fast. The API is easy to pick up, and in just a few lines of code you
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can create an index for your data. Similarly, just a few lines are required to actually search that
index. If you’re looking to integrate a search facility on your website, look no further than
Lucene. 

Summary
This chapter covered several topics related to web-application design and best practices, bring-
ing together many of the topics you explored in the previous chapters. First, we discussed why
design is important and we recapped the two major architectures for building web applica-
tions: page-centric (Model 1) and Model-View-Controller (Model 2). Then we showed how
design patterns can help you design your application and described how some of the Java EE
patterns can be used to build web applications based on the MVC architecture. These patterns
included the following:

• Front controller

• View

• View Helper

• Service to Worker

• Filter

We then moved on to discuss some third-party frameworks such as Struts, WebWork, and
Velocity.

After this, we showed how testing is an important part of web-application development
and introduced unit testing and functional (or acceptance) testing. Automated testing has
now really taken off with regard to web applications, and to illustrate this we discussed some
of the testing tools that are now available. We then related testing back to the design aspects
we presented earlier in the chapter by showing how the design of a web application can affect
the ability to test it.

Finally, we covered some implementation topics, including logging, troubleshooting, and
some general guidelines for building web applications.
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Using Struts, XDoclet,
and Other Tools

You can see from the previous chapters that there are many options for building a web appli-
cation. If you develop a web application from scratch, you’ll be a stronger programmer for it,
but it’ll (most likely) be a long and laborious process. In this chapter, we’ll describe the tools to
use for web development, and how to use them in developing this chapter’s résumé-building
application. By sharing our experiences and knowledge, hopefully you won’t have to endure
the same painful memorize-learn-develop progression that we’ve been through. To prepare
you for the vast array of subjects in this chapter, let’s first take a look at the various open-source
tools and technologies that we’ll be covering:

• Ant: A Java-based build tool for rapid compiling, deploying, and testing Java-based
applications.

• XDoclet: A code-generation engine for creating Java classes and deployment descrip-
tors. It requires the user to add @tags to Javadoc statements and produces files via Ant.

• Struts: A web application framework using a servlet-based Model-View-Controller
(MVC) architecture.

• Validator: A validation framework integrated with Struts. Supports both client
(JavaScript) and server-side validation.

• Tiles: A JSP-based templating framework integrated with Struts.

• JUnit: A Java-based regression-testing framework.

• Cactus: A Java-based testing framework for testing web applications.

• StrutsTestCase: An extension of Cactus for testing Struts’s Action classes.

You were introduced to Struts in the previous chapter, and you might well have seen refer-
ences to it scattered throughout the whole book. This is because since version 1.0 was released
in June of 2001, it has gained wide acceptance and praise in the Java community. At the time of
this writing, Struts is at version 1.2.7 and going strong.

The big advantage of using Struts to underpin your web applications is that it provides a
set of ready-made services, and encourages you to structure your applications according to
published standards and proven design patterns, which will make your applications highly
extensible, flexible, and maintainable.
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However, in this chapter we aren’t going to teach you Struts from scratch: There are a lot
of good books out there that teach you the basics of using Struts from scratch in far more
depth than we could in one chapter! If you want a great Struts kickstart tutorial for free (and
who doesn’t want something great for free?!), check out the resources on Ted Husted’s Struts
website (http://husted.com/struts/).

Instead, in this chapter, we’re going to assume that you have a basic understanding of how
to use Struts, and focus upon enhancing Struts-based development through the use of third-
party tools (including Ant, XDoclet, Validator, Tiles, StrutsGen, Struts Menu, Struts Console,
Easy Struts, Hibernate, and StrutsTestCase). The idea is to show you how to use these tools to
create your Struts-based applications more quickly, easily, and cost effectively. To do this, you’ll
use them to create an example application that can build and view résumés.

■Note We don’t have space to cover it here, but another third-party tool that you might find useful for
Struts development is Struts Builder, a Java Swing-based development environment to assist in the rapid
creation of Struts-based Web applications. It can be found at http://sourceforge.net/projects/
rivernorth/.

Through the course of the chapter, you’ll learn how XDoclet can generate the web.xml
deployment descriptor and the struts-config.xml file. We’ll also discuss the IDE tools for
Struts, exception handling, built-in actions, modules, DynaFormBeans, and Struts tags (includ-
ing the JSTL and JSP 2.1). We’ll be using JSP pages for a view layer, because that is what we’re
familiar with (and this book is about JSP after all!). We’ll also touch on good practices using
XHTML and cascading style sheets (CSS).

However, let’s start with a lightning-quick refresher on the Struts architecture.

Struts Refresher
A web framework provides a set of services that can be used and reused across many different
web applications. Struts is an open-source web framework that is based upon the tried-and-
trusted MVC design pattern. Its core is made up of Java servlets, JavaBeans, resource bundles,
XML, and tag libraries.

Struts provides the following services:

• A controller servlet

• Ready-made tag libraries

• A framework for internationalizing messages

• A generic error and exception-handling mechanism

• XML parsing

• File upload and logging utilities

CHAPTER 15 ■ USING STRUTS, XDOCLET, AND OTHER TOOLS572

513-0 ch15.qxd  11/14/05  5:38 PM  Page 572



Craig McClanahan originally wrote the Struts framework, mostly while on his Memorial
Day vacation in 2000! The framework was subsequently donated by Craig to the Apache Soft-
ware Foundation. The fact that it was mostly written in one weekend should suggest to you
that it’s a very simple framework. In our experience, not only is it simple, but it’s also easy to
work with once you get to know it.

■Note If you’d like to read more about the web application frameworks, one of the best places to start is
Craig McClanahan’s blog at http://blogs.sun.com/roller/page/craigmcc.

You should also note that anything that can be done with JSP pages and servlets can still
be done with Struts. So you can still write regular servlets that extend HttpServlet in your
application or have JSP pages with whatever embedded scriplet code you want.

On the other hand, Struts does try to encourage certain better practices for coding web
applications, and it does make it easier to write and deploy them. For instance, when using
Struts, you don’t need to write a whole slew of request.getParameter() calls in your servlet to
get all your form’s values. Struts does this for you with an ActionForm, which handles the popu-
lation and grabbing of an HTML form’s values.

Struts Architecture
So how do these ActionForms fit into the overall Struts architecture? Figure 15-1 shows a
schematic of a simple Struts application in general.

Figure 15-1. This UML view of a Struts application shows how the primary components fit
together.

Let’s quickly review the features of this diagram.
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First, you can see that we’ve assumed that you’re using JSP pages for the view, and that
these are built using the Struts tag libraries. Each client request for the application to perform
a particular action is passed to the controller servlet (known as the ActionServlet), which dis-
patches to an Action class.

Each Action class extends org.apache.struts.action.Action. Every Action provides
application-specific implementation by overriding the execute() method. The business logic
needed to perform each action (process each type of request) is present in this corresponding
Action class in the execute() method. The Action classes represent the controller logic for
your application. They control which view elements are presented to the user. For instance, 
if an error occurs, the action is responsible for displaying errors on an input page.

There also may be a corresponding ActionForm JavaBean class for each action. The
ActionForm class extends org.apache.struts.action.ActionForm and overrides the validate()
method. Each ActionForm validates user data and can be used by the Action class to retrieve
user data. The ActionForm classes represent the data of the model. The model is your data and
the code you write to retrieve, save, or delete that data.

So, as you would expect from the controller, the ActionServlet provides the link between the
view and the Action and ActionForm model components. To do this it needs to map the request
data to the appropriate Action and ActionForm classes, depending upon the action requested
by the client. The correct mapping of request actions to Action and ActionForm classes is
defined in a configuration file, struts-config.xml (defined by http://struts.apache.org/dtds/
struts-config_1_2.dtd). This file defines a set of ActionMapping objects that each represents a
mapping of an action to the appropriate model classes. Therefore, the ActionServlet checks
this struts-config.xml file to find the appropriate mapping for the current request.

Finally, if the Action class processes the request correctly, it indicates to the ActionServlet
where the user should be forwarded to (usually a JSP page), by passing the ActionServlet an
ActionForward object.

For more in-depth information about the architecture and implementation of the Struts
framework, you can refer to the books and article referred to in the introduction to this chap-
ter, or try pointing your browser to the following links:

• http://jakarta.apache.org/struts/: Struts homepage (you can download the latest
version from here)

• http://struts.apache.org/userGuide/index.html: Struts user guide

As you may have spotted already, a big benefit of using Struts is that you implement many
proven Java EE design patterns without even knowing it. The Front Controller (ActionServlet
and Action), View Helper (Action), Composite View (the Tiles framework that we’ll discuss
later), Service to Worker (ActionServlet to actions), and Dispatcher View (ActionForward) are
all integrated into the Struts framework. From the book Core J2EE Patterns,1 these are all the
patterns mentioned in the “Presentation Tier Patterns” chapter, save the Intercepting Filter.
The only reason that Struts doesn’t incorporate the Intercepting Filter pattern is to maintain
backward compatibility with the Servlet 2.2 specification (and for Struts 2.0, there is talk of
replacing the ActionServlet with a filter).
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Struts Tag Libraries
Most Struts applications seem to use JSP pages for the view component of the application.
This is most likely due to the rich set of tag libraries that are available to Struts developers.
These tags make several things much easier. If you’ve ever developed a pure JSP or servlet
application, you’ll probably remember using JavaBeans, the <useBean> tag, or perhaps even
writing a lot of request.getParameter() calls. Struts basically eliminates this need and easily
populates forms using its controller and tag library architecture. Of course, other architec-
tures, such as Velocity and XML, can be used. But since we’ve never implemented them on a
project to date, we don’t feel it’s fair to comment on their usefulness.

■Note More information on using Velocity and XML or XSL for rendering your view can be found at
http://jakarta.apache.org/velocity/index.html.

At the time of this writing (Struts 1.2.7), there are six available tag libraries within the
Struts framework. These libraries are listed in Table 15-1, coupled with a high-level definition
of their function. 

Table 15-1. Struts Tag Libraries

Library Function

Bean tags Tags to interact with beans in any given scope. Uses include creating and render-
ing an ActionForm’s properties. Also used for internationalization with 
the <bean:message> tag. Many of these tags can be replaced with JSTL tags.

HTML tags Tags to render HTML elements on a form. Also contains helpful tags for render-
ing context-sensitive URLs. No replacement in the JSTL. Using regular HTML
tags and JSP 2.1 syntax may be easier though.

Logic tags Tags to perform logic such as checking for the presence of roles, iteration of bean
lists, and forward or redirects. Many of these tags can be replaced with JSTL tags.

Nested tags These tags extend the basic Struts tags mentioned earlier, but allow them to
relate to each other in a nested nature. No equivalent in the JSTL.

Tiles tags Tags to perform JSP “templating” of your site. Very useful for creating applica-
tions from small, reusable components. We’ll discuss this in more depth 
a little later.

Struts EL tags A subproject that was recently created to use the expression language evaluation
engine from the JSTL. Some of the Struts tags weren’t ported, as their functional-
ity already exists in JSTL.

The online API documentation for these tags is excellent (refer to the links available from
the Struts User Guide page at http://struts.apache.org/userGuide/index.html). Also, recent
books (as mentioned earlier) have done a terrific job of documenting these tags thoroughly.

One significant feature of the Struts HTML tags is the ability to render XHTML-compliant
tags. This means that if you add xhtml="true" to the top of your JSP or Tiles layout definition,
all HTML tags will be well-formed XML (that is, closed with an end tag or trailing />). To
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demonstrate, you can simply add the following tag to the top of a page, and then view the
source in your browser:

<html:html xhtml="true"/>

If you’re using JSP includes or Tiles, you’ll likely have to use the <html:xhtml /> tag at the
top of your included pages to force rendering XHTML syntax. At the time of this writing, only
XHTML 1.0 Transitional was supported as a DOCTYPE. This is because the name attribute is
still rendered on a form. XHTML 1.0 Strict requires that only an id attribute be present.

You can give your Struts tags any prefix you want when importing them into your JSP
pages. Let’s take, for instance, the contents of this file:

<%@ taglib uri="http://jakarta.apache.org/struts/tags-bean" prefix="bean" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-html" prefix="html" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-logic" prefix="logic" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-tiles" prefix="tiles" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

You may well have already seen this de facto standard for Struts prefixes. There’s really no
reason to use these verbose prefixes though, and you may rather use single-letter prefixes like
JSTL if you prefer, such as these:

<%@ taglib uri="http://jakarta.apache.org/struts/tags-bean" prefix="b" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-html" prefix="h" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-logic" prefix="l" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-tiles" prefix="t" %>

We’ve come to know and love a couple of additional tag libraries that make developing
web UIs a bit easier. The first is the display tag library (http://displaytag.sourceforge.net/)
originally authored by Ed Hill, which facilitates column sorting and pagination of data and inte-
grates nicely with Struts. All you need to do is create a List (or other collection) of ActionForms
and pass those to the tag in the JSP. This tag library also supports exporting your table’s data to
Excel, CSV, and XML.

The second is the Struts menu tag library. This component is a Menu framework that 
can be used to declare your menu items in an XML file. It integrates with Struts as a plug-in,
supports popular menu styles (for instance, CoolMenus and standards-compliant DHTML
menus), and allows for hiding and showing menus and items based on roles. Currently, it sup-
ports absolute and context-relative links, as well as Struts forwards.

Both of these tag libraries are used in this chapter’s application.
To reference the Struts tag libraries, you simply drop the struts.jar file into /WEB-INF/lib

and match the URIs as specified in each library’s tag descriptor (TLD) file. We’ve seen that some
servlet containers require you to declare the location of your TLD in web.xml. This is also neces-
sary if your TLD file doesn’t declare a URI to map to. In our example struts-resume application,
struts-resume.tld and struts-menu.tld require entries in web.xml for this reason.

JSP 2.1 helps keep the code concise by allowing a JavaBean’s properties to be accessed
directly in a JSP page. Previously, you had to use <c:out value="${beanName.propertyName}"/>,
while now, JSP 2.1 lets you simply use ${beanName.propertyName}. We expect JSTL-type syntax
to be around for a while, as will the Struts tags, if only for backward compatibility.
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Overview of the Example struts-resume
Application
The struts-resume application we’re going to use as an example throughout this chapter uses
Ant (an open-source build tool) and XDoclet (an open-source code generation too) as its core
engines. They will generate a significant portion of the application for you as well as run any
JUnit and Cactus tests you may have.

Screen Flow and Requirements
Let’s explore the project’s initial requirements and screen flow. The nice thing about this appli-
cation is that we’re our own customers, because we want to develop a better way to publish
our résumés online. However, we’re not the only people who will use this application, and
therefore we’re going to include administrator and user roles.

We’re looking for a web-based system that supports the traditional résumé sections: 
user contact information, summary, objective, skill categories, skills, education, training, and
extracurricular activities. Although we haven’t completed all of these sections at the time of
this writing, this is what we want the application to grow into. We want to be able to render
our résumés in XML and use XSL to produce HTML, text, Word’s rich text format, and PDF
files. To demonstrate roles and security, we’ll make this a multiuser system in which there are
administrators and users. Administrators can see and do everything, while users can only view
or change their own résumé. Figure 15-2 shows the application flow.

Figure 15-2. From the main menu of the résumé application, you can upload, create, edit, and
view a résumé.

After users have signed in, they may choose to create, edit, view, and upload résumés.
They can also edit their user details. Let’s take a look at what each screen looks like by taking a
quick walk through the application.

When you first access the application, you’re presented with the Login page, as shown in
Figure 15-3.

Login Main
Menu

Upload
Resume

View
Resume

Edit
Resume

Edit
Profile

Create
Resume
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Figure 15-3. The login page is the entry point to the résumé application.

Filling in the appropriate username and password and clicking Login invokes the Main
Menu page (Figure 15-4), the jumping-off point for the other pages.

Figure 15-4. The main menu page provides access to the functions of the application.
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If you click the View Resume link, you’ll see the View Resumes page, shown in Figure 15-5.

Figure 15-5. The View Resumes page shows the user’s résumé.

This page allows you to view your résumé. This page has links for editing your résumé 
or editing your profile. Try clicking the Edit Resume link, and you’ll see the page shown in
Figure 15-6.

Figure 15-6. When you click the Edit Resume link, you are directed to the Edit Resume page.
xisting résumés.
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Finally, go back to the Main Menu page. You’ll see that there are various other options on
this page. First, there are two links in the middle of the page: Edit Profile and Edit Resume.
Edit Profile allows you to change your user profile, including your login name, password,
and contact details (see Figure 15-7). Edit Resume allows you to edit your résumé. At the top 
of the page are various other links; the purpose of each should be obvious.

Figure 15-7. The Edit Profile page allows you to modify your profile.

Directory Structure
To familiarize you with struts-resume’s architecture, we’ll start with the directory structure
shown in Figure 15-8.

■Note The code for struts-resume can also be downloaded from http://raibledesigns.com/
wiki/Wiki.jsp?page=Downloads. A CVS version is available at http://sourceforge.net/projects/
struts. A README.txt file is provided with the code download that gives full application deployment
instructions.
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Figure 15-8. The directory structure for the résumé application development (not deployment)

Let’s go over what each file in the root directory is used for and what’s in each subdirectory.
The app-settings.xml file allows you to easily customize your application. The Ant tool

allows you to set properties from the command line using the -DpropertyName=propertyValue
syntax. We separated these properties out of the main build file for readability. The main Ant build
script, build.xml, at execution time includes this app-settings.xml file. The build.properties
file contains application name settings and build directory settings. The database.properties
file allows you to configure which database you want to talk to through Hibernate. Most data-
bases are supported.

The lib directory contains all the third-party libraries (JARs) used by the project. We use
several large third-party libraries, therefore this directory weighs in at approximately 11 MB.
XDoclet, Cactus, Struts, and other libraries are contained in this directory. A lib.properties
file within this directory will allow you to change version numbers for packages.

The metadata directory has a web subdirectory containing XML files that together make up
web.xml and struts-config.xml. This is known as the merge directory in XDoclet terminology.
If you were to add EJBs to this project, you could place any relevant XML fragments inside a
new directory.

The properties.xml file loads all .properties files and environment variables. It then
uses these values to set class path properties, database properties, and Tomcat deployment
properties.

The src directory is (obviously) where all Java source files are kept. There are three direc-
tories underneath it: common, ejb, and web. Also, it makes sense to have an ejb directory for the
persistence layer, because this makes the directory layout extensible for the future. XDoclet is
used to generate a ValidatorForm, and the Hibernate Mapping XML file from a plain old Java
object (POJO). The ValidatorForm is further marked up with @struts.validator XDoclet tags
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and used to generate a validation.xml file. The reason we’ve done it this way is because it
allows new columns to be added to our tables easily. On our last project, we used validator
forms, value objects, and DAOs, and if we added a new column to a table, we had to add get-
ters and setters in two places (on the form and the POJO) and also change the SQL in the DAO.
Using XDoclet and Hibernate eliminates this headache—especially since Hibernate generates
a schema and can build your database for you. We’ve written a db-create Ant task to perform
this table creation for you automatically.

The tools directory contains the StrutsGen tool written by Erik Hatcher. This tool uses Ant
and XDoclet to generate a skeleton JSP and an associated properties file from an ActionForm,
greatly speeding up application development.

The web directory contains all web-related files: images, JavaScript files, CSS files, proper-
ties files, and XML configuration files. It contains separate directories for most of these and
also a WEB-INF/classes directory. The JSP files in the pages directory are copied to WEB-INF at
deployment time.

■Tip By the way, this application was created using AppFuse (http://raibledesigns.com/wiki/
Wiki.jsp?page=Downloads) as a baseline, and we recommend that you use it too when you develop your
own Struts-based applications. It already has a directory layout built, a build script for compiling, testing,
and deploying, and XDoclet fragments for generating your XML files. After downloading, simply execute ant 
new -Dapp.name=yourAppName -Ddb.name=yourDBName. Feel free to remove those files you don’t find
necessary.

Struts Development Techniques and Tools
Now that we’ve reminded you of the architecture of a typical Struts application and provided
an overview of an example struts-resume application, let’s review some techniques, tools, and
frameworks that you may not be aware of, which can enhance or speed up your Struts appli-
cation development. We’ll focus on Struts version 1.2 and mainly on its advanced features.

Struts has many great features, extensions, and plug-ins available for developers. Some 
of these plug-ins can seem intimidating at first, because they’re very powerful and extremely
configurable. When we first discovered some of them, we asked ourselves, “Who ordered the
kitchen sink?” However, there’s nothing wrong with using just a small piece of them if that’s all
you need.

We’ll start off by looking at two open-source tools you can use to build and generate code
respectively: Ant and XDoclet. Then we’ll work through a series of techniques or tools you can
use as you write code.

Using Ant to Build Struts Applications
Apache Ant (available from http://ant.apache.org/) is a powerful Java-based build tool.
Using Ant will make your compile, assemble, or deploy process much easier.

Ant is by far our favorite tool to use with Struts and Java as a whole. Yet we’ve met too
many developers who either haven’t heard of it or aren’t using it. JavaWorld’s readers voted it
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the “Most Useful Java Community-Developed Technology” of 2002. Also, in 2003, it won the
JavaPro Readers’ Choice Award for “Most Valuable Java Deployment Technology.” In 2003 and
2004, it won the Java Developer’s Journal Editors’ Choice Award. Finally, in 2003, it won the
JavaWorld Editors’ Choice Award for “Most Useful Java Community-Developed Technology.”
It won’t surprise us if it continues to win awards in the future. We used to be trapped within
the confines of an IDE to compile our code, and now that we use Ant, we feel like we’ve been
set free.

Ant is basically a technology that, at its very core, compiles your .java files into .class
files using a build file (commonly named build.xml). Using Ant, it’s much easier to configure
your class path for compiling files, as illustrated by the following example:

<!-- Set a path reference that points to all Struts' JAR files -->
<path id="web.compile.classpath">
<fileset dir="/lib/jakarta-struts-1.1" includes="*.jar"/>

</path>
<target name="compile" description="compiles .java files into .class files">
<mkdir dir="${build.dir}/web/classes"/>
<javac srcdir="src/web"

destdir="${build.dir}/web/classes"
debug="false"
deprecation="true"
optimize="true"
classpathref="web.compile.classpath"

/>
</target>

The <path> element in the preceding snippet tells Ant to build a name-value pair with 
the name web.compile.classpath; the value is constructed as a list of all the JAR files in the
/lib/Jakarta-struts-1.1 directory. With a simple declarative statement, Ant creates the 
compile classpath for you.

For this chapter’s example application, version 1.5.1 (or higher) of Ant is required. After
downloading, you’ll need to extract it to a location on your hard drive (for example, c:\Tools\
jakarta-ant-1.5.1 on Windows or /usr/local/jakarta-ant-1.5.1 on Linux and Unix). After
extraction, you’ll need to set ANT_HOME as an environment variable that points to this extracted
location and also add $ANT_HOME/bin to your $PATH environment variable.

Ant Tasks
Executing ant -projecthelp will display the basic Ant tasks, but the following are ones you’ll
use most often:

• ant deploy: Generates and compiles everything, then deploys to Tomcat (if you have it
installed).

• ant compile-module: Where module is ejb, web, or common.

• ant ejbdoclet: Generates ValidatorForms and Hibernate’s XML-based mapping file.

• ant webdoclet: Generates web.xml, struts-config.xml, validation.xml, and the TLD.

CHAPTER 15 ■ USING STRUTS, XDOCLET, AND OTHER TOOLS 583

513-0 ch15.qxd  11/14/05  5:38 PM  Page 583



• ant test-module: Where module may have the same values as for the compile option
mentioned previously. This recursively runs all tests in the test/module directory. We
recommend using ant test-module -Dtestcase=ClassName, where ClassName is the name
of your test class.

• ant test-cactus -Dtestcase=ClassName: Starts Tomcat before tests are run and stops it
once they’re complete. Use ant test-web -Dtestcase=ClassName if Tomcat is already
running.

Many third-party libraries in struts-resume require that you define a task definition for
them to integrate with Ant. For instance, to use XDoclet to generate the Struts configuration
file struts-config.xml, you must define the "webdoclet" task:

<taskdef name="webdoclet"
classname="xdoclet.modules.web.WebDocletTask">

<classpath>
<path refid="xdoclet.classpath"/>
<path refid="web.compile.classpath"/>

</classpath>
</taskdef>

After defining this task, it can be used in your build.xml file, just like the <javac> task (see
the previous example) is used. You can see the available attributes for this task in the section
“Using XDoclet to Generate Configuration Files.”

Using Ant in the Example Application
Within struts-resume, Ant performs all of the following tasks:

• Generates Java code and XML files (via XDoclet)

• Builds (compiles) the entire source tree (.java files)

• Assembles the components into JAR and Web ARchive (WAR) files

• Deploys the WAR file to Tomcat

• Runs unit tests and in-container testing (via Cactus)

Ant is one of those technologies that we love because it just works. We’ve modeled the
build.xml file in the struts-resume application to fit with the Ant Best Practices recommended
by Erik Hatcher in his book Java Development with Ant.2 We’ve used much of his architecture
from his book’s sample application and exchanged quite a few e-mails with him about it. The
flexibility granted by having a test source-code directory (test/src) separate from the regular
source-code directory (src) makes it easy to exclude test classes from a production deployment.

Finally, to us Struts has been an extremely stable framework—even the nightly builds.
When you look at the Ant build file for your example application, you’ll see we’ve created it so
that you can easily switch versions of any third-party library, including Struts. All you need to
do is download and extract a new version into the lib directory and change the version num-
ber given in lib/lib.properties. This really makes it easy to test a new version of a library and
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see whether your application still works. You can also override library directories from the
command line using something like ant -Dstruts-dir=/ path/to/struts/jars.

Using XDoclet to Generate Configuration Files
XDoclet is a code-generation engine. It enables attribute-oriented programming for Java. 
In short, this means that you can add more significance to your code by adding metadata
(attributes) to your Java sources. This is done in special JavaDoc tags. XDoclet will parse your
source files and generate many artifacts such as XML descriptors and/or source code from it.
These files are generated from templates that use the information provided in the source
code and its Javadocs tags. At the time of this writing, XDoclet can only be used as part of a
build process utilizing Ant. Documentation and downloads for XDoclet are available from
http://xdoclet.sourceforge.net/.

For the build process, you’ll be using the power of Ant and XDoclet to generate the
deployment descriptor (web.xml), the Struts configuration file (struts-config.xml), and even
the form validation configuration file (validation.xml). To speed up the development process,
you’ll also use XDoclet to generate the Java code for the ValidatorForms from POJOs. Also,
you’ll generate Hibernate’s XML-based mapping files to map POJOs to database tables.

Wow, that sounds like we’re doing a lot doesn’t it?! The truth is that before we found XDoclet,
we were doing all of those activities manually, and it was a lot of work. Using XDoclet (which
depends on Ant) has made it much easier to create all of the required XML artifacts for a web
application and is a huge timesaver.

We like using XDoclet because we don’t need to worry about editing our XML files as
much when developing an application. It’s simply a case of adding some tags to a class (or
method) Javadoc, and then XDoclet generates these files for you. For example, we have the
following normal Javadoc code at the top of our UserAction class:

/**
* Implementation of <strong>Action</strong> that interacts with the {@link
* UserForm} to retrieve/persist values to the database.
*
* @author Matt Raible
* @version $Revision: 1.5 $ $Date: 2003/06/26 13:48:46 $
*
*/

By adding some XDoclet tags to this Javadoc header, you can generate the <action-mappings>
definition for the struts-config.xml file:

/**
* Implementation of <strong>Action</strong> that interacts with the {@link
* UserForm} and retrieves values. It interacts with the {@link
* BusinessManager} to retrieve/persist values to the database.
*
* @author Matt Raible
* @version $Revision: 1.5 $ $Date: 2003/06/26 13:48:46$
*
* @struts.action name="userForm" path="/editUser" scope="session"
*         validate="false" parameter="action" input="mainMenu"
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When processed by XDoclet, the @struts.action tag will be transformed into an <action>
element. In your Ant build file’s (build.xml) webdoclet task, you use the following XML to gen-
erate the struts-config.xml file:

<target name="webdoclet" description="Generate web and Struts descriptors">
<taskdef name="webdoclet"

classname="xdoclet.modules.web.WebDocletTask">
<classpath>
<path refid="xdoclet.classpath"/>
<path refid="web.compile.classpath"/>

</classpath>
</taskdef>
<webdoclet destdir="${webapp.target}/WEB-INF"

force="${xdoclet.force}"
mergedir="metadata/web"
excludedtags="@version,@author"
verbose="true">

<fileset dir="src/web"/>
<fileset dir="${build.dir}/web/gen"/>
<configParam name="cactusOn" value="${enable.cactus}"/>
<deploymentdescriptor validatexml="true"

servletspec="2.3" sessiontimeout="30"
destdir="${build.dir}/web/WEB-INF"
distributable="false">

<configParam name="security" value="${security.mode}"/>
</deploymentdescriptor>
<jsptaglib validatexml="true"
description="Tag Libraries for Security and Labels"
validateXML="true"
shortName="struts-resume"
filename="struts-resume.tld"

/>
<strutsconfigxml validatexml="true" version="1.1"/>
<strutsvalidationxml/>

</webdoclet>
</target>

That’s all it takes to generate the following mapping in the resulting struts-config.xml
file (we’ve prettied the XML up a bit to save space, but no text has changed):

<action path="/editUser" type="org.appfuse.webapp.action.UserAction"
name="userForm" scope="session" input="mainMenu"
parameter="action" unknown="false" validate="false">

</action>

Of course, you can still code your configuration files by hand, adding your own custom
data by producing specifically named files known as merge points. These files are included 
in the main file when the items are produced. In the directory (also known as the merge
directory) of struts-resume, a README.txt file lists available merge points for web.xml, 
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struts-config.xml, and validation.xml. For example, to specify global forwards for your
application, you can create a global-forwards.xml file that contains one or more <forward>
elements. The global forwards file allows you to configure forwards that are used by multiple
actions in a module, which makes it easy to configure forwards that are common to multiple
pages.

<global-forwards>
<forward name="mainMenu" path="/mainMenu.do"/>

</global-forwards>

This file will then be included in the generated file. XDoclet knows to look in this directory
for these files by examining the mergedir attribute of the webdoclet task:

<webdoclet destdir="${webapp.target}/WEB-INF"
force="${xdoclet.force}"
mergedir="metadata/web"
excludedtags="@version,@author"
verbose="true">

XDoclet also works for producing form-bean entries in struts-config.xml as well as
generating the validation.xml file for the Validator. For form beans, you can simply add the
following in your class’s Javadoc:

* @struts.form name="UserForm"

You can also use this tag to generate ActionForms from POJOs (or entity beans) by simply
using @struts.form. However, if you want to include all the entity bean’s fields, you’ll need to
add include-all="true". You can also add an optional extends attribute to specify that it
extends ValidatorForm or your own base class. For instance, in struts-resume, the User.java
file has the following in its Javadoc header:

/**
* User class
*
* This class is used to generate the Struts Validator Form
* as well as the Hibernate persistence later.
*
* @author Matt Raible
* @version $Revision: 1.6 $ $Date: 2003/06/27 03:27:44$
*
* @struts.form include-all="true"
*  extends="org.appfuse.webapp.form.BaseForm"
*
* @hibernate.class     table="app_user"
*/

Then you can add method-level tags to generate the validation.xml file. If you’re adding
XDoclet tags to an existing ValidatorForm, make sure to put these tags on your setters, as
nothing will be generated otherwise!

* @struts.validator type="required" msgkey="errors.required"
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If you’re generating ValidatorForms from POJOs or entity beans, you’ll need to put the
@struts.validator tags on the class’s get methods. In struts-resume, we’ve set up a custom
XDoclet template for generating Struts’s forms (in metadata/templates/struts_form.xdt),
which will generate a ValidatorForm, complete with @struts.validator tags on the setters.
Since this wasn’t core functionality of XDoclet at the time of this writing, we were inspired to
create a custom template to get it.

We don’t know if we’d recommend coding your action-forwards into your classes. We’ve
done it both ways and both seem comfortable. Of course, we’ve being working on a lot of one-
person development teams lately, so that might skew our view a little. If you want to externalize
your global forwards, you can put them in a merge-point file named global-forwards.xml. 
If you want to do it locally to the class, you can use the following syntax at the beginning of
the class:

* @struts.action-forward name="list" path=".resumeList"

One great thing about XDoclet’s integration with Ant is that you can specify Ant proper-
ties in your source code as well and these will be substituted at build time. Thus, you could
configure all your values via Ant rather than hard-coding them. For example, in LoginServlet,
we have the following XDoclet tags as part of the Javadoc header:

* @web.servlet-init-param
*     name="encrypt-password"
*     value="${encrypt-password}"

This value is set by default in the app-settings.xml file:

<property name="secure-login" value="false"/>

However, it can easily be overwritten by executing Ant with this parameter specified:

ant -Dsecure-login=true

This results in the following being generated in the deployment descriptor (web.xml) for
the LoginServlet:

<init-param>
<param-name>encrypt-password</param-name>
<param-value>true</param-value>

</init-param>

If you already have a database schema and want to develop a Java EE-based application,
you could use Middlegen (http://boss.bekk.no/boss/middlegen/). Middlegen is a database-
driven code-generation engine based on JDBC, Velocity, Ant, and XDoclet. It can generate
code for container-managed persistence (CMP), Enterprise JavaBeans (EJBs), Java Database
Objects (JDO), and JSP or Struts—straight from a database! This is a great tool for rapid proto-
typing. One drawback is that the Struts support appears very weak. When we first encountered
Middlegen, it only supported Struts 1.0. At the time of this writing, the Middlegen web site still
identified the Struts plug-in as being in alpha state.
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The StrutsGen Tool
There is a small, yet nimble, tool in the struts-resume application that Erik Hatcher originally
wrote for his sample application in Java Development with Ant. It uses Ant and XDoclet to
generate a JSP page and a ResourceBundle by inspecting a form’s property files. The template
used for both of these files is simple and customizable. This tool can be found in the tools/
strutsgen directory of the struts-resume application. To use it, you first need to run the com-
mand ant webdoclet to generate your forms in the build/gen/web directory. Then navigate to
tools/strutsgen and run ant "-Dform.name=MyForm" where MyForm is the name of the form you
would like to generate files for.

This will result in two files being generated in the tool/strutsgen/build directory, one
named UserForm.jsp and the other named UserForm.properties. You can also run the tool
without specifying a form name, and it will generate these files for all your forms.

This tool uses a TreeMap for grabbing the properties from the form, so this means that the
new files will contain the properties in alphabetical order. In most cases, you’ll probably need
to customize the order of your fields to make them user friendly anyway; this tool just speeds
things up a bit. It also only supports generating <html:text> fields at this time, but since you’ll
have to get into the JSP to rearrange the order of fields anyway, it’s not a big deal. We found it
to be very useful during development of this application.

Handling Persistence in Struts
In our opinion, Struts does a great job of giving you, the developer, great ways to implement
your view and your controller, but it doesn’t provide much for the model. ActionForms are
great and ValidatorForms are even better, but if you want a database back end to your
application, there isn’t much in Struts that makes it easier to code it. Forms provide a nice
interface to the back end, but Struts isn’t in the business of providing data access, and there-
fore doesn’t provide any classes for retrieving data. While there are many different ways to
code your controller-to-database logic, we’ll be telling you how we’ve done it and what’s
worked for us.

When we first started developing with Struts, our architecture had been predetermined
and all we had to do was hook into it. We were using EJBs on the project and used RowSets for
our list screens. It was fairly easy on our part, because all we had to do was call a particular ses-
sion bean for each action and interact with it appropriately. We actually found it very easy to
create accessors and mutators (getters and setters) for our data objects (or value objects or data
transfer objects) on each form. We discovered later that this wasn’t a recommended “design
pattern”—our data objects should never make it to the presentation layer. However, it worked,
and it worked great—and we were happy with it.

The topic of persistence options seems to grace the Struts user mailing list almost weekly.
We believe this is because there are so many choices. In reality, you can use almost any Java-
based persistence framework with Struts. It’s all Java after all. It’s tough to choose a framework
when none has proved to be a dominant, well-used framework. This is an advantage of Struts
in that it allows you to choose any framework—but we’re guessing this is a big headache for
many developers as well.

However, choosing a persistence framework for a Struts application can be easy if you stick
to the technologies you know. If you’re going to choose an open-source implementation, make
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sure the documentation is good, the development mailing list is active, and there are example
applications. It’s much easier to copy an existing example than to develop from scratch. It’s
worth your time to investigate code-generation tools that exist for databases, because this will
save you a lot of time in the long run. Above all, learn and use XDoclet (we’ll discuss this a little
later) to help with your persistence layer. We expect you’ll be very happy with it.

Persistence Options
In Chapter 9, you spent a good bit of time evaluating the different persistence options avail-
able, so we won’t bother to repeat that discussion here. Instead, we’ll just let you know that we
chose to use Hibernate on the example struts-resume project. We’re very happy with it so far.
It seems to have great documentation and also has XDoclet support. XDoclet support was a
big seller for us, because we want to generate most of the database access code. 

■Note The examples in struts-resume are modeled after Dave Johnson’s examples (author of Chapter 9)
in his sample application as well as help we’ve received from the Hibernate development mailing list.

Enhancing Struts ActionForm Development
There are a few features of Struts that are often overlooked but may be useful when you come
to develop your ActionForms. Let’s take a look at them.

Using DynaActionForms
The DynaActionForm was added as part of Struts 1.1. It basically allows you to declare your
form’s properties via XML, rather than writing a form using Java. The advantage for the devel-
oper is that you don’t have to write and compile an ActionForm. However, if you’re using
XDoclet to generate an ActionForm, then you might not have a use for a DynaActionForm. They
can be handy for providing simple forms that aren’t persisted—for instance a MessageForm that
is used to send e-mail. Let’s use that as an example and look at its settings:

<form-bean name="messageForm"
type="org.apache.struts.action.DynaActionForm">

<form-property name="name" type="java.lang.String"/>
<form-property name="email" type="java.lang.String"/>
<form-property name="subject" type="java.lang.String"/>
<form-property name="content" type="java.lang.String"/>

</form-bean>

Just like an ActionForm, all your properties should be strings for interaction with the web tier.
Only object types (String, Integer, or Boolean) can be used as the type for the <form-property>
element. Primitives aren’t allowed. After specifying the form’s properties, you can reference the
form in an action mapping just like a regular ActionForm or ValidatorForm. A DynaActionForm can
also utilize the Validator by using a type of org.apache.struts.action.DynaValidatorActionForm.
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This form can then be retrieved in your Action class using the following code:

DynaActionForm msgForm = (DynaActionForm) form;

To retrieve values from the form, you must use the form.get(propertyName) syntax
(similar to how values are retrieved from a HashMap):

String subject = (String) theForm.get("subject");

You can also create and initialize a DynaActionForm (or DynaValidatorActionForm) in an
Action class:

DynaActionForm msgForm = (DynaActionForm) DynaActionFormClass
.getDynaActionFormClass("messageForm").newInstance();

Then values can be set on the form using form.set("propertyName", object). Just like 
a normal ActionForm, you’ll need to place it into its assigned scope after you’ve populated it. 
If you plan on doing a lot of getting and setting of properties on a form, the DynaActionForm
can be a bit of a pain, because of all the type casting you need to do, rather than the simple
form.getProperty(). We suggest generating your ActionForms and ValidatorForms forms using
XDoclet before using DynaActionForms. At the same time, there are good uses for it, as in the
message form.

Using Indexed Properties with Forms in Struts
Indexed properties are a feature of Struts that has been available since the beginning. If you’ve
used it, you probably really like it, because it allows you to get and set lists of objects (such as
an ArrayList of child forms on a parent form). In the struts-resume application, this might 
be something like getting/setting an ArrayList of SkillForms on a ResumeForm. Basically, the
syntax involves tags like <logic:iterate> and <c:forEach> and setting an index on the form
element’s name:

<logic:iterate id="skill" name="userSkills" indexId="index">

Then you need to add get and set accessors to your form to allow these values to be
retrieved and altered based on an index. Here is an example of how you might implement this
in struts-resume on a SkillGroup form, where a user is assigning multiple SkillForms:

/**
* The skill attribute.
*/
private ArrayList skill;
/**
* Getter for skill. For the sake of the iterator
* tags and the indexing of objects.
*/
public SkillForm getSkill(int index) {
return (SkillForm) skill.get(index);

}
/**

CHAPTER 15 ■ USING STRUTS, XDOCLET, AND OTHER TOOLS 591

513-0 ch15.qxd  11/14/05  5:38 PM  Page 591



* Setter for the above getter.
*/
public void setSkill(int index, SkillForm skill) {
this.skill.set(index, skill);

}
/**
* Getter for ArrayList of skills
*/
public ArrayList getSkills() {
return skill;

}
/**
* Setter for ArrayList of skills
*/
public void setSkills(ArrayList skills) {
this.skill = skills;

}

We haven’t implemented indexed properties as yet, although we plan to, and may already
have done so by the time you’re reading this.

Form Validation
Our favored method of performing form validation is to use Struts Validator. Validator was
originally authored by David Winterfeldt to overcome the tediousness of writing validation
logic in ActionForms. It can perform basic validations to check whether a field is required, or
matches a regular expression, e-mail, or credit card, as well as server-side type checking and
date validation. You can use the Validator in any JSP and servlet application, but it was origi-
nally designed for Struts and is therefore easiest to use within Struts. Since Struts 1.1, the
Validation framework has been integrated into the core Struts library (struts.jar).

For detailed online information about Validator, go to http://struts.apache.org/
userGuide/building_view.html#validator.

Using Validator

The Validator framework relies on a validator-rules.xml file, which defines all of the pluggable
Validator definitions. These definitions are basically Java classes for server-side validation and
JavaScript functions for client-side validation. Let’s look at the “required” pluggable Validator as
an example:

<validator name="required"
classname="org.apache.struts.validator.FieldChecks"
method="validateRequired"
methodParams="java.lang.Object,

org.apache.commons.validator.ValidatorAction,
org.apache.commons.validator.Field,
org.apache.struts.action.ActionErrors,
javax.servlet.http.HttpServletRequest"

msg="errors.required">
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... insert JavaScript function here ...
]]>
</javascript>

</validator>

We’ve left out the JavaScript function because it’s 40 lines long and you’re here to learn JSP,
not JavaScript, right? In the previous definition, the FieldChecks is a class within the Validator
framework, and it has a method named validateRequired() that takes the parameters listed.
The <javascript> element defines the JavaScript function to do client-side validation. Having
the definitions in this file makes the Validator framework easily configurable.

To enable the Validator in a Struts application, you first need to add the following XML
into the struts-config.xml file. According to the Struts DTD, <plug-in> elements should
appear toward the end of this file. If you’re using XDoclet, you can put this XML into a file 
in your merge directory:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property property="pathnames"

value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
</plug-in>

You can see from this example that there are two files that the Validator is loading. These
can be renamed to whatever you like; you just have to make sure your <plug-in> configuration
is set correctly. Since these file names are the de facto standards for the Validator, we’ll use
these in our examples. The Validator also allows for extensions such as the following for vali-
dating that two fields match:

public static boolean validateTwoFields(Object bean, ValidatorAction va,
Field field, ActionErrors errors, HttpServletRequest request,
ServletContext application) {

String value = ValidatorUtil.getValueAsString(bean, field.getProperty());
String sProperty2 = field.getVarValue("secondProperty");
String value2 = ValidatorUtil.getValueAsString(bean, sProperty2);

if (!GenericValidator.isBlankOrNull(value)) {
try {

if (!value.equals(value2)) {
errors.add(field.getKey(), ValidatorUtil.getActionError(

application, request, va, field));
return false;

}
} catch (Exception e) {
errors.add(field.getKey(), ValidatorUtil.getActionError(

application, request, va, field));
return false;

}
}
return true;
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You can then add this class to the validator-rules.xml file by adding the following
element:

<validator name="twofields"
classname="com.mysite.StrutsValidator"
method="validateTwoFields"
msg="errors.twofields"/>

Then, in validation.xml, you can configure a field to use this validation rule:

<field property="password"
depends="required,twofields">

<arg0 key="typeForm.password.displayname"/>
<var>
<var-name>secondProperty</var-name>
<var-value>password2</var-value>

</var>
</field>

You could also easily add a JavaScript function to validator-rules.xml for client-side vali-
dation. This merely requires adding a <javascript> element inside the <validator> element.

Without the Validator, the easiest way to program validation logic into your application is
to override the validate() method in your ActionForm. Its signature is as follows:

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request);

This ActionForm method returns null, like the ActionForm reset() method, and similarly,
overriding it isn’t required if you don’t want to.

public void reset(ActionMapping mapping, HttpServletRequest request);

The reset() method is designed to reset all your properties back to their default state. It 
is called before the bean is repopulated by the controller servlet and can be very helpful when
using check boxes on your view forms. This is because neither the value nor the name of a
check box is passed in the request when it’s unchecked. This is the main reason the reset()
method exists—to set the default state of check boxes so they behave like other form elements
and are always passed along in the request as a name-value pair.

To be perfectly honest, we’ve only used the validate() method in any of our ActionForms
when validating indexed properties, and we’ve only used reset() when we had check boxes
on a form. We discovered the Validator framework about a month after we started working
with Struts and haven’t looked back since. The Validator is great for performing basic required
field validation as well as more advanced functions such as regular expression matching, 
e-mail address syntax (not actual validation of addresses), credit card, and type checking
(string, number, date). Furthermore, different validation rules can be defined for different
locales. In order to make good use of the Validator, you do need to understand regular expres-
sion syntax fairly well, however.

To configure an Action to call the validate() method on an ActionForm or to use the
ValidatorForm’s declarative validation, you don’t need to do anything because validation is
turned on by default. Personally, we like to specify validate="true" or validate="false" in
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our <action-mappings> element to avoid confusion. Also, you’ll need to specify an input
attribute for your <action-mappings>, or the Validator won’t know where to return to for
server-side validation. This is very important, especially when using the Tiles framework we’ll
discuss later—you’ll get the blank screen of nothingness if you don’t add the input attribute.
Configuring this in XDoclet looks like the following example:

* @struts.action name="userForm" path="/saveUser" scope="session"
*   validate="true" parameter="action" input="editProfile"

This produces the following action mapping:

<action path="/saveUser" type="org.appfuse.webapp.action.UserAction"
name="userForm" scope="session" input="editProfile" parameter="action"
unknown="false" validate="true">

</action>

We’re using inputForwards in the struts-resume application, so the value editProfile
actually refers to a global forward.

We really like the Validator because it performs client-side (through JavaScript) as well as
server-side validation. In our experience, most customers prefer client-side validation, as do
developers. Why should the browser even attempt to submit the form if the required fields
aren’t populated? There are some larger organizations that discourage the use of JavaScript for
the sake of compatibility, and it’s a shame as it can help your web applications to behave more
like traditional desktop applications. However, there are some HTML elements that require
server-side validation—for instance, the <input type="file" ... /> element. It doesn’t allow
JavaScript manipulation or access, and therefore cannot be checked to see whether a value
has been entered. This is for security reasons, because you wouldn’t want a script to grab files
from your hard drive without your consent.

When developing rich web clients with JavaScript, the most important things to remem-
ber are accessibility standards. Currently, there are two. In the United States, there is the
federal government’s Section 508 Initiative. Section 508 requires that federal agencies’ elec-
tronic and information technology be accessible to people with disabilities. More information
can be found at http://www.section508.gov.

The second standard, which is more worldwide, is the W3C’s Web Accessibility Initiative
(WAI). The World Wide Web Consortium’s (W3C) commitment to lead the Web to its full
potential includes promoting a high degree of usability for people with disabilities. WAI, in
coordination with organizations around the world, pursues accessibility of the Web through
five primary areas of work: technology, guidelines, tools, education and outreach, and
research and development. More information can be found at http://www.w3.org/WAI/.

These accessibility standards are built on top of other standards, such as XHTML and
CSS. If you follow these standards when developing your web application, you’ll find that
making your application accessible will be much easier. We’ve found that accessibility stan-
dards discourage the use of JavaScript to change pages on a <select>’s onchange event, but
pop-up JavaScript alerts, like those used by the Validator, are fine. Most screen readers can
understand and read them—the major accessibility concerns related to client-side JavaScript
are 1) that the message is easy to understand, and 2) that messages are still given when
JavaScript is turned off. Since the Validator provides both client and server-side validation, 
it satisfies many accessibility requirements.
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Generating validation.xml Using XDoclet

In the struts-resume application, XDoclet generates the validation.xml file from the
ActionForms and their subclasses, including the ValidatorForm. We created a BaseForm that
extends ValidatorForm and implements Serializable (for clustered environments), and then
all our forms extend it. The process by which UserForm and validation.xml are generated is
shown in Figure 15-9, where the arrows represent names of the Ant targets or tasks.

Figure 15-9. XDoclet can generate forms and the validation descriptor for those forms.

There are three method-level XDoclet tags you can use to generate values:

• @struts.validator

• @struts-validator.args

• @struts.validator-var

The simplest example of this is using the requiredValidator to generate an entry. We’ll
use the username attribute that is generated on UserForm to illustrate. It starts, as illustrated in
the previous diagram, at the User.java file, and these tags are transferred to the generated
ActionForm. On the getter field for the username, you’ll find the following tags:

/**
* Returns the username.
* @return String
*
* @struts.validator type="required" msgkey="errors.required"
* @struts.validator type="email" msgkey="errors.email"
* @hibernate.property
*  column="username" type="string" not-null="true" unique="true"
*/
public String getUsername() {
return username;

User.java

Validation.xml

ejbdoclet/

ejbdoclet/

hibernatedoclet

strutsform

webdoclet/

strutsvalidationxml
UserForm.java

User.htm.xml
(XML Used by

Hibernate)
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This code must be on the getter in order for the form generation to work correctly. At the
time of writing, the strutsform task is a subtask of ejbdoclet, so we’re still running it as an
ejbdoclet task. When the ejbdoclet task is run, the <strutsform> subtask within it will gener-
ate the following entry in validation.xml:

<formset>
<form name="userForm">
...
<field property="username"

depends="required,email">
<msg name="required"

key="errors.required"/>
<msg name="email"

key="errors.email"/>
<arg0 key="userForm.username"/>

</field>
...
</form>

</formset>

We should point out that the <msg> elements aren’t required; therefore you don’t need to
specify the msgkey attribute in the XDoclet tag. If you choose to eliminate this element, the
Validator’s default message from the validation-rules.xml file will be applied. This value is
represented in validation-rules.xml by the msg attribute. For example, the required Validator
has msg="errors.required". XDoclet creates msg entries for us in validation.xml, providing
greater flexibility in the long run.

Now that you know how to generate validation.xml, let’s examine what the parts actu-
ally mean. There are four different elements in the previous extract: <form>, <field>, <msg>,
and <arg>.

The name attribute of the <form> element defines the name of your ActionForm, and this
name should match the one defined in struts-config.xml. Since you’re using XDoclet to gen-
erate the form and struts-config.xml file, you can be certain that these names will match.

The <field> element has two attributes, property and depends. The property attribute
defines the name of the variable in UserForm.java to validate, while the depends attribute iden-
tifies which validation rules to apply.

There are two <msg> elements that signify which messages to use from the
ApplicationResources.properties file or whatever the ResourceBundle is named in 
struts-config.xml. In struts-resume, these are defined as follows:

errors.required={0} is required.
errors.email={0} is an invalid e-mail address.

The last element, <arg0>, specifies the message key for the substitution value of {0} in
each respective message. In struts-resume, this is defined as the following:

userForm.username=Username

If there is more than one argument you’d like to replace in your error message, you can
add more arguments in ApplicationResources by incrementing the number, so {1} would
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signify the second argument. To add this argument’s replacement value on your form, you
could add another XDoclet tag to the original form:

@struts.validator-args arg1resource="username.lastName" arg1value="My Surname"

Of course, you would never use both of these attributes, because the first (arg1resource)
is for looking up a resource key, and the second (arg2value) is for placing a literal string in
your validation.xml. Running the previous code through the webdoclet task produces the
following XML:

<arg0 key="username.lastName"/>
<arg0 key="My Last Name" resource="false"/>

Now that you’ve configured the form’s validation, you should add some JavaScript to the
JSP to enforce client-side validation. The first step is to use the <html:messages/> tag library to
catch any server-side validation errors:

<logic:messagesPresent>
<div class="error">
<html:messages id="error">
<bean:write name="error" filter="false"/><br/>

</html:messages>
</div>

</logic:messagesPresent>

In the struts-resume application, the previous code appears in a messages.jsp file. This
file also contains code to catch regular messages (not error messages) and is located in the
web/common folder. It’s included in the Tiles template so we don’t have to add it to every page
that should use validation.

Secondly, you need to add an onsubmit event handler to your form:

<html:form action="/userSave" method="post" styleId="userForm"
focus="password" onsubmit="return validateUserForm(this)">

While you’re examining this form’s syntax, we’d like to point out a couple of other things.
By default, if you don’t use a method attribute on your form, the <html:form> tag will render one
for you. The problem with the one it renders is that it’s not XHTML compliant. That is, it ren-
ders as method="POST", where XHTML requires that predefined attribute values be in lowercase.
We usually add a styleId attribute to all our forms and form elements (such as <html:text> or
<html:password>) so that they can be accessed via the Document Object Model (DOM) with
document.getElementById(elementId). One thing you have to be aware of is that every Id must
be unique within a page. Lastly, to increase the usability of the application, you should try to
use the focus attribute on your forms but use it cautiously: if you hide fields based on a user’s
role or other logic, this may result in a JavaScript error.

After configuring the form, you need to add an onclick handler to the form’s Submit and
Cancel buttons to talk to the Validator’s validateForm JavaScript function. This is so clicking
the Cancel button won’t invoke any validation:

<html:cancel styleClass="button" onclick="bCancel=true">
<bean:message key="button.cancel">

</html:cancel>
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<bean:message key="button.submit">
</html:submit>

In the previous example, we’ve added the styleClass attribute to signify a CSS rule for 
our buttons. Lastly, you add the following to include the JavaScript necessary to perform the
actual validation:

<html:javascript formName="userForm" cdata="false"
dynamicJavascript="true" staticJavascript="false"/>

<script type="text/javascript"
src="<html:rewrite page="/scripts/validator.jsp"/>">

</script>

We always try to use <html:rewrite /> when referencing JavaScript or CSS files, because
this will render a URL that includes the application’s context. That is, it will create a URL that 
is relative to the web server’s root (/) directory. validation.jsp contains the following code in
order to render all the JavaScript functions from the validation-rules.xml file: 

<%@ page language="java" contentType="javascript/x-javascript" %>
<%@ taglib uri="http://jakarta.apache.org/struts/tags-html"

prefix="html" %>
<html:javascript dynamicJavascript="false" staticJavascript="true"/>

Testing the Validation

Now that you’ve configured everything, let’s test it out! To do this, you’ll need to log in to the
struts-resume application and click the Edit Profile link. This will bring up your user infor-
mation. If you clear the username field, you’ll get the error dialog box shown in Figure 15-10.

or dialog box is displayed.
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When turning off JavaScript in your browser, the Validator will catch the error on the
server side, and you’ll get the message shown in Figure 15-11. So if you don’t want to use
JavaScript in your application, virtually no coding is necessary, save the XDoclet tags. If you
aren’t using XDoclet, you’ll need to configure validation.xml manually—we like to refer to
this as declarative validation.

Figure 15-11. Even if JavaScript is disabled in the client browser, validation still occurs on the
server side, and an error message will still be displayed.

You can also use the Validator to perform validation based on variables, such as validating
that a zip code matches a regular expression. This is possible with a mask that contains a regu-
lar expression as its value. For regular expressions that might be used more than once, it’s a
good idea to define them as constants in your validation.xml file. Since we’re using XDoclet,
this can be done in a validation-global.xml file, which lives in our merge directory. In the
struts-resume application, this is metadata/web/.

<constant>
<constant-name>zip</constant-name>
<constant-value>^\d{5}\d*$</constant-value>

</constant>

This regular expression says that zip must be five characters long and all characters must
be digits. To validate a zip code in the userForm, you’ll need to configure validation.xml like so:

<field property="postalCode" depends="required,mask">
<msg name="required" key="errors.required"/>
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<msg name="mask" key="errors.zip"/>

<arg0 key="userForm.postalCode"/>
<var>
<var-name>mask</var-name>
<var-value>${zip}</var-value>

</var>
</field>

As mentioned earlier, the <msg> elements can be eliminated if you want to use the default
values for the Validators. However, the default error message key for mask is errors.invalid,
which is simply {0}, is invalid. To enhance usability of the application, a different key
(such as errors.zip) with more information is probably better (such as The {0} field must
be a 5-digit number). To configure this for the postalCode field is easy with XDoclet. All you
need to do is add a tag to specify the rule and the variable’s name-value pair:

* @struts.validator type="mask" msgkey="errors.zip"
* @struts.validator-var name="mask" value="${zip}"

Advanced Validator Features

Other features of the Validator that we haven’t mentioned yet include multipage validation,
indexed property validation, conditional validation, and DynaFormValidation. Multipage vali-
dation allows you to spread your validation rules for a form across more than one page. This
can be very helpful when you have a wizardlike form for gathering information in your applica-
tion. To configure this, you need to add a hidden field to specify the page number in your JSP:

<html:hidden property="page" value="1"/>

This is complemented by adding a page attribute to the field’s validation rule in
validation.xml. In the examples you’ve seen so far, the fields have a property and depends
attribute. Add the page attribute and now your form can contain validation that is invoked
across different JSP pages!

<field property="firstName" depends="required,mask" page="1">

We really like this feature because it’s so simple to configure.
Indexed property validation allows you to have forms contained within forms or subforms.

For instance, in your application, a ResumeForm can contain one-to-many SkillGroupForms.
SkillGroups describe a group of skills. On a technical résumé, a good SkillGroup might be
“Java” or, at an even higher level, “Programming Languages.” Furthermore, SkillGroupForms
can contain one-to-many SkillForms. To elaborate on the Java example, you might have
SkillForms such as “Swing,” “JDBC,” and “XML.” A nice user interface for editing these would
allow you to view all your résumé’s SkillGroups and their subsequent SkillForms.

Displaying all this isn’t a big deal, because you can use a <logic:iterate> tag or
<c:forEach>. However, to save them, you have to know what row (or form) the user edited.
This is where indexed properties come to the rescue. You can basically add a getter/setter to
your form that allows for setting/getting nested form values. Please see the section “Using
Indexed Properties with Forms in Struts” for more information. To configure the Validator 
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to validate an indexed property, you need to add an indexedListProperty attribute to your
<field> element:

<field property="groupName" depends="required" indexedListProperty="skills">
<var>
<var-name>field[0]</var-name>
<var-value>name</var-value>

</var>
<var>
<var-name>field-indexed[0]</var-name>
<var-value>true</var-value>

</var>
<var>
<var-name>field-test[0]</var-name>
<var-value>NOTNULL</var-value>

</var>
</field>

This states that the skills property contains a list, and the required field within this skills
list is the name property.

A new feature recently added to the Validator is an ability to conditionally require Validator
fields based on the value of other fields. It allows you to define logic such as “only validate this
field if field X is nonnull and field Y contains ‘male’”. The Validator has support for validating
indexed properties, indicated in the previous example by the [0] indicator. However, it doesn’t
support dynamic indexed properties at the time of this writing. Which is to say that you must
know the number of child (indexed) properties and configure the Validator accordingly. Con-
ditionally validating can be very useful, but since we haven’t used it in struts-resume, we
recommend consulting the online documentation for more information.

Using the Validator with DynaActionForms

The final feature of the Validator we would like to mention is that it can also be used with
DynaActionForms. As you saw earlier, DynaActionForms are forms that are created by specifying
the form’s properties in struts-config.xml. This can save time when developing concrete
forms for an application. Personally, we prefer using concrete Java classes for our forms, rather
than cluttering up a configuration file with form properties. The main motivation behind
DynaActionForms was to speed up and facilitate Struts development so developers could
quickly create new forms. Using XDoclet to generate your forms is even faster, because it also
(in our example) creates the persistence layer. Using XDoclet also creates the form-bean
entries and validation.xml for you, while if you use DynaActionForms, you still need to manu-
ally create validation.xml. That said, creating a DynaActionForm that uses the Validator is as
simple as specifying which type of bean it is. A regular UserForm created as a DynaActionForm
might look as follows:

<form-bean name="userForm"
type="org.apache.struts.action.DynaActionForm">

...
</form-bean>
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To make this form Validator-enabled, all you need to do is change the type attribute:

<form-bean name="userForm"
type="org.apache.struts.validator.DynaValidatorForm">

...
</form-bean>

Configuring the Validator might look like a lot of work; after all, you do have to add three
different pieces of code to your JSP page: the form’s onsubmit handler, the button’s onclick
handler, and the JavaScript declarations at the bottom of the form. However, it’s easy to auto-
mate this process using the StrutsGen tool. We’ve simply modified the ActionForm_jsp.xdt file
(located at tools/strutsgen/src) to include all of this Validator-specific code, and now our ini-
tial forms will be generated with Validator support! How sweet is that?

Performing Validation on Indexed Tags

The Validator is also capable of performing validation on indexed tags. You simply need to
add a [#] to your validation.xml for the field you want to validate. As an example, if you
wanted to configure the ResumeForm to require the first SkillForm’s name, you could configure
the validation.xml file with something like the following:

<form name="resumeForm">
...
<field property="skills[0]name"

depends="required">
<msg name="required"

key="errors.required"/>
<arg0 key="skillForm.name"/>

</field>

Using Built-In Struts Actions
If you’ve already built a Struts application, you might have found that you developed actions
to follow an MVC pattern, but you really didn’t need them. Or maybe you linked directly to JSP
pages and bypassed the recommended “every link should go through a controller” model. We
know we did—until we discovered the actions that Struts has built in. We now think of these as
a bunch of eager benchwarmers saying, “Put us in coach, we promise we’ll make you proud!”
However, you might not realize they exist. Therefore, we’ll introduce these well-conditioned
actions now, so you’ll get a taste of their potential and maybe even let them into the game.

There are five built-in actions with Struts and the first three (ForwardAction,
IncludeAction, and SwitchAction) require no coding at all. The last two, DispatchAction
and LookupDispatchAction, are designed to promote code reduction and reuse.

ForwardAction
The ForwardAction can be used to redirect to a JSP page, but still utilize the built-in features of
a controller—such as securing actions with the roles attribute. It can also be very useful when
migrating a model 1 architecture (that is, JSP pages only) to Struts. In the example résumé
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application, a ForwardAction is used to direct users to the Main Menu page. To configure a
ForwardAction, you simply specify the org.apache.struts.actions.ForwardAction class as the
type, and the JSP page (or Tiles definition) as the parameter.

<action path="/mainMenu"
type="org.apache.struts.actions.ForwardAction"
parameter=".mainMenu"/>

We’ve also created a global forward to call this action:

<forward name="mainMenu"
path="/mainMenu.do"/>

After configuring the action and forward, it can then be called in your application’s start
page (index.jsp):

<logic:redirect forward="mainMenu"/>

You should also note that the previous action and forward definitions are in the metadata/web
directory in the files struts-actions.xml and global-forwards.xml, respectively. XDoclet
grabs these fragments and merges them into the main struts-config.xml file when the
strutsconfigxml task is executed. You’ll need to define your actions and forwards in these 
files for all three of the “no-coding-required” actions.

IncludeAction
IncludeAction was developed for the same reason as ForwardAction. It allows you to integrate
servlet-based components that utilize RequestDispatcher.include(). Like ForwardAction, it
only requires that you specify name, parameter, and type attributes. Personally, we’ve never
used it, and we’ve never seen it in use, but here’s how you might configure it:

<action path="/resumeComments"
type="org.apache.struts.actions.IncludeAction"
parameter="/path/to/servlet"/>

SwitchAction
The SwitchAction was designed to allow switching of application modules. Please refer to the
section “Using Modules in Team Development Environments” later for a full description and
how to configure it.

DispatchAction
DispatchAction and LookupDispatchAction are two great additions to the Struts framework.
For the first application we developed, we ended up creating an Edit and Save action for each
entity’s Create, Retrieve, Update, and Delete (CRUD) classes. After writing the classes, we
noticed that there was a lot of duplicate code in the Edit (used for retrieval and searching)
and Save classes. DispatchAction, and its friendly sibling, LookupDispatchAction, allow you 
to create different methods in your action that are “dispatched” according to a parameter.
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This means that rather than writing an execute() method in your action, you can write
methods that detail your business logic (such as add(), save(), remove(), search()). Both
dispatch action classes are subclasses of Action, so it’s still possible to use the execute()
method, but you’ll have to build your own dispatching mechanism in this method if you want
the dispatch behavior. These actions use reflection to choose and invoke the appropriate
methods. Therefore, your methods must have a public modifier or you’ll get the Struts white
screen of death (or whatever background color you have your browser set to!).

To use the dispatch action, you simply have to extend it rather than Action in your Action
class. We usually create a BaseAction for our applications and use that to extend the appropri-
ate Action class. What advantages does this provide? By using a BaseAction, you only have to
extend Struts’s Action class in one location, and you can elect to switch to a DispatchAction or
LookupDispatchAction at any time. Also, we’ve seen cases in which developers use BaseAction
to process or dispatch, but we’ve never had the need to do things that way. Which is to say that
there is an execute() method on the BaseAction class, and it’s configured as the servlet for
Struts in the web.xml. To do this in struts-resume, you could simply change the following line
in metadata/web/servlets.xml

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

to

<servlet-class>org.appfuse.webapp.action.BaseAction</servlet-class>

If you want to perform logic before dispatching to your methods, your best bet is to dig
into the Struts code (good ol’ open source!) and use DispatchAction or LookupDispatchAction
as your base class. You can also use a preExecute() method in your base class (or in each class)
that you call at the beginning of each method. We’ve had good success with simply using a
BaseAction to hold common action methods. For instance, we’ve used our BaseAction to
implement a convenience method, and getUserForm(session) to get a user’s information 
from the session.

Once you’ve written your action, you then need to configure your <action-mappings> with
a parameter appropriately named method or action—we use method to be consistent with the
documentation, even though we prefer action:

<action path="/test" type="org.example.MyAction" name="MyForm" scope="request"
input="/test.jsp" parameter="method"/>

Then you’ll need to add a hidden field to your forms that call this action. For instance:

<html:hidden property="method" value="add"/>

You can also do this with a normal HTML tag if you aren’t trying to grab the method prop-
erty from your form:

<input type="hidden" name="method" id="method" value="add" />

It’s also plausible that you won’t always call your dispatch action with a form, say if editing
an item from a list. For this, you can use a forward defined by the method already defined:

<forward name="editUser" path="/editUser.do?method=edit"/>
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There are, however, issues with DispatchAction. For instance, if you have a form with a
number of buttons (such as Add, Copy, Save, Delete) to perform different actions, you have to
use JavaScript to manipulate the method hidden field. While JavaScript is a perfectly acceptable
way to do this, there’s an easier way—LookupDispatchAction.

LookupDispatchAction
The LookupDispatchAction class is a subclass of DispatchAction that allows you to map but-
ton captions to method names. Furthermore, it reads the button captions from your Struts
ResourceBundle (ApplicationResources.properties). This means that you can easily map the
key button.save to the save() method.

To implement a LookupDispatchAction in your project, you must first extend the
LookupDispatchAction in your class. Again, we recommend doing this in a BaseAction class,
and then extending your project’s actions from this one. You’ll need to add a parameter to 
your <action-mappings>, which is very similar to DispatchAction:

<action path="/test"
type="org.example.MyAction"
name="MyForm"
scope="request"
input="/test.jsp"
parameter="action"/>

You could set the parameter to method, but action is demonstrated in the
LookupDispatchAction’s Javadoc, so we’ve used it here to avoid confusion. The action request
parameter will be used to locate the corresponding key in ApplicationResources. After con-
figuring your struts-config.xml appropriately, or your XDoclet tags in your action class,
you’ll then need to implement the getKeyMethodMap() method in your subclass like so:

protected Map getKeyMethodMap() {
Map map = new HashMap();
map.put("button.add", "add");
map.put("button.delete", "delete");
return map;

}

Your ApplicationResources.properties file determines the text that appears on your
buttons and therefore should contain entries for both of these keys:

button.add=Add Record
button.delete=Delete Record

Finally, you need to set the property attribute to action for your form’s Submit buttons in
order to pass the buttons’ caption to your action:

<html:submit property="action">
<bean:message key="button.add"/>

</html:submit>
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<html:submit property="action">
<bean:message key="button.delete"/>

</html:submit>

In the struts-resume application, the BaseAction extends LookupDispatchAction. We’ve
also added our own little enhancement to the getKeyMethodMap() method, so that the key or
value pairs are loaded from another property’s file. This allows mapping new methods to but-
tons without recompilation. This might seem like overkill, but it only took a couple minutes to
implement. One problem we’ve seen with this class is that if you use JavaScript to disable your
Submit buttons after they’ve been clicked, the action parameter won’t be sent. 

■Note More information on each of these built-in actions can be found in the Struts Javadocs at
http://struts.apache.org/javadoc.html.

Using the Tiles Framework to Assemble the View
Tiles is a Composite View framework for assembling presentation pages from component
parts. Each part, or tile, can be reused as often as needed throughout your application. You
can use Tiles in any JSP or servlet application, but it was originally designed for Struts and is
therefore easiest to use within Struts. Since Struts 1.1, the Tiles framework has been integrated
into the core Struts library (struts.jar). Tiles is often seen as a heavyweight, configuration-
intensive plug-in, when in fact it offers the same simple functionality as the (now deprecated)
struts-template tag library.

Tiles was developed by Cedric Dumoulin, and in our opinion is one of the best things
that ever happened for JSP developers. Standards like CSS and XHTML are also awesome
(and have provided more structure to develop web applications that work across browsers),
but Tiles has made it so much easier. Tiles will reduce your development time in building web
applications and will also make it relatively easy to change the entire application’s look. It
offers the best layout framework we know of, although there are others that have fervent sup-
porters such as SiteMesh (http://www.opensymphony.com/sitemesh) from OpenSymphony.

We’ve developed several JSP applications over the past few years, and we’ve laid them out
using many different techniques. The first technique was similar to how you would develop a
static website, where each JSP page contained all the layout elements of a typical HTML page.
This included the <html> declaration, the <head> element, <body>, and any <div> or <table>
elements within the body as well as the actual content. While this is generally easier for HTML
developers to grasp, it’s definitely the hard way. If you ever need to carry out a site redesign,
chances are you’ll need to meddle with every JSP file to do so. Of course, HTML editors (such
as Dreamweaver, BBEdit, and HomeSite) will make this easier with their global search-and-
replace features, but you can easily mess up your HTML at the same time.

An easier way is to include elements that are common to all pages. Such elements include
the <head> element, which contains your CSS and JavaScript references, or a menu that is
common to all pages.

CHAPTER 15 ■ USING STRUTS, XDOCLET, AND OTHER TOOLS 607

513-0 ch15.qxd  11/14/05  5:38 PM  Page 607



While this approach is much easier than the first approach, you’re still duplicating code
between all your pages to include these external elements. It might only be three or four lines
of code, but nevertheless, if you forget to include the header, chances are you won’t find out
until you (or your users) run your page through a browser.

If you’re using Struts, we’d recommend Tiles because it offers many built-in interoper-
ability features with Struts. Just like the Validator, it can be used on its own by simply making
a servlet entry in your application’s web.xml. However, we won’t explore this configuration
because this chapter focuses on Struts-based solutions. We will illustrate the templating
system used in the example résumé application and how we’ve implemented Tiles in this
particular application. The architecture and techniques we’ll be using have been tried and
proven in production applications. Tiles can be used in many different ways for building por-
tal sites and menuing systems as well as customization.

Detailed online documentation for Tiles can be found at http://www.lifl.fr/~dumoulin/
tiles/.

Using Tiles in the Example Application
First of all, let’s see how to integrate Tiles into the Struts application. With Struts, it’s much like
the Validator and only needs to be registered as a plug-in in your struts-config.xml file:

<plug-in className="org.apache.struts.tiles.TilesPlugin" >
<set-property property="definitions-config"

value="/WEB-INF/tiles-config.xml" />
<set-property property="moduleAware" value="true" />
<set-property property="definitions-parser-validate" value="true" />

</plug-in>

If you’re using XDoclet, this will need to go in a struts-plugins.xml file in your merge
directory. There are basically two ways to use Tile:

• The first is through a JSP page that includes other pages as a template.

• The second is to use an XML file to define the different components in a given page,
also known as a definition.

We highly recommend the XML-configuration route because it enables you to change
page definitions in one location, rather than on a page-by-page basis. It also supports inheri-
tance so you can define a base definition with the same header and footer, and then you don’t
need to specify these in the child definitions. The first property, definitions-config, points to
the file you use to define your definitions. It also supports a comma-delimited list of file paths,
which might be handy if you have many pages or definitions in your application. The second
property, moduleAware, allows Tiles to recognize modules (formerly known as subapplications).
We’ll describe these further in an upcoming section.

The basis of Tiles is that it allows you to define a “template” for your entire application, or
several templates depending on your needs. This template will generally look like a regular
HTML file, with all the basic elements, such as <html>, <head>, <body>, and any layout elements,
such as <div> or <table>. If you’re still using tables for laying out your web applications, we
implore you to try a tableless layout with <div> and CSS because it will make your pages much
lighter and smaller for your clients. XHTML and CSS, and a modern browser of course, make
this much easier. Listing 15-1 presents a very simple template for Tiles.

CHAPTER 15 ■ USING STRUTS, XDOCLET, AND OTHER TOOLS608

513-0 ch15.qxd  11/14/05  5:38 PM  Page 608



Listing 15-1. template.jsp

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<%@ taglib uri="http://jakarta.apache.org/struts/tags/struts-tiles"
prefix="tiles" %>

<%@ taglib uri="http://jakarta.apache.org/struts/tags/struts-bean"
prefix="bean" %>

<html:html xhtml="true" locale="true">
<head>
<%-- Push tiles attributes in page context --%>
<tiles:importAttribute />
<title><bean:message name="title.key"/></title>

</head>
<body>
<div id="header">
<tiles:insert attribute="header"/>

</div>
<div id="menu">
<tiles:insert attribute="menu" ignore="true"/>

</div>
<div id="content">
<%@ include file="/common/messages.jsp" %>
<h1><bean:message name="heading.key"/></h1>
<tiles:insert attribute="content"/>

</div>
<div id="footer">
<tiles:insert attribute="footer"/>

</div>
</body>

</html:html>

In the previous template, you can see that there are attributes that you import and
attributes you insert. Basically, the <tiles:importAttribute> is used for the <bean:message/>
tags. When you configure the application to use this template, you can actually tell it which
key from your ApplicationResources.properties file to use for the title.key and for the
heading.key. The <tiles:insert /> tag is used to insert or include a JSP page, but this could
also be a URL to any component within your application.

If you’re inserting JSP pages into your Tiles template, you’ll need to configure your JSP
pages so they can be executed independently of other pages. By this, we mean to say that 
they could be referenced with a dynamic include (<jsp:include>) rather than a static include 
(<%@ include />). Therefore, you must reference the appropriate tag libraries at the top of 
each page. To make development easier and faster, we usually create a JSP file with all our tag
library declarations, and then use a static include to include them on every page. You can see
an example of this in the struts-resume application. The template in Listing 15-1 will render a
layout similar to the one shown in Figure 15-12.
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Figure 15-12. The Tiles template shown previously renders this web page.

Tiles templates, also known as layouts, can be referenced using two different techniques.
The first is by using a JSP page. For example, you could put all the JSP pages in a pages directory.
This technique comes in handy when using JSP pages to compose Tiles pages. You can simply
put all your different page sections (or tiles) in the pages directory, and then reference them
from the root directory. For instance, this is what a page might look like in the root directory:

<%@ include file="/common/taglibs.jsp"%>
<tiles:insert page="/layouts/simpleLayout.jsp" flush="true">
<tiles:put name="title.key" value="login.title"/>
<tiles:put name="heading.key" value="login.heading"/>
<tiles:put name="header" value="/common/header.jsp "/>
<tiles:put name="menu" value="/menu.html"/>
<tiles:put name="content" value="/WEB-INF/pages/login.jsp"/>
<tiles:put name="footer" value="/common/footer.jsp "/>

</tiles:insert>

The second option is to use an XML file and create definitions for each page. This is nice
because definitions can extend each other as well as provide a central repository of your page
composition information. Furthermore, definitions can still be references from a JSP page
(when using a /do/* mapping) or as ActionForward paths in struts-config.xml. Let’s look at
how the previous JSP code might look in a tiles-config.xml file:

<definition name=".login" path="/layouts/simpleLayout.jsp">
<put name="title.key" value="login.title"/>
<put name="heading.key" value="login.heading"/>
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<put name="header" value="/common/header.jsp"/>

<put name="menu" value="/menu.html"/>
<put name="content" value="/WEB-INF/pages/welcome.jsp"/>
<put name="footer" value="/common/footer.jsp"/>

</definition>

One of the principal advantages of using definitions is that you can inherit properties
from each other. In this way, you can create a baseLayout definition that all definitions inherit
from, and child definitions won’t need to define certain properties, such as the header and
footer. The previous definition can be refactored to something like this:

<definition name="baseLayout" path="/layouts/baseLayout.jsp">
<put name="title.key"/>
<put name="heading.key"/>
<put name="header" value="/common/header.jsp"/>
<put name="footer" value="/common/footer.jsp"/>

</definition>
<definition name=".login" extends="baseLayout">
<put name="title.key" value="login.title"/>
<put name="heading.key" value="login.heading"/>
<put name="menu" value="/menu.html"/>
<put name="content" value="/WEB-INF/pages/welcome.jsp"/>

</definition>

In the previous .login definition, you’ll notice that we’ve prefixed the tile name with a
period (.). This dot notation is the recommended practice for naming tiles. Since Tiles’s defini-
tions can be references in a forward’s path attribute, this prefix makes them easier to recognize.

A definition can be referenced in a JSP page if you don’t want to forward to it from an
action. In struts-resume, we do this in the login.jsp page. We’re protecting all *.do mappings
with a <security-constraint>, so we’re unable to access any action without authenticating.
The content of the login.jsp page is short and simple:

<%@ include file="/common/taglibs.jsp"%>
<tiles:insert definition=".login" flush="true"/>

In the examples provided, you’ll notice that messages come from
ApplicationResources.properties for title and heading settings, but another option is 
available. This may be why Tiles seems so intimidating to some—there are so many options!
However, we do want to show you some other options that might be more suitable for you.
Rather than using the ApplicationResources.properties file to represent the title or heading,
you can code the strings directly in your definition or JSP:

<put name="title" value="Login to Struts Resume"/>

Rather than using <tiles:importAttributes/> and <bean:message key="title.key"/>, you
can use <tiles:getAsString name="title"/>. You might think you’ve lost the internationaliza-
tion (I18n) support in this process, but Tiles allows for an alternative way of achieving I18n:
creating separate XML definition files for each locale. Using this strategy, you would have a
tiles_config_en.xml for English, tiles_config_ru.xml for Russian, and so on. Using the
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ApplicationResources.properties file is an easier way to internationalize your application,
because then all language changes are available in one file.

Earlier we mentioned that CSS stylesheets can be used to greatly improve your layout flexi-
bility. We’ve worked on many projects where we used different stylesheets for different pages
or even for different users. There are two approaches that we’ve used to switch stylesheets, 
the first being on a page basis, and the second for users. The first uses Tiles definitions to set
the stylesheet for any given page. While you’re at it, you might as well add this same feature 
for including JavaScript files. First of all, you can add the files you want to include in your
baseLayout definition:

<definition name="baseLayout" path="/layouts/baseLayout.jsp">
<put name="title.key"/>
<put name="heading.key"/>
<put name="header" value="/common/header.jsp"/>
<put name="footer" value="/common/footer.jsp"/>
<!-- Default JavaScript File -->
<putList name="scripts">
<add value="/scripts/global.js"/>

</putList>

<!-- Default Stylesheet File -->
<putList name="styles">
<add value="/styles/default.css"/>

</putList>
</definition>

Then in the baseLayout.jsp file you can use Tiles tags and the JSTL to get these attributes
and render them as follows:

<%-- Get JavaScript List --%>
<tiles:useAttribute id="scriptList" name="scripts"

classname="java.util.List" ignore="true"/>
<c:forEach var="js" items="${scriptList}">
<script type="text/JavaScript"

src="<%=request.getContextPath()%><c:out value="${js}"/>">
</script>

</c:forEach>
<%-- Get List of Stylesheets --%>
<tiles:useAttribute id="styleList" name="styles"

classname="java.util.List" ignore="true"/>
<c:forEach var="css" items="${styleList}">
<link rel="stylesheet" type="text/css" media="all"

href="<%=request.getContextPath()%><c:out value="${css}"/>" />
</c:forEach>

We had to add the scriptlet <%=request.getContextPath()%> since the add value inside 
a putList only renders the literal value. We didn’t want to hard-code the contextPath in the

CHAPTER 15 ■ USING STRUTS, XDOCLET, AND OTHER TOOLS612

513-0 ch15.qxd  11/14/05  5:38 PM  Page 612



definitions file, so this was a simple solution. If you’re using JSP 2.1, you can replace the <c:out
value="${variable}"/> with ${variable}. You can also replace the <link> tag for the stylesheet
with the more modern method of importing stylesheets, using @import. Using this syntax, the
stylesheet import would look as follows:

<style type="text/css" media="all">
<c:forEach var="css" items="${styleList}">
@import url(<%=request.getContextPath()%><c:out value="${css}"/>);

</c:forEach>
</style>

This technique can be used to decrease the amount of HTML written as well as to disable
stylesheets for older browsers (that is, Netscape 4.x). This may sound foolish, but why would
you want to disable stylesheets for older browsers? The reason is simple. If your site is devel-
oped using CSS and <div> elements for layout, the chances are that viewing your site without
stylesheets is still readable, but it’s just plain text, in black and white, with no fancy layout.
This allows older browsers to still see your content, and you don’t have to worry about making
your CSS compatible with old browsers. Of course, this luxury is purely dependent on your
customers. Our advice is to drop support for older browsers—we guarantee that that alone
will speed up your productivity. If you’re willing to use a standards-compliant server (Java EE),
why not expect a standards-compliant client? Surely most users have upgraded to newer
browsers by now.

BROWSERS—AN ALTERNATE VIEW

At least one author of this book, however, disagrees with the advice to arbitrarily drop support for older
browsers. As of July 2005, 68% of web users were using Internet Explorer 6 (http://www.w3schools.com/
browsers/browsers_stats.asp). But looked at from another point of view, 32% of your potential users
are using some browser other than Internet Explorer 6. And when Internet Explorer 7 is released, you can
expect that many people will stay with version 6 for many months before upgrading.

In addition to using older browsers, a great number of the users of your website may be using dial-up
connections (41% according to http://www.websiteoptimization.com/bw/0506/).

As W3Schools says on their website:
“Global averages may not always be relevant to your website. Different sites attract different audiences.

Some websites attract professional developers using professional hardware, other sites attract hobbyists
using older low spec computers.”

Part of your application design should be a consideration of the characteristics of the users of your site.
If you determine that enough of them will be using bleeding edge technology, then your design decisions will
be different from if you decide that many of them are older users with antiquated computers connecting
through 56K dial-up modems.

In the struts-resume application, we’re using the <link> syntax so we can use a stylesheet
switcher in the future. Paul Sowden developed the stylesheet switcher we’ve implemented,
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and instructions on how to implement it are documented at http://www.alistapart.com/
stories/alternate/. Basically, it uses JavaScript and cookies to disable or enable your pre-
ferred stylesheets. We’ve used it on several projects and have found it very useful.

After you’ve set up the template and baseLayout definition to render multiple stylesheets,
you can override the list in a child definition. One thing to note is <putList> doesn’t allow
extension, so you have to replace the entire thing. The means that if all you want to do is add
an additional stylesheet, you also have to include the original (default.css) stylesheet. In the
mainMenu definition, you’re using the Struts Menu (http://www.sourceforge.net/projects/
struts-menu) as your menuing system. This menu requires an additional stylesheet file as well
as an additional JavaScript file. Therefore, you should replace the original lists with new ones:

<putList name="scripts">
<add value="/scripts/global.js"/>
<add value="/scripts/menuExpandable.js"/>

</putList>
<putList name="styles">
<add value="/styles/default.css"/>
<add value="/styles/menuExpandable.css"/>

</putList>

Pretty slick huh? We’ve used this technique for the last year and it’s worked great.

Tiles, XDoclet, and Forwards

Using Tiles to assemble and define your pages can be quite handy, but how do you call these
definitions? The easiest way to reference your Tiles definitions is using an ActionForward.
When you add the Tiles plug-in to your Struts configuration file, a smart Tiles-aware processor
is used to execute requests. This processor, named TilesRequestProcessor, subclasses the
Struts default RequestProcessor to intercept calls to includes and forwards to see if the speci-
fied URI (path) is a definition name.

To configure Tiles definition forwarding in your application, all you need to do is match
up the “path” attribute of a <forward> with the name attribute of a definition. For example, 
in struts-resume, the ResumeAction’s search() method returns an ActionForward to a local
<forward> named list:

return mapping.findForward("list");

This forward is defined in struts-config.xml for the ResumeAction class as follows:

<action path="/editResume" type="org.appfuse.webapp.action.ResumeAction"
name="resumeForm" scope="request" input="viewResumes"
parameter="action" unknown="false" validate="false">

<forward name="edit" path=".resumeDetail" redirect="false"/>
<forward name="list" path=".resumeList" redirect="false"/>

</action>
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In tiles-config.xml, the ".resumeList" definition is a simple definition that defines a
title, header, and content page.

<definition name=".resumeList" extends=".mainMenu">
<put name="title.key"  value="resumeList.title" />
<put name="heading.key" value="resumeList.heading" />
<put name="content" value="/WEB-INF/pages/resumeList.jsp"/>

</definition>

In struts-resume, the BaseAction class extends LookupDispatchAction, and Tiles defini-
tions are used extensively for assembling pages. The logic flow from a JSP’s URL to an action’s
method to a Tiles definition can be somewhat confusing, especially when you bring XDoclet
into the mix to define the action’s mapping and local forwards. Figure 15-13 illustrates the log-
ical flow of it all.

Figure 15-13. The logical flow of control from JSP to Tiles

In the previous diagram, the ResumeAction class extends LookupDispatchAction. Basically,
it allows you to use a parameter (action) to specify which method to call in your Action class.
The figure shows the XDoclet tags used to create the ResumeAction’s mapping in the Struts
configuration file as well its local forward. All of these tags are written in the class’s header
Javadoc comments.
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Tiles Controllers

Tiles controllers can be very helpful in improving the architecture of your Tiles-enabled appli-
cation. They haven’t received much press in current publications, but can be a very useful
feature. At its core, a Tiles controller is designed to prepare data for presentation on a tile. You
might think of it as a mini-action. However, these controllers aren’t designed to determine
application flow; that’s the responsibility of the ActionServlet. If you’re developing a portal
site or you have tiles that require their own custom data, you should definitely considering
using one.

Of course, it will be easier to understand if we give you an example. Therefore, we’ve cre-
ated a feature for struts-resume that counts the current number of active sessions and displays
it as “Current Users.” We did this by first creating a UserCounterListener that implements
ServletContextListener and HttpSessionListener. This listener increments an application-
scoped variable when new sessions are created and decrements from the same variable when
sessions are destroyed. This source file is located in struts-resume at src/web/org/appfuse/
webapp/listener. We’ve used XDoclet’s @web:listener tag to create a <listener> entry for this
class in web.xml.

To implement a Tiles controller, we created a UserCounterController class that imple-
ments the Controller interface and its method:

public final class UserCounterController implements Controller {
/**
* This method illustrates a simple example of using a Tiles Controller
* to get a "current users" counter for this application.
*
* @param tileContext Current tile context
* @param request Current request
* @param response Current response
* @param servletContext Current Servlet Context
*/

public void perform(ComponentContext tilesContext,
HttpServletRequest request,
HttpServletResponse response,
ServletContext servletContext)
throws ServletException, IOException {

// Get the number of current users from the application's context
String userCounter =

(String) servletContext.getAttribute(UserCounterListener.COUNT_KEY);

// Add this number to the request for display
request.setAttribute(UserCounterListener.COUNT_KEY, userCounter);

}
}

You can see that the perform() method’s signature is similar to the Action class’s signa-
ture—except there’s no ActionMapping or ActionForm. The ComponentContext is a scope similar
to that of a request or session; however, it’s specific to Tiles and is used to store its configura-
tion information.
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The UserCounterController is simply grabbing an attribute out of the application scope
and putting it into the request scope. However, you could easily add more complex logic in
this method. In this example, you’re storing the attribute in the request attribute for simplicity,
but it could also be stored in the ComponentContext using the following code:

tilesContext.putAttribute(UserCounterListener.COUNT_KEY, userCounter);

This would ensure that the attribute was only available for this tile. To configure 
struts-resume to use this controller, we edited tiles-config.xml file (in web/WEB-INF). We
decided we wanted to display this “Current Users” counter in the header of the page—and
since we only defined the header in the "baseLayout" definition, this was an easy change.
Before the change, the header tile was simply pointing to the header.jsp file:

<definition name="baseLayout" path="/layouts/baseLayout.jsp">
...

<put name="header" value="/common/header.jsp"/>
...
</definition>

To make the header tile controller-enabled, we created a new definition for it and pointed
to it from the baseLayout definition:

<definition name="baseLayout" path="/layouts/baseLayout.jsp">
...

<put name="header" value=".header.userCount"/>
...
</definition>
<definition name=".header.userCount" path="/common/header.jsp"

controllerClass="org.appfuse.webapp.action.UserCounterController" />

This means that for each page that the ".header.userCount" tile appears on,
UserCounterController.perform() will be called. To display the counter in the header.jsp, 
we then added the following JSP code:

<%-- Check to ensure "userCounter" is in request, if not, don't display --%>
<c:if test="${requestScope.userCounter != null}">
<div id="activeUsers">
<bean:message key="mainMenu.activeUsers"/>:
<c:out value="${userCounter}" />

</div>
</c:if>

To test it, we logged in to the struts-resume application with two different browsers,
which created two different sessions. After the sessions were created, the User Counter text in
the header (see Figure 15-14) shows that there are currently two users active in the applica-
tion. We realize this may not be a precise count, but it’s about as accurate as it gets with web
applications.
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Figure 15-14. Using a Tiles controller, the application can track the number of sessions and 
display that number in the header.

You can see that the Tiles controller can be a very valuable asset in your Struts toolbox.
You can reduce the amount of code needed in your actions and move specific logic to specific
tiles. You might even eliminate the need to chain actions together, using multiple tiles and
controller combinations instead. You’re encouraged to consider using controllers because
they can greatly help organize your code and view logic. By using controllers, actions can
focus on page flow rather than preparing views.

If you’re developing a very small and simple application, Tiles might not be necessary. The
difficult part of Tiles is finding a good example to operate from and extend. We hope that these
examples, in combination with the struts-resume application, will make your Struts develop-
ment journey easier. You should be able to use the basicLayout.jsp and tiles-config.xml
files to get up and running. If you already know Struts and aren’t using Tiles, you owe it to
yourself (and your deadlines) to try it out.

Using IDEs and Struts Development Environments
We used to use Macromedia’s HomeSite and vi for all our Java editing, because we hated the
bloat and RAM wastage of an IDE. Furthermore, IDEs always seemed to complicate things
more than they helped. With the maturity of tools like IDEA and Eclipse, using an IDE is fun
again—and worth our time (a gig of RAM doesn’t hurt either).

We’ve never felt the need to use an IDE to help us configure our struts-config.xml or
web.xml file. However, this was probably because these tools didn’t exist when we first started
working with Struts and web application. Now we’re glad we learned the DTDs and we feel
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that it’s easier to do our job with this knowledge. If editing XML files by hand, we recommend
XMLSpy (http://www.xmlspy.com). This is a great tool for any XML-related development because
it validates your XML against a DTD or XML Schema and also performs auto-completion as you
type. Another reason to learn the DTDs or Xml Schema is because tools like XDoclet assemble
the struts-config.xml file from a number of XML fragments, and most IDE tools only support
editing fully assembled struts-config.xml files.

There are also applications that have been created simply to provide a development envi-
ronment for Struts’s application development. Let’s take a look at a couple of these now.

Struts Console
Struts Console (found at http://www.jamesholmes.com/struts/) is a free application for man-
aging Struts-based applications. Struts Console is a visual editor for JSP Tag Library, Struts,
Tiles, and Validator configuration files. It can be used as a stand-alone Swing application or 
as a plug-in for your favorite IDE. Supported IDEs are JBuilder (v4.0+), Eclipse (v1.0+), IBM
WebSphere Appl. Dev. (v4.0.3+), IDEA (v3.0, build 668+), NetBeans (v3.2), Sun ONE/Forte
(v3.0+), and JDeveloper (v9i+). It has support for managing all your Struts-related XML files,
such as struts-config.xml, tiles-config.xml, and validation.xml. When using this tool, as
with many others, you’ll lose any formatting you’ve applied to the document. However, it does
allow formatting within the tool to “pretty up” your XML. It also has a wizard for converting
JSP and HTML pages into Struts JSP pages—a very handy feature if you’re converting an exist-
ing application to Struts.

Easy Struts
The Easy Struts project (see http://easystruts.sourceforge.net/) provides a set of tools for
Struts development, including a struts-config.xml editor, XSLT generation, tooltips from the
Struts DTD, support for modules, and an input helper. Easy Struts is only available as an IDE
plug-in; no stand-alone application is available. Supported IDEs are Eclipse (v2.0+) and
JBuilder (v5.0+).

Using Modules in Team Development Environments
Have you ever worked on a project where many developers were working on the same 
codebase? Many development teams work in this type of environment, while others allocate
development roles to single individuals. Let’s imagine two types of teams; the first has fifteen
developers and the second has three individuals. We’ll pretend that both teams are developing
similar applications that use Struts and EJBs for handling credit card payments for a large
bank. The large team will probably divide the work among tiers, where five people work on
each tier—EJBs, ActionServlets, and business layer, and the web tier comprising JSP pages or
Velocity templates. The second (smaller) team will simply assign one person to each tier.

In a team environment where many people are configuring and manipulating deploy-
ment descriptors, it can be difficult to keep your web.xml and struts-config.xml in sync. The
simplest solution we’ve found is to use XDoclet to generate these configuration files, but there
is another option—modules. When initially developed by the Struts development team, they
were called subapplications, which is a more descriptive name. Modules allow you to separate
different areas of an application out into different modules. Modules are a core feature of
Struts 1.1 and can be very helpful for large projects as well as for creating pluggable features.
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Since the development of modules is very similar to developing a standard Struts applica-
tion, we’ll show you how to set them up, and we’ve actually implemented an “upload” feature
that uses them in the struts-resume application. The setup is rather simple, consisting of the
following three steps:

1. Prepare a config file for your module.

2. Inform the controller of the module.

3. Use forwards or actions to switch to your new module.

We won’t detail the first step here, because this is the same as creating a new Struts appli-
cation. You could probably use XDoclet to create your configuration files for the different
modules, but you would have to coax your Ant webdoclet task to output struts-config.xml to
different directories. Of course, the purpose of submodules is to make development and con-
figuration easier, and XDoclet already does this for you!

The second step involves adding a new init parameter to the ActionServlet’s definition in
the application’s deployment descriptor, web.xml. In the struts-resume application, this con-
figuration is located at metadata/web/servlets.xml:

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<init-param>
<param-name>config/upload</param-name>
<param-value>/WEB-INF/struts-upload.xml</param-value>

</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>2</param-value>

</init-param>
<init-param>

<param-name>detail</param-name>
<param-value>2</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>

This configuration indicates that there are two modules in this application—the default
module, which has no forward slash (/) in its name, and the second, our “upload” feature. The
configuration files for both modules are located in the WEB-INF directory. The recommended
standard for naming module configuration files is struts-module.xml.

While you’re looking at the ActionServlet’s configuration, we want to point out a few
changes between 1.0 and 1.1/1.2. In 1.0, it was common practice to specify the ResourceBundle
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for messages as an “application” init parameter. We used this setting, as well as the “nocache”
init parameter. In Struts 1.1, these settings have been deprecated and moved to a <controller>
element in the struts-config.xml file. The following setting can be found in metadata/web/
struts-controller.xml:

<controller nocache="true"
inputForward="true"
maxFileSize="2M" />

The nocache setting tells the controller to add HTTP headers to prevent caching of content—
it’s off by default. You can also specify a forwardPattern attribute, such as WEB-INF/pages/$M$P,
where the $M variable indicates the module prefix and $P indicates the path attribute of the
selected <forward> element, although it isn’t used here. The inputForward attribute allows you
to use local or global forwards in the input attribute of an action mapping. This is a very handy
and much needed feature.

■Note More information on optional values and their meanings can be found online at http://
struts.apache.org/userGuide/configuration.html.

The application’s ResourceBundle is now specified in a <message-resources> element in
struts-config.xml. If you’re using XDoclet, you can place this in a struts-message-resources.xml
file. In the struts-resume application, this file is located in the same location as the rest of the
Struts configuration fragments:

<message-resources parameter="ApplicationResources"/>

Since we keep this file (ApplicationResources.properties) directory under WEB-INF/
classes, there is no need to specify a package name. You can also specify alternate resource
bundles for the application by adding a second <message-resources> element and specifying 
a key attribute:

<message-resources parameter="CustomResources" key="custom"/>

This can be useful if, for instance, you’re building a product using Struts and you only want
to expose a minimal amount of options that customers may change. To use this ResourceBundle
with the <bean:message> tag, you only need to specify a bundle attribute that matches the key:

<bean:message key="webapp.title.prefix" bundle="custom"/>

Now that you’ve seen how to set up modules for an application, let’s see how to switch
between them. For demonstration purposes, we’ve added an “upload” module to struts-resume
for uploading résumés. This module doesn’t demonstrate much more than file upload and
module switching. It could be developed into a feature that allows for simple uploading of
existing résumés, but not much more than that. At the time of writing, there are two basic
techniques to switching modules. The first involves using a forward (global or local) with a
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contextRelative attribute set to true. This will tell the controller and request dispatcher to be
module-sensitive, rather than simply context-sensitive:

<forward name="toUpload"
contextRelative="true"
path="/upload/index"
redirect="true">

In this example, index is a definition in the tiles-upload.xml document. Adding 
redirect="true" is required to enable the switching to execute correctly. The second 
method is to use the built-in SwitchAction. Using the SwitchAction would result in an 
<action-mappings> such as the one you see here:

<action-mappings>
<action path="/switchModule"

type="org.apache.struts.actions.SwitchAction"/>
...

</action-mappings>

Then to change to the upload module, you could use a URL such as http://localhost:8080/
struts-resume/ switchAction.do?prefix=upload&page=index. We think it’s much easier and
cleaner to use the global-forward technique, and therefore we’ve configured the following for-
ward in metadata/web/global-forwards.xml:

<forward name="uploadResume" contextRelative="true"
path="/upload/index.do" redirect="true" />

One thing we noticed when building the “upload” module for struts-resume was that it
was possible to share configuration settings between the applications. For instance, we’ve
shared the same basicLayout.jsp template that we used for Tiles. The one problem we encoun-
tered was that any messages (in ApplicationResources) and any forwards that you include in
your submodule have to be defined in their respective files. For instance, we had to define the
error page messages, button labels, and Validator messages. We expected this, so it wasn’t an
issue. It’s nice to see that there is clean separation of modules, but you’re also allowed to share
pieces of each.

Hopefully, you’ll find this simple enough to consider using if you think you have need for
modules in an application. The one limitation of modules at this point is that they’re only sup-
ported when using extension mapping of your ActionServlet. Which is to say that *.do is
supported, but /do/* isn’t; but consult the Struts site (http://struts.apache.org/) or mailing
lists for the current status of this issue.

Testing Struts Applications
Like any good Java programmer, you will have heard of testing frameworks and you’ve proba-
bly used JUnit before. JUnit version 3.8.1 (required by struts-resume) can be downloaded
from http://www.junit.org. Ant can be a very powerful tool for running JUnit tests. To run
them, you need to have JUnit’s JAR file (junit.jar) in the $ANT_HOME/lib directory.

JUnit works great for testing classes outside a servlet container, but doesn’t provide the
needed structure for testing what a user will actually do. For this, you’ve been blessed with
Cactus from the Jakarta project. Cactus is a simple test framework for unit testing server-side

. It supports both in-container testing
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and out-of-container testing via mock objects. It’s pretty slick in that you can run a test (for
instance, ant test-cactus -Dtestcase=ActionFilterTest for the struts-resume application),
and it will start Tomcat, run the test, and then stop Tomcat. It also integrates with HttpUnit for
testing your JSP pages and validating that the resulting HTML is correct. More information on
Cactus can be found at http://jakarta.apache.org/cactus. You can find the HttpUnit website
at http://httpunit.sourceforge.net.

The struts-resume example uses a tool called JUnitDoclet (http://www.junitdoclet.org)
to generate JUnit-based skeleton test cases and test suites of all your Java source files. All you
need to do is execute ant gen-test-module where module is common, web, or ejb.

JUnitDoclet is a pretty slick tool in that it will update your test cases if you add new meth-
ods, and it won’t overwrite any custom code you’ve added to the test case. We’re saying this to
warn you that there may be some test cases without any “meat in the methods.” In most cases,
this is because we’ve used the class before and we know it works, so we don’t care to test it. Is
this a bad practice? Maybe, but it will sure help our development time.

We’re using a different source tree for test cases, and it works really well with this
approach. Unfortunately, once you’ve changed a test case to extend something other than
JUnit (that is, Cactus’s ServletTestCase), it won’t update that class anymore. It will simply
ignore it, which is fine with us.

Another testing framework, specific to Struts, was introduced in late 2001. Known as
StrutsTestCase for JUnit (see http://strutstestcase.sourceforge.net/), it’s an extension of
the standard JUnit test case. By providing both a mock object and a Cactus approach to run
the ActionServlet, StrutsTestCase allows testing of Struts code with or without a running
servlet engine. Since it uses the controller to test code, it tests not only the implementation of
Action objects, but also mappings, ActionForms, and ActionForwards.

StrutsTestCase is compliant with both the Java Servlet 2.5 specifications and supports
Struts 1.2, Cactus 1.6.1, and JUnit 3.8.1.

StrutsTestCase already provides validation methods, so it’s simple to create unit test cases,
as demonstrated by the following code snippet:

public void testEditUser() {
setRequestPathInfo("/editUser");
setRequestParameter("action", "edit");
addRequestParameter("email","tomcat");
actionPerform();
verifyForward("success");
assertTrue(getSession().getAttribute(Constants.USER_KEY) != null);

}

You could run a very comprehensive test of your application using Cactus and HttpUnit
to verify your action classes and whatever view technology you happen to use in rendering
your UI (JSP, XML, or Velocity). An HttpUnit test is also pretty simple, as demonstrated in the
following example:

WebConversation wc = new WebConversation();
WebResponse resp = wc.getResponse(

"http://www.httpunit.org/doc/Cookbook.html");
WebLink link = resp.getLinkWith("response");
link.click();
WebResponse jdoc = wc.getCurrentPage();
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HttpUnit also supports testing of JavaScript, and their site carries the warning that 
it’s “very basic at present” (see http://www.httpunit.org/doc/javascript-support.html). 
If you’re looking for a more robust JavaScript testing framework, we recommend JsUnit
(http://www.jsunit.net). JsUnit is a unit testing framework for client-side testing of JavaScript.
JsUnit tests are written in JavaScript: it’s essentially a JavaScript port of JUnit, so you name
your methods and such accordingly. It’s important to note that these languages are drasti-
cally different, and whoever writes the JavaScript should probably also write the tests.

The last testing framework we want to cover is the WebTest tool (http://
webtest.canoo.com) from Canoo. This is a much easier testing framework to develop with
because everything is simply configured in an XML file. Similar to the other testing frameworks,
WebTest is run with Ant. However, the main difference is that the entire test is configured 
in an Ant task. For instance, this might be how you create a test for a user logging into your
application:

<target name="login">
<testSpec name="tomcat-login">
<config host="${tomcat.server}" port="${tomcat.port}"

protocol="http" basepath="${webapp.name}" verbose="true"
resultpath="." resultfile="web-test-result.xml" summary="true"
saveresponse="true"/>

<steps>
<invoke stepid="get Login Page" url="/"/>
<verifytitle stepid="we should see the login title" text="Login"/>
<setinputfield stepid="set user name"

name="j_username" value="tomcat"/>
<setinputfield stepid="set password"

name="j_password" value="tomcat"/>
<clickbutton label="Login" stepid="Click the submit button"/>
<verifytitle text="Main Menu"

stepid="Home Page follows if login ok"/>
</steps>

</testSpec>
<loadfile property="web-test.result"

srcFile="web-test-result.xml"/>
<echo>${web-test.result}</echo>

</target>

WebTest is a great framework for web developers, because you can easily test the path a
user takes without writing any code, just XML. It also appears to use HttpUnit, so it isn’t rein-
venting the wheel, rather just providing an easier way to develop it.

For testing your application’s interactions with a database, you might want to take a look
at Dbunit (http://www.dbunit.org). Dbunit is a JUnit extension that sets up your database in a
known state so you can execute your tests with expected data. It uses XML datasets, or collec-
tions of data tables, and performs database operations before and after each test. Of course,
you can also do this in your test cases, where you can insert, update, or delete an object, but
since there’s no guarantee of the order that these will execute, Dbunit is probably a good idea.
We’ve had good luck with putting our tests in a particular order in a class, and then having
these methods get executed in that order, but an ideal test method is autonomous.
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We’ve included examples of Cactus tests, Struts Action tests, HttpUnit tests, and even a
simple Canoo WebTest example. Table 15-2 indicates which classes you can use for these and
how to run them. Run test-cactus instead of test-web if you want to run these tests while
Tomcat is already running.

Table 15-2. Testing struts-resume with Various Testing Frameworks

Test Type File Location Ant Command

Cactus test/org/appfuse/webapp/action/UserAction ant test-web 
-Dtestcase=LoginActionTest

Struts test/org/appfuse/webapp/action/ResumeAction ant test-web 
-Dtestcase=ResumeActionTest

HttpUnit test/org/appfuse/webapp/action/MainMenuTest ant test-web 
-Dtestcase=MainMenuTest

Canoo web-tests.xml ant test-canoo 
-Dtestcase=login

Using servlet testing frameworks like StrutsTestCase and Cactus will make testing your
actions much easier. It’s either that or testing them through your browser, which may take you
five clicks to get to. There’s no need to wait for your JSP pages to compile if you really only
want to hit a servlet. The struts-resume application makes it easy to develop and run new
tests. We encourage you to use it and learn from it.

A real timesaver with JSP development is precompiling the JSP pages prior to deploying
them to your servlet container. This can be done with Ant’s <jspc> task, which uses Tomcat’s
Jasper compiler to generate .java source files. While it’s great for testing, you would like to use
this tool to precompile your JSP pages for production use too, right? Unfortunately, to do this,
you need to make an entry for every JSP in your web.xml file, and boy would that be a long and
laborious process. If you don’t do this step, Tomcat will just recompile over the top of the
pages you’ve already compiled. Some application servers, such as WebLogic and SunONE,
allow you to configure precompilation of JSP pages once the application has been deployed.
We’d love it if other vendors would copy this feature.

Another nice thing to do when developing JSP pages is to check that your CSS and 
HTML is correct. Of course, you won’t be able to do this until the JSP has compiled and dis-
played. If you’re using WebTest, it actually generates an HTML file for each request it makes,
thereby recording the last viewed request. In the struts-resume application, these can be
found in build/test/data. If you aren’t using WebTest, you can just view source in your
browser and save the HTML to a directory. Then you can upload it to the W3C’s Validator
(http://validator.w3.org) to ensure the HTML complies with the specified DOCTYPE. We
usually create a “sandbox” directory in our project’s directory where we can put these HTML
files for validation and other quick fixes. Sometimes it’s nice to work with a static HTML ver-
sion. What we do is change the absolute path for all our stylesheets, JavaScript, and images 
in order to use a relative path. In the struts-resume project, this would entail changing 
/struts-resume/ to ../web/.

Once you’ve validated your application and tested it thoroughly, you’ll be much more
confident that it works and therefore more likely to produce quality software. Hopefully, with
the examples we’ve put together, the hard work of writing tests is over. Writing tests might
seem like a pain, but that’s only if you’re writing your actual code first. Try writing your test
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cases first next time, we think you’ll find them most enjoyable. There’s nothing like writing an
application that works the first time you run it in a browser (thanks to the unit tests, of
course). 

Handling Exceptions in Struts Applications
Struts 1.1 made it much easier to handle exceptions in a Struts application. A popular rule in
software development is that “if something goes wrong, you should tell the user about it.” This
can become quite complicated in a web application that uses MVC and business objects to
talk to a database. Exceptions can be thrown at any level, in your data access code, in your
Action classes, in your business objects, or even in your JSP pages.

What we’ve done in the past was to use a try...catch in both our Action classes and in
our business objects and then “bubble” any exceptions up to the top. This is ugly and can
result in the user being presented with a message such as column street_address not found.
Furthermore, in our Action classes, we’ve caught our business-level exceptions, wrapped
them in a ServletException, and thrown them to the client. We have an error page configured
in web.xml as well as on our JSP pages, which the client is directed to in the event of an error.

Even though we’re going to show you a better way to handle exceptions with Struts, we
still think it’s important to configure your JSP pages and web.xml to deal with uncaught excep-
tions. You should add an entry to web.xml for when the server throws a HTTP Status Code 500,
the dreaded Internal Server Error:

<error-page>
<error-code>500</error-code>
<location>/error.jsp</location>

</error-page>

Alternatively, you can use <exception-type> rather than an HTTP status code or error
code:

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/error.jsp</location>

</error-page>

You can also add both of them, just to be safe. When using XDoclet, you can specify these
entries in an error-pages.xml file in your merge directory. We usually declare an errorPage in
our JSP pages as well:

<%@ page language="java" errorPage="/error.jsp" %>

In the struts-resume example application, this line only exists in the common/taglibs.jsp
file. Adding these entries will basically prevent users from ever seeing a stack trace of the
exception—providing that you’ve written your error.jsp appropriately. For an advanced error
page, you might even configure it to e-mail an administrator when it’s displayed to users (or
use log4j’s SMTP Logger). We’ve seen the 500 Internal Server Error more than we’ve seen the
classic 404 error in recent years. Adding a pretty face onto these errors can make everyone’s
life a little more pleasant.

The real hope is that an error page will never be displayed. As a savvy web user, if it does get
displayed, we’d like to see exactly what went wrong—the SQL details. Of course, this will depend
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on your application’s security requirements. If your application is open for attack (resides on
the Internet rather than an intranet), you might want to suppress messages that give any data-
base information. At the same time, not all your users will want to see the nitty-gritty details of
exceptions, and therefore, we recommend you aim for more user-friendly messages.

Chained Exceptions
In our opinion, a well-developed application should catch error messages, turn them into
friendly messages, and then return the user to the last page they viewed successfully. At the
same time, it would be nice to add a technical message as well, for those savvy users (or devel-
opers) who want to know the exact cause of the problem and may be able to avoid it. To achieve
this, the first thing you can do is to use chained exceptions. The traditional Java exception
mechanism only allows you to throw one exception. This presents a problem in a layered archi-
tecture where exceptions can occur at each layer.

Of course, you can wrap exceptions, as we’ve done with a ServletException, but this
might result in a loss of detail in the end. Ted Husted described the solution best in one of his
Struts Tips. Rather than trying to manipulate his words to sound like we came up with the
idea, it’s easiest to quote him (see http://husted.com/struts/tips/015.html):

What we really need to do is “stack” or “chain” the exceptions, so that each layer can add

its own viewpoint to the incident. Then, at the end, display them all, with the originat-

ing exception at the bottom of the list.

This approach works surprisingly well in a layered architecture. The “topmost” layer is

“closest” to the user, and so throws the most “user-friendly” exceptions. The “lowest” layer

throws the “geek-friendly” errors that we need to solve the problem. When we chain

exceptions by linking them together, the user-friendly message comes first, followed by

the more detailed messages. The user is told what they need to know first, and can leave

the rest to the system administrators.

Starting with JDK 1.4, the java.lang.Exception class has a getCause() method that allows
you to find the original cause of each exception. To use this properly, you’ll need to throw the
exceptions that occurred from each tier, rather than just catching an exception and throwing it
with a message. By this, we mean to say that it’s better to have this:

try {
...

} catch (Exception e) {
throw new DAOException("Error occurred connecting to database", e);

}

rather than just throwing the message: 

try {
...

} catch (Exception e) {
throw new DAOException("Error occurred connecting to database");

}
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We’re using this functionality in the struts-resume application, in the ActionFilter.java
class to be precise. If you’re using a JDK less than 1.4, we invite you to take a look at the Scaffold
package, which includes a ChainedException class that works with older JDKs. The following
snippet illustrates how we’ve implemented this functionality in the ActionFilter.java class
(located in src/web/org/appfuse/webapp/filters):

// User authenticated, empty user object
if (username != null && userForm == null) {
try {
UserManager mgr =
new UserManagerImpl(
(String) ctx.getAttribute(Constants.DAO_TYPE));

UserForm user = mgr.getUser(username);
session.setAttribute(Constants.USER_KEY, user);

} catch (Exception e) {

// Log the message so we can read the logs and see
//  what went wrong
log.error("Error getting user's information " + e);
// Print a StackTrace, always a good idea
e.printStackTrace();
// Set up an empty ActionErrors collection to add all
//  the exception messages to
ActionErrors errors = new ActionErrors();

// Add a general message that says "The process did not complete."
errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("errors.general"));

StringBuffer sb = new StringBuffer();

// JDK 1.4 ONLY - if there are causes, loop through them and get
//  all their messages
if (e.getCause() == null) {
sb.append(e.getMessage());

} else {
while (e.getCause() != null) {
sb.append(e.getMessage());
sb.append("\n");
e = (Exception) e.getCause();

}
}

// Add all the errors to a resource bundle key, defined as:
//  errors.detail={0}
errors.add(
ActionErrors.GLOBAL_ERROR,
new ActionError("errors.detail", sb.toString()));
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// Add the errors to the request so we can display them for the user
request.setAttribute(Globals.ERROR_KEY, errors);
// Dispatch to the error messages page
RequestDispatcher dispatcher =
request.getRequestDispatcher("/error.jsp");

dispatcher.forward(request, response);
return;

}
}

The end result is a series of error messages as follows:

• A required resource is not available.

• The process did not complete. Details should follow.

• Cannot connect to MySQL server localhost:3307. Is there a MySQL server running the
machine/port you’re trying to connect to? (java.net.ConnectException)

It’s easy to see how chained exceptions can give you messages that will satisfy all your
users. It might even be possible to use the previous error-looping code in a declared exception
for Struts, but we haven’t tried this yet. After you’ve built all your errors, you need to direct the
user to a friendly page. When using this code in an Action class, you’ll most likely direct them
back to where they came from.

return (new ActionForward(mapping.getInput()));

This can be problematic if you access the same ActionMapping from several different
pages. We’ve seen this solved in a couple of different ways. The first way is to add an extra
parameter to the form or URL that called the action, and then use that value to forward
appropriately. The other method is one used by the Roller Weblogger open-source project
(http://www.rollerweblogger.org). It uses a BreadCrumbFilter to hold a stack of the last
URLs accessed by the application. This is nice in that you can simply grab the last URL off 
the stack and so forward back to the last viewed page.

Declaring Exceptions
Struts 1.1 introduced the concept of configurable exceptions. That is, you can declaratively
specify exceptions on a global level in struts-config.xml as well as on an ActionMapping level.
This concept is similar to the one you see with global forwards and with local forwards. It’s
easy to register an exception—the only attribute that is required is type, which states the type
of the exception. Optionally, you can specify a key (to a message in your resource bundle) and
the path to direct the response to. The following is an example that might be used to handle
UserNotFoundException:

<exception key="missing.user"
type="org.appfuse.webapp.services.UserNotFoundException"
path="addUser"/>

In this example, addUser is a forward whose path references a tile’s definition (in tiles-
config.xml). You could easily change this to redirect to a JSP page (for instance, /addUser.jsp
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or perhaps /editUser?action=add). Exceptions are best used at the ActionMapping level, 
without a defined path. If you don’t define a path, Struts is smart enough to redirect to your
ActionMapping’s input value. Of course, if you don’t have an input defined, you should proba-
bly specify the path for your exception, or you’ll get the dreaded blank screen of Struts. The
key in this example is used to override the key used by the exception itself.

Struts makes it easier to develop exceptions and provides built-in internationalization.
Let’s take a look at the code for the UserNotFoundException:

import org.apache.struts.util.ModuleException;
public class UserNotFoundException extends ModuleException {
/**
* Construct a new instance of this exception for the specified username.
* @param username Username that was not found
*/
public UserNotFoundException(String username) {
super("error.user.missing", username);

}
}

The String error.user.missing refers to a key in the default ResourceBundle, as 
defined in struts-config.xml. In the struts-resume application, this bundle is
ApplicationResource.properties, where the key is defined as follows:

error.user.missing=Could not find user information for username '{0}'

Of course, you can change your exception’s constructor to handle as many parameters as
you have in your message key. If you specify a key for this exception in struts-config.xml, it
will override the message that is spit out by the exception. One disadvantage to this is that you
lose the ability to substitute parameters, but it can be useful for exceptions that don’t use the
Struts’s message bundle.

A nice feature of Struts’s exception handling is that messages are easily externalized in a
properties file. That is, you get I18n built right into your exception handling. Furthermore, you
can specify a separate ResourceBundle for your error messages by specifying the bundle attri-
bute on your exception. Of course, you could use a ResourceBundle on your business and
persistence layers with properties file, but it might not be needed if these exceptions never
bubble up to the UI. 

The beauty of using declared exceptions in your application is that you don’t have to
catch them in your Action classes. The Struts execute() method throws a top-level Exception.
Since all exceptions extend Exception somewhere along the line, this makes it easy to write
and throw your exceptions:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

When a registered exception is caught by Struts, it will actually create an errors object for
you that can then be displayed using <html:errors/> or a syntax like that in struts-resume.
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The following is what the messages.jsp file uses that is included in the struts-resume applica-
tion’s main Tiles template:

<%-- Error Messages --%>
<logic:messagesPresent>
<div class="error">
<html:messages id="error">
<bean:write name="error" filter="false"/><br />

</html:messages>
</div>

</logic:messagesPresent>
<%-- Success Messages --%>
<logic:messagesPresent message="true">
<div class="message">

<html:messages id="message" message="true">
<bean:write name="message" filter="false"/><br />

</html:messages>
</div>

</logic:messagesPresent>

This could also be done with the JSTL, but we prefer the shorter method with less typing,
so we’re using Struts tags. You’ll notice the second half of this page is used to display success
messages. We think it’s important to know how to create and display success messages in 
an application, so we’ll show you how easy it is. Essentially, all you need do is create a new
messages object and add one or more messages to it. It’s very similar to the ActionErrors class
(it’s actually its superclass), so the creation process is pretty much the same:

ActionMessages messages = new ActionMessages();
// execute business logic to add a new record
// add success message to the request
messages.add(ActionMessages.GLOBAL_MESSAGE, new ActionMessage("record.added");

While we haven’t yet used declarative exception handling with Struts on any real-world
projects, we’ve implemented it in the struts-resume application where it was very useful. If
you have an exception framework that works for your Struts-based application, we also invite
you to chime in on the struts-dev mailing list and suggest improvements. The struts-resume
application gives an example of using declared exceptions, and you can also find an example
in the struts-example application that ships with Struts.

Summary
One of the most frustrating things we’ve experienced in software development is reading about
how to do something, but not having any examples. Design patterns are good only if they work
when implemented. We believe in keeping it simple, and we believe that Struts makes JSP and
servlet development simpler. We know that Struts can be overwhelming at first, but its rewards
are awesome. Using Struts will ultimately lead you to understand web applications better and
will reduce your development time as you use it more.
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Using the tools and sample applications available for Struts can also be overwhelming.
The only way to truly learn what is best is to try them and learn what is best for you. If you
send a message to the Struts user mailing list about something non-Struts-related (for
example HTML, JavaScript, persistence), chances are you’ll get a whole gamut of different
responses and opinions. However, it’s a very active community, and chances are you’ll get
your questions answered. Hopefully, we’ve given you some guidance in what works well with
Struts, and perhaps our sample application will show you how XDoclet makes generating
code and other items much easier. We also invite you to download and use Dave Johnson’s
Roller Weblogger software—it’s open source and has a lot of good Struts code in it. It also 
uses XDoclet and is a fairly robust application. More information on Roller can be found at
http://www.rollerweblogger.org.

Above all, we advise not trying to reinvent the wheel with anything related to web applica-
tions. Chances are that someone has already tried to do what you’re doing. Spending the time
to research your problem and solutions may save you a lot of time down the road. Using mail-
ing list archives and Google can solve a great number of problems. Open-source projects are
great because you get a whole team of developers working with you and helping you use their
frameworks. It helps to get involved with the technology you’re using as well. If you’re using
Struts, subscribe to the struts-user mailing list and watch your inbox fill up, or subscribe to
the digest list for only a couple of e-mails per day. Remember that anything possible in a sim-
ple JSP and servlet application is possible when using Struts. Struts just makes it easier, as
we’re sure any web-based MVC framework does. Likewise, anything that is possible on an
HTML page or with a servlet is possible in a JSP page.

Another reason we really like using Struts is because of the tools that have appeared to
automate the development process. We’re comfortable enough with developing all the com-
ponents that we can check the generated code to make sure everything is fine. You wouldn’t
want to use a code-generator that produces spaghetti code! The Struts Roadmap includes
enhanced support for these tools as well as embraces newer technologies such as JSF and 
the JSTL.

We’ll just note a few tips here as gentle reminders of what we covered in the chapter:

• If you need validation in your Struts application, use the Validator. If you’re using the
Validator, use XDoclet to generate your validation.xml.

• If you need templating in a Struts application, use Tiles. If you’re using Tiles, use defini-
tions and use them as forwards in your struts-config.xml.

• Use container-managed authentication for login—then you’ll have roles available to
show or hide tiles and to limit access to certain actions and links.

• Use CSS rather than tables for page layout. It will reduce the size of your pages, and it’s
easier to develop with in the long run.
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JavaServer Pages 
Syntax Reference

This appendix describes the syntax for JavaServer Pages 2.1. The intention is to provide you
with a reference that is complete and useful, but more compact than the specification. JSP
specifications are available by visiting http://java.sun.com/products/jsp/.

This appendix looks in turn at the following:

• Various preliminary details: the notation we’re using, how URLs are specified in JSP
code, and the various types of commenting you can use.

• The JSP directives: the page, taglib, and include directives.

• JSP scripting elements: declarations, scriptlets, and expressions.

• JSP’s standard actions including the <jsp:useBean>, <jsp:setProperty>,
<jsp:getProperty>, <jsp:include>, and <jsp:forward> actions.

• A brief review of the syntax for using tag libraries.

• The implicit objects that are available within a JSP such as request, response, session,
and application. You’ll examine these in more detail in Appendix B.

• Various predefined request and application attributes that you may find useful.

Preliminaries
Before you get stuck in the details, here are a few miscellaneous observations.

Notation
A word on the notation used in this appendix:

• Attribute names are shown in regular text. These names are used exactly as shown.

• Bold shows the default value of an attribute. Attributes with default values are optional,
if you’re using the default. Sometimes, where the default value is a little complicated,
we use default to indicate that the default is described in the following text.
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• When an attribute has a set of possible values, those are shown delimited by “|”.

• Nondefault attribute values are shown in regular text. In general, if several possible
values are shown, these are the values to use in your JSP. In the following snippet, true
or false are the only valid values for session. In other cases, the value shown is a sam-
ple that you would replace with the appropriate value. For example, the sample value
used with import would be replaced with the actual classes to be imported, such as
java.util.Vector or java.io.*. You should have little difficulty distinguishing which
values are actual values and which are samples.

import="package.class, package.*, ..."
session="true|false"

URL Specifications
URLs specified within JSP tags can be of two sorts:

• Context-relative paths start with a “/”; the base URL is provided by the web applica-
tion to which the JSP belongs. For example, in a web application hosted at http://
localhost:8080/projsp-appendixA/, the URL /pageurl.jsp would be equivalent to
http://localhost:8080/projsp-appendixA/pageurl.jsp.

• Page-relative paths are relative to the JSP page in which they occur. Unlike context-
relative paths, page-relative paths don’t start with “/”. For instance, a page application
hosted at http://localhost:8080/projsp-appendixA/morespecs/urlspec.jsp might give
a page as subfolder/urlspec.jsp, which would be equivalent to http://localhost:8080/
projsp-appendixA/morespecs/subfolder/urlspec.jsp.

Comments
Two sorts of comments are allowed in JSP code—JSP and HTML:

<!-- HTML comments remain in the final client page.
They can contain JSP expressions, which will be ignored by the JSP
container.

-->
<%-- JSP comments are hidden from the final client page --%>

Remember too that within scriptlets (inside <% %>, <%! %>, or <%= %> tags), you can use
standard Java comments:

<%
/* This Java comment starts with a slash asterisk and continues

until you come to a closing asterisk slash.
*/
// Comments starting with a double slash continue to the end of the line.

%>
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Directives
Directives are instructions to the JSP container regarding page properties, importing tag
libraries, and including content within a JSP. Because directives are instructions rather than
in-out processes, they cannot produce any output via the out stream.

The page Directive
The page directive specifies attributes for the page—all the attributes are optional, because the
essential ones have default values, shown in bold.

<%@ page language="java"
extends="package.class"
import="package.class, package.*, ..."
session="true|false"
buffer="none|default|sizekb"
autoFlush="true|false"
isThreadSafe="true|false"
info="Sample JSP to show tags"
isErrorPage="true|false"
errorPage="ErrorPage.jsp"
contentType="TYPE|

TYPE; charset=CHARSET|
text/html; charset=ISO-8859-1"

pageEncoding="default"
isELIgnored="true|false"
deferredSyntaxAllowedAsLiteral="true|false"
trimDirectiveWhitespaces="true|false"

%>

• The default buffer size is defined to be at least 8 KB.

• The errorPage attribute contains the relative URL for the error page to which this page
should go if there’s an unhandled error on this page.

• The specified error page file must declare isErrorPage="true" to have access to the
Exception object. This is an example of the code that may be used for an error page:

<%@ page language="java"
isErrorPage="true" %>

<html>
<body>
<!-- This displays fully-qualified name of the exception -->
<%= exception.toString() %>
<br>
<!-- This displays the exception's descriptive message -->
<%= exception.getMessage() %>

</body>
</html>

The page will print out the error message received. 
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• The contentType attribute sets the MIME type and the character set for the response.
The default value is text/html when defining JSP Pages standard syntax and text/xml
when implementing JSP Documents in XML format.

• The pageEncoding attribute defines the character encoding for the JSP page. The
default is that specified in the contentType attribute, or "ISO-8859-1" if none was spec-
ified there.

• isELIgnored: Sets EL support. The default is false, meaning EL is enabled in the page.
The value for this attribute overrides the value specified in web.xml.

• The deferredSyntaxAllowedAsLiteral attribute configures whether #{ is treated as the
beginning of a deferred EL statement or a literal.

• The trimDirectiveWhitespaces attribute configures whether whitespace is trimmed
from template text.

The taglib Directive
A tag library is a collection of tags used to extend a JSP container functional model. The taglib
directive defines a tag library namespace for the page, mapping the URI of the tag library
descriptor (TLD) to a prefix that can be used to reference tags from the library on this page.

<%@ taglib uri|tagdir="/WEB-INF/taglib.tld" prefix="tagPrefix" %>
<tagPrefix:tagName attributeName="attributeValue" >
JSP content

</tagPrefix:tagName>
<tagPrefix:tagName attributeName="attributeValue" />

You should assume that the tag library descriptor defines a tagName element. The tagdir
attribute indicates this prefix is to be used to identify tag extensions installed in the /WEB-INF/
tags/ directory or a subdirectory. If a tld is present in the specified directory, it’s used. Other-
wise, an implicit tag library is used. A translation error must occur if the value for the tagdir
attribute doesn’t start with /WEB-INF/tags/. A translation error must occur if the value doesn’t
point to a directory that exists. A translation error must occur if used in conjunction with the
uri attribute. 

The include Directive
There are two include tags—the include directive and the jsp:include action. The include
directive includes a static file at translation time, adding any JSP in that file to this page for
runtime processing:

<%@ include file="header.html" %>
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Tag Files
The directives available in tag files differ from that used in a JSP page. The page directive is not
allowed in a tag file. The taglib and include directives can be used in a tag file. There are three
directives that are only valid in tag files, and these are listed here:

• tag

• attribute

• variable

The tag Directive
Note that the page directive itself isn’t used in a tag file, and instead you use the tag directive,
which may only be used in tag files. The tag directive looks like this:

<%@ tag
display-name="display-name"
body-content="scriptless|tagdependent|empty"
dynamic-attributes="name"
small-icon="small-icon"
large-icon="large-icon"
description="description"
example="example"
language="scriptingLanguage"
import="importList"
pageEncoding="peinfo"
isELIgnored="true|false"
deferredSyntaxAllowedAsLiteral="true|false"
trimDirectiveWhitespaces="true|false"

%>

Here’s an example tag directive:

<%@ tag name="msg"
display-name="Message"
body-content="scriptless"
dynamic-attributes="true"
small-icon="/WEB-INF/small-icon.jpg"
large-icon="/WEB-INF/large-icon.jpg"
description="Simple usage of a tag directive"

%>
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The attribute Directive
The attribute directive is analogous to the <attribute> element in the tag library descriptor,
and allows for the declaration of custom action attributes.

<%@ attribute
name="attribute-name"
required="true|false"
fragment="true|false"
rtexprvalue="true|false"
type="type"
description="description"
deferredValue="true|false"
deferredValueType="type"
deferredMethod="true|false"
deferredMethodSignature="signature"

%>

The variable directive
The variable directive is analogous to the <variable> element in the tag library descriptor,
and defines the details of a variable exposed by the tag handler to the calling page.

<%@ variable
( name-given="output-name" |
(name-from-attribute="attr-name" alias="local-name" ) )
variable-class="output-type|String"
declare="true|false"
scope="AT_BEGIN|AT_END|NESTED"
description="description"

%>

Scripting Elements
Scripting elements are used to include snippets of Java code within a JSP: to declare variables
and methods, execute arbitrary Java code, and display the result of Java expressions.

Declarations
The following syntax allows you to declare variables and methods for the page. These are
placed in the generated servlet outside the _jspService() method; in other words, variables
declared here will be instance variables of the servlet, and methods declared here will be
instance methods of the servlet. Declarations don’t produce any output.

Here’s an example of declaring a variable:

<%! String  message; %>

The following code declares a variable and initializes it:

<%! String message = "variable declared"; %>
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You can define a method for use on the global page like so:

<%! public String showMessage() { return message; } %>

Declaration tags are mainly used in conjunction with scriptlets. 

Scriptlets
Scriptlets enclose Java code (on however many lines) that is evaluated within the generated
servlet’s _jspService() method to generate dynamic content:

<%
// Java code

%>

Take care when using adjacent scriptlet blocks; the following code

<% if(user.isLoggedIn) { %>
<p>Hi!</p>

<% } %>
<% else { %>

<p>Please log in first...</p>
<% } %>

isn’t legal because we’ve broken the else block into two scriptlets with embedded whitespace
between the scriptlets.

Expressions
Expressions return a value from the scripting code as a String to the page:

<p>Hello there,
<%= userName %>
Good to see you.</p>

Expressions are not complete Java statements, so you do not terminate an expression
with a semicolon as you would with a line of code in a scriptlet. 

Standard Actions
The standard actions provide various facilities for manipulating JavaBeans components,
including and forwarding control to other resources at request time and generating HTML to
use the Java plug-in.

<jsp:useBean>
The <jsp:useBean> tag checks for an instance of a bean of the given class and scope. If a bean
of the specified class exists, it references it with the id; otherwise it instantiates it. The bean is
available within its scope with its id attribute.
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You can include code between the <jsp:useBean> tags, as shown in the second example—
this code will only be run if the <jsp:useBean> tag successfully instantiates the bean:

<jsp:useBean id="aBeanName"
scope="page|request|session|application"
typeSpecification

/>

or

<jsp:useBean id="anotherBeanName"
scope="page|request|session|application"
typeSpecification>

<jsp.setProperty name="anotherBeanName"
property="*|propertyName" />

</jsp:useBean>

There is a lot of flexibility in specifying the type of the bean (indicated by
typeSpecification). You can use

• class="class_name"

• type="typeName"

• class="package.class" type="typeName" (and with terms reversed)

• beanName="beanName" type="typeName" (and with terms reversed)

where

• typeName is the class of the scripting variable defined by the id attribute; that is, the
class that the bean instance is cast to (whether the class, a parent class, or an interface
the class implements).

• beanName is the name of the bean, as used in the instantiate() method of the
java.beans.Beans class. 

<jsp:setProperty>
The <jsp:setProperty> tag you used previously sets the property of the bean referenced by
name using the value:

<jsp:setProperty name="anotherBeanName"
propertyExpression

/>

The propertyExpression can be any of the following:

• property="*"

• property="propertyName"

• property="propertyName" param="parameterName"

• property="propertyName" value="propertyValue"
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where

• The * setting tells the tag to iterate through the request parameters for the page, setting
any values for properties in the bean whose names match parameter names.

• The param attribute specifies the parameter name to use in setting this property.

• The value attribute can accept a request-time attribute expression.

• Omitting value and param attributes for a property assumes that the bean property and
request parameter name match.

• The value attribute String can be automatically cast to boolean, byte, char, double, int,
float, long, and their class equivalents. Other casts will have to be handled explicitly in
the bean’s setPropertyName() method. 

<jsp:getProperty>
The final bean-handling action is <jsp:getProperty>, which gets the named property and
outputs its value for inclusion in the page.

<jsp:getProperty name="anotherBeanName" property="propertyName" />

<jsp:include>
The <jsp:include> action includes a static or dynamically referenced file at runtime:

<jsp:include page="relativeURL" flush="true|false" />

or

<jsp:include page="relativeURL"
flush="true" >

<jsp:param name="parameterName" value="parameterValue"/>
</jsp:include>

where

• The page attribute can be the result of a request-time expression.

• The optional flush attribute determines whether the output buffer will be flushed
before including the specified resource. The default value is "false".

• The jsp:param tag allows parameters to be appended to the original request, and if the
parameter name already exists, the new parameter value takes precedence in a comma-
delimited list.

<jsp:forward>
To forward the client request to a static resource, whether it be an HTML file, a JSP page, or a
servlet class in the same context as the page, use the following syntax:

<jsp:forward page="relativeURL" />
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or

<jsp:forward page="relativeURL" >
<jsp:param name="parameterName" value="parameterValue" />

</jsp:forward>

where

• The page attribute for <jsp:forward> can be a request-time expression.

• The jsp:param tag allows parameters to be appended to the original request, and if the
parameter name already exists, the new parameter value takes precedence in a comma-
delimited list.

<jsp:param>
The <jsp:param> action is used within the body of <jsp:forward>, <jsp:include>, and
<jsp:plugin> to supply extra name-value parameter pairs. It has the following syntax:

<jsp:param name="parameterName" value="parameterValue" />

<jsp:plugin>
The <jsp:plugin> action enables the JSP to include a bean or an applet in the client page. It
has the following syntax:

<jsp:plugin type="bean|applet"
code="objectCode"
codebase="objectCodebase"
name="instanceName"
title="title"
archive="archiveURI"
align="bottom|top|middle|left|right"
height="inPixels"
width="inPixels"
hspace="leftRightPixels"
vspace="topBottomPixels"
jreversion="1.2|number"
nspluginurl="pluginURL"
iepluginurl="pluginURL"
mayscript="true|false" >

<jsp:params>
<jsp:param name="parameterName" value="parameterValue">

</jsp:params>
<jsp:fallback>arbitrary text</jsp:fallback>

</jsp:plugin>

Most of these attributes are direct from the HTML spec (http://www.w3.org/TR/html4/),
with the exceptions being type, jreversion, nspluginurl, and iepluginurl.
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• The name, archive, align, height, width, hspace, vspace, jreversion, nspluginurl, and
iepluginurl attributes are optional.

• The <jsp:param> tag’s value attribute can take a runtime expression.

• The jreversion is the Java Runtime Environment specification version that the compo-
nent requires.

• nspluginurl and iepluginurl are the URL where the Java plug-in can be downloaded
for Netscape Navigator and Internet Explorer.

<jsp:params>
Only valid as part of a <jsp:plugin> action. Contains zero or more <jsp:param> actions.

<jsp:fallback>
Only valid as part of a <jsp:plugin> action. Provides content for the client browser if the plug-
in cannot be started.

<jsp:attribute>
Used to define one or more attributes for a standard or custom action. Can also be used as
part of the body of a <jsp:element> standard action. It has the following syntax:

<jsp:attribute
name="attributeName"
trim="true|false"

</jsp:attribute>

• name is required and is the name of the attribute being defined.

• trim is optional and specifies whether whitespace should be trimmed from the body of
the action.

• The body of the action is the value of the attribute being defined.

For example, this use of the <jsp:attribute> action:

<jsp:getProperty>
<jsp:attribute name="name">anotherBeanName</jsp:attribute>
<jsp:attribute name="property">propertyName</jsp:attribute>

</jsp:getProperty>

is equivalent to

<jsp:getProperty name="anotherBeanName" property="propertyName" />

<jsp:body>
Defines the body of a custom or standard action. Required if one or more <jsp:attribute>
elements appear in the body of the tag. This action has no attributes.
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<jsp:invoke>
This tag is valid only in tag files. It takes the name of an attribute that is a fragment, and
invokes the fragment, sending the output of the result to the JspWriter, or to a scoped attribute
that can be examined and manipulated. If the fragment identified by the given name is null,
<jsp:invoke> will behave as though a fragment was passed in that produces no output. It has
the following syntax:

<jsp:invoke
fragment="fragmentName"
var="varName"
varReader="varReaderName"
scope="page|request|session|application"

</jsp:invoke>

• fragment is the name of the fragment being invoked.

• var is optional and is the name of the attribute that stores the result. Only one of var or
varReader can be used.

• varReader is optional and is the name of the attribute of type java.io.Reader that stores
the result. Only one of var or varReader can be used.

• scope is optional and is the scope in which var or varReader is stored.

Suppose you had a tag that looked like this:

<projsp:copyright>
<jsp:attribute name="frag">
fragment template text ${var1}

</jsp:attribute>
</projsp:copyright>

You would access the fragment in a tag file like this:

<%-- /WEB-INF/tags/copyright.tag --%>
<%@ attribute name="frag" fragment="true" %>
Some template text.
<jsp:invoke fragment="frag" />

<jsp:doBody>
The <jsp:doBody> standard action can only be used in tag files. It invokes the body of the tag,
sending the output of the result to the JspWriter, or to a scoped attribute that can be examined
and manipulated. It has the following syntax:

<jsp:doBody
var="varName"
varReader="varReaderName"
scope="page|request|session|application"

</jsp:doBody>
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• var is optional and is the name of the attribute that stores the result. Only one of var or
varReader can be used.

• varReader is optional and is the name of the attribute of type java.io.Reader that stores
the result. Only one of var or varReader can be used.

• scope is optional and is the scope in which var or varReader is stored.

<jsp:element>
The <jsp:element> action is used to dynamically define the value of the tag of an XML ele-
ment. This action can be used in JSP pages, tag files, and JSP documents. This action has an
optional body; the body can use the <jsp:attribute> and <jsp:body> actions. A <jsp:element>
action has one mandatory attribute, name, of type String. The value of the attribute is used as
that of the tag of the element generated. Its syntax is

<jsp:element name="elementName"
<jsp:attribute name="attributeName">attribute value</jsp:attribute>
<jsp:body>arbitrary text</jsp:body>

</jsp:element>

So, for example, this <jsp:element> tag

<jsp:element name="projsp:copyright"
<jsp:attribute name="year">2005</jsp:attribute>
<jsp:body>copyright body</jsp:body>

</jsp:element>

is equivalent to

<projsp:copyright year="2005" >
copyright body

</projsp:copyright>

<jsp:text>
A <jsp:text> action can be used to enclose template data in a JSP page, a JSP document, or a
tag file. A <jsp:text> action has no attributes and can appear anywhere that template data
can. Its syntax is

<jsp:text>arbitrary text</jsp:text>

<jsp:output>
The <jsp:output> action can only be used in JSP documents and in tag files in XML syntax,
and a translation error must result if used in a standard syntax JSP or tag file. This action is
used to modify some properties of the output of a JSP document or a tag file. Its syntax is

<jsp:output omit-xml-declaration="yes|no|true|false" doctypeDecl />
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where docTypeDecl can be

doctype-root-element="rootElement"
doctype-public="PubidLiteral"
doctype-system="SystemLiteral"

or

doctype-root-element="rootElement"
doctype-system="SystemLiteral"

• omit-xml-declaration is optional, and it indicates whether to omit the generation of an
XML declaration. Acceptable values are true, yes, false, and no.

• doctype-root-element is optional, and it indicates the name that is to be output in the
generated DOCTYPE declaration.

• doctype-system is optional, and it specifies that a DOCTYPE declaration is to be gener-
ated and gives the value for the system literal.

• doctype-public is optional, and it gives the value for the public ID for the generated
DOCTYPE. 

Tag Libraries
The syntax for using tag libraries is very similar to that for the standard actions, except of
course that the tag names and attributes are defined in the tag library itself rather than by the
JSP standard. Each tag library is associated with a prefix by using the taglib directive to map
the prefix to a URI identifying the tag library. For example, to use the IO tag library from the
Jakarta Taglibs project (http://jakarta.apache.org/taglibs/doc/io-doc/intro.html), you
would insert the following taglib directive at the top of a page:

<%@ taglib uri="http://jakarta.apache.org/taglibs/io-1.0"
prefix="io"  %>

Within the JSP, tags from the library can then be used by including the prefix defined in
the taglib directive and the tag’s name. For example, the <request> tag can be used to access a
web resource and include it in the JSP page:

<io:request url="http://www.apress.com">
</io:request>

The mapping between a particular URI (as used in the taglib directive) and the TLD can
be set up in one of two ways. In JSP 2.1, it’s possible to package tag libraries so that the map-
ping is automatic, based on settings contained in the TLD file. Alternatively, an entry can be
made in the web.xml file to map a URI to a TLD file:

<taglib>
<taglib-uri>http://jakarta.apache.org/taglibs/io-1.0</taglib-uri>
<taglib-location>/WEB-INF/request.tld</taglib-location>

</taglib>
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Implicit Objects
JSP defines a number of implicit objects that JSP scripting elements can make use of:

• request, of type javax.servlet.http.HttpServletRequest

• response, of type javax.servlet.http.HttpServletResponse

• out, of type javax.servlet.jsp.JspWriter

• session, of type javax.servlet.http.HttpSession

• application, of type javax.servlet.ServletContext

• exception, of type java.lang.Throwable

• config, of type javax.servlet.ServletConfig

• page, a reference to the implementing servlet class for the JSP

• pageContext, of type javax.servlet.jsp.PageContext

Appendix B gives details of these objects and the methods that each makes available.
There are many more classes and interfaces defined by the JSP and Servlet specifications. 

Predefined Attributes
The Servlet and JSP specifications define a number of special request and context (applica-
tion) attributes. You access these through the getAttribute() and getAttributeNames()
methods of the request object.

SSL Protocol Attributes
These attributes are only available when a request has been made over the Secure Sockets
Layer (SSL). SSL allows you to set up secure communications between the server and a client.

javax.servlet.request.cipher_suite
javax.servlet.request.cipher_suite is a request attribute of type String containing the
cipher suite used for an SSL request.

javax.servlet.request.key_size
javax.servlet.request.key_size is a request attribute of type Integer containing the bit size
that was used for an SSL request. Here’s an example:

public boolean isOver128bit(HttpServletRequest request) {
Integer reqSize = (Integer) request.getAttribute(

"javax.servlet.request.key_size");
if(reqSize != null) {
if (reqSize.intValue() < 128) {
return false;
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} else {
return true;

}
}

}

javax.servlet.request.X509Certificate
javax.servlet.request.X509Certificate is a request attribute that contains an array of
objects of type java.security.cert.X509Certificate containing any certificate associated
with an SSL request. 

Inclusion- and Forward-Related Attributes
These attributes apply when a servlet or JSP is accessed via a <jsp:include>, RequestDispatcher.
include(), or RequestDispatcher.forward() like so:

request.getRequestDispatcher("servlet_path/myservlet").forward(req, res);

javax.servlet.include.request_uri
javax.servlet.include.request_uri is a request attribute of type String containing the URI
under which this included servlet or JSP is being accessed. 

String reqURI = (String) request.getAttribute(
"javax.servlet.include.request_uri");

javax.servlet.include.context_path
javax.servlet.include.context_path is a request attribute of type String containing the
context path of the URI under which this included servlet or JSP is being accessed.

String contextPath = (String) req.getAttribute(
"javax.servlet.include.context_path");

javax.servlet.include.path_info
javax.servlet.include.path_info is a request attribute of type String containing the path
info of the URI under which this included servlet or JSP is being accessed.

String pathInfo = (String) req.getAttribute(
"javax.servlet.include.path_info");

javax.servlet.include.servlet_path
javax.servlet.include.servlet_path is a request attribute of type String containing the
servlet path of the URI under which this included servlet or JSP is being accessed.
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String pathInfo;
if(req.getAttribute("javax.servlet.include.servlet_path") != null) {
pathInfo = (String)req.getAttribute("javax.servlet.include.path_info");

}

javax.servlet.include.query_string
javax.servlet.include.query_string is a request attribute of type String containing the
query string of the URI under which this included servlet or JSP is being accessed. 

String reqQueryString = req.getAttribute(
"javax.servlet.include.query_string");

Servlet Error Page Attributes
These attributes are only available within an error page declared in web.xml.

javax.servlet.error.status_code
javax.servlet.error.status_code is a request attribute of type Integer containing the status
code of the servlet or JSP that caused the error.

Integer statusCode = (Integer) req.getAttribute(
"javax.servlet.error.status_code");

String error = "HTTP Status Code - " + statusCode.intValue();
return error;

javax.servlet.error.exception_type
javax.servlet.error.exception_type is a request attribute of type Class that contains the
type of the exception thrown by the servlet or JSP. It’s now redundant with the introduction of
the javax.servlet.error.exception attribute.

Exception e = (Exception) req.getAttribute(
"javax.servlet.error.exception_type");

javax.servlet.error.message
javax.servlet.error.message is a request attribute of type String containing the message
contained within the exception thrown by the servlet or JSP. It’s now redundant with the intro-
duction of the javax.servlet.error.exception attribute.

String statusCode = (String) req.getAttribute(
"javax.servlet.error.status_code");

String message= (String)req.getAttribute("javax.servlet.error.message");
if message == null) {
message = "Unknown error";

}
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javax.servlet.error.exception
javax.servlet.error.exception is a request attribute of type Throwable containing the excep-
tion thrown by the servlet or JSP.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriter out = res.getWriter();
Throwable throwable = (Throwable) req.getAttribute(

"javax.servlet.error.exception");
if (throwable != null)
throwable.printStackTrace(out);

}

javax.servlet.error.request_uri
javax.servlet.error.request_uri is a request attribute of type String containing the URI of
the request that caused the servlet or JSP to throw an exception.

String reqErrorUri = (String) req.getAttribute("
javax.servlet.error.request_uri");

javax.servlet.error.servlet_name
javax.servlet.error.servlet_name is a request attribute of type String containing logical
name of the servlet in which the error occurred.

JavaServer Pages Error Page Attribute
This attribute is available within error pages declared in a JSP page directive.

javax.servlet.jsp.jspException
javax.servlet.jsp.jspException is a request attribute of type Throwable containing the
exception thrown by the JSP page.

<%
try {
InputStream in = pageContext.getServletContext()

.getResourceAsStream(fileName);
if(in == null) {
throw new JspException( "Error while opening file: '"+ fileName + "'");

}
} catch(Exception ex ) {
//handle exception

}
%>
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Temporary File Directory Attribute
This attribute allows a web application to make use of a temporary working directory.

javax.servlet.context.tempdir
javax.servlet.context.tempdir is a context attribute of type java.io.File referencing a tem-
porary working directory that can be used by the web application.

File tempDir = (File) getServletContext()
.getAttribute("javax.servlet.context.tempdir");
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JSP Implicit Objects

JSP defines a number of implicit objects that scripting elements can make use of. These
implicit objects are Java objects that implement interfaces in the Servlet and JSP API and that
the JSP container makes available to developers in each page. These objects may be accessed
as built-in variables via scripting elements and can also be accessed programmatically by cus-
tom and standard actions. This appendix gives details of these objects and the methods that
each of them exposes. There are many more classes and interfaces defined by the JSP and
Servlet specifications.

■Note Apart from the page, pageContext, and exception implicit objects, this appendix lists all the meth-
ods available for each object (except those defined in java.lang.Object), irrespective of which class or
interface defines the methods.

The implicit objects are as follows:

• request

• response

• out

• session

• application

• exception

• config

• page

• pageContext
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The request Object
The request object is an instance of a class that implements the javax.servlet.http.
HttpServletRequest interface. The most common use of the request object is to obtain
request parameters, request attributes, and query string values. It represents the request
made by the client, and makes the following methods available:

public Object getAttribute(String name)

getAttribute() returns the value of the specified request attribute name. The return value
is an Object or subclass if the attribute is available to the invoking ServletRequest object or
null if the attribute isn’t available.

public java.util.Enumeration getAttributeNames()

getAttributeNames() returns an Enumeration containing the attribute names available to
the invoking ServletRequest object.

public String getAuthType()

getAuthType() returns the name of the authentication scheme used in the request or null
if no authentication scheme was used. It returns one of the constants BASIC_AUTH, FORM_AUTH,
CLIENT_CERT_AUTH or DIGEST_AUTH or null if the request was not authenticated.

public String getCharacterEncoding()

getCharacterEncoding() returns a String object containing the character encoding used
in the body of the request or null if there is no encoding. 

public int getContentLength()

getContentLength() returns the length of the body of the request in bytes or –1 if the
length is not known.

public String getContentType()

getContentType() returns a String object containing the MIME type (text/plain,
text/html, image/gif, etc.) of the body of the request or null if the type isn’t known.

public String getContextPath()

getContextPath() returns the part of the request URI that indicates the context path 
of the request. The context path is the first part of the URI and always begins with the “/”
character. For servlets running in the root context, this method returns an empty String. For
example, if there is an incoming request for http://localhost/guide/suburbs/index.jsp, then
getContextPath() would return /guide.

public Cookie[] getCookies()

getCookies() returns an array containing any Cookie objects sent with the request or null
if no cookies were sent.
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public long getDateHeader(String name)

getDateHeader() returns a long value that converts the date specified in the named
header to the number of milliseconds since midnight January 1, 1970, Greenwich Mean Time
(GMT). This method is used with a header that contains a date and returns –1 if the request
doesn’t contain the specified header. 

public String getHeader(String name)

getHeader() returns the value of the specified header expressed as a String object or null
if the request doesn’t contain the specified header. (See also the getHeaderNames() method
next.) Here is an example HTTP request:

GET /search?index=servlets+jsp HTTP/1.1
Accept: image/gif, image/jpg, */*
Accept-Encoding: gzip
Connection: Keep-Alive
Cookie: userID=id66589
Host: www.mycompany.com
Referer: http://www.mycompany.com/getproducts.html
User-Agent: Mozilla/4.6 [en] (WinXP; U)

For example, if the usage is getRequest("Connection"), it would return Keep-Alive:

public java.util.Enumeration getHeaderNames()

getHeaderNames() returns an Enumeration containing all of the header names used by the
request.

public java.util.Enumeration getHeaders(String name)

getHeaders() returns an Enumeration containing all of the values associated with the
specified header name. The method returns an empty enumeration if the request doesn’t
contain the specified header.

public ServletInputStream getInputStream() throws java.io.IOException

getInputStream() returns a ServletInputStream object that can be used to read the body
of the request as binary data.

public int getIntHeader(String name)

getIntHeader() returns the value of the specified header as an int. It returns –1 if the
request doesn’t contain the specified header and throws a NumberFormatException if the
header value cannot be converted to an int. This method was made for convenience when 
the header type is known to be an integer.

public String getLocalAddr()

getLocalAddress() returns the Internet Protocol (IP) address of the interface on which the
request was received.
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public java.util.Locale getLocale()

getLocale() returns the preferred locale of the client that made the request.

public java.util.Enumeration getLocales()

getLocales() returns an Enumeration containing, in descending order of preference, the
locales that are acceptable to the client machine.

public String getLocalName()

getLocalName() returns the host name of the IP interface on which the request was
received.

public int getLocalPort()

getLocalPort() returns the IP port number of the interface on which the request was
received.

public String getMethod()

getMethod() returns the name of the HTTP method used to make the request. Typical
return values are "GET", "POST", or "PUT".

public String getParameter(String name)

getParameter() returns a String object containing the value of the specified parameter or
null if the parameter doesn’t exist.

public java.util.Map getParameterMap()

getParameterMap() returns a Map containing the request parameters. Each parameter
name is a key in the map; parameter values are stored as String arrays.

public java.util.Enumeration getParameterNames()

getParameterNames() returns a Enumeration of String objects containing the names of the
parameters that are part of the current request.

public String[] getParameterValues(String name)

getParameterValues() is used when a parameter may have more than one value associated
with it. The method returns a String array containing the values of the specified parameter or
null if the parameter doesn’t exist.

public String getPathInfo()

getPathInfo() returns any additional path information contained in the request URL.
This extra information will appear after the servlet path and before the query string. It returns
null if there is no additional path information. For example, if a request URL had the form
http://localhost/guide/suburbs/innersuburbs/ where guide is the context and suburbs iden-
tifies a resource in the application, then getPathInfo() would return /innersuburbs.
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public String getPathTranslated()

getPathTranslated() returns the same information as the getPathInfo() method, but
translated into a real path.

public String getProtocol()

getProtocol() returns the name and version of the protocol used by the request. A typical
return String would be "HTTP/1.1".

public String getQueryString()

getQueryString() returns the query string that was contained in the request URL without
any decoding from the container or null if there was no query string.

public java.io.BufferedReader getReader() throws java.io.IOException

getReader() returns a BufferedReader object that can be used to read the body of the
request as character data.

public String getRemoteAddr()

getRemoteAddr() returns a String object containing the IP address of the client machine
that made the request. 

public String getRemoteHost()

getRemoteHost() returns a String object containing the name of the client machine or the
IP address if the name cannot be determined.

public int getRemotePort()

getRemotePort() returns the IP source port of the client or last proxy that sent the request.

public String getRemoteUser()

getRemoteUser() returns the login of the user making the request or null if the user hasn’t
been authenticated.

public RequestDispatcher getRequestDispatcher(String path)

getRequestDispatcher() returns a RequestDispatcher object that acts as a wrapper
around the resource located at the specified path. The path must begin with “/” and can be a
relative path.

public String getRequestedSessionId()

getRequestedSessionId() returns the session ID that was specified by the client or null if
the request didn’t specify an ID.

public String getRequestURI()

getRequestURI() returns a subsection of the request URL, from the protocol name to the
query string.
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public StringBuffer getRequestURL()

getRequestURL() reconstructs the URL used to make the request including the protocol,
server name, port number, and path, but excluding the query string.

public String getScheme()

getScheme() returns the scheme ("http", "https", "ftp", and so on) used to make the
request.

public String getServerName()

getServerName() returns a String object containing the name of the server that received
the request.

public int getServerPort()

getServerPort() returns the port number that received the request. 

public String getServletPath()

getServletPath() returns the part of the request URL that was used to call the servlet,
without any additional information or the query string.

public HttpSession getSession(boolean create)
public HttpSession getSession()

getSession() and getSession(true) return the HttpSession object associated with the
request. If the request doesn’t currently have a session, calling either method will create one.
Setting the boolean parameter create to false overrides this.

public Principal getUserPrincipal()

getUserPrincipal() returns a java.security.Principal object containing the name of the
current authenticated user. If the user has not been authenticated, the method returns null.

public boolean isRequestedSessionIdFromCookie()

isRequestedSessionIdFromCookie() returns true if the session ID came in from a cookie.

public boolean isRequestedSessionIdFromURL()

isRequestedSessionIdFromURL() returns true if the session ID came in as part of the
request URL.

public boolean isRequestedSessionIdValid()

isRequestedSessionIdValid() returns true if the session ID requested by the client is still
valid.

public boolean isSecure()

isSecure() returns true if the request was made using a secure channel, for example
HTTPS.
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public boolean isUserInRole(String role)

isUserInRole() returns true if the authenticated user has the specified logical role or
false if the user isn’t authenticated. 

public void removeAttribute(String name)

removeAttribute()makes the specified attribute unavailable to the invoking ServletRequest
object. Subsequent calls to the getAttribute() method for this attribute will return null.

public void setAttribute(String name, Object o)

setAttribute() binds a value to a specified attribute name. Note that attributes will be
reset after the request is handled.

public void setCharacterEncoding(String env) ➥

throws java.io.UnsupportedEncodingException

setCharacterEncoding() overrides the character encoding used in the body of this
request.

public static final String BASIC_AUTH
public static final String FORM_AUTH
public static final String CLIENT_CERT_AUTH
public static final String DIGEST_AUTH

These String constants are used to identify the different types of authentication that 
may have been used to protect the servlet. They have the values BASIC, FORM, CLIENT_CERT, and
DIGEST, respectively.

public String getRealPath(String path)
public boolean isRequestedSessionIdFromUrl()

These methods are deprecated and should not be used in new code—they exist for
compatibility with existing code. Use ServletContext.getRealPath(java.lang.String)
instead of getRealPath(String path) and use isRequestedSessionIdFromURL() instead of
isRequestedSessionIdFromUrl().

The response Object
The response object is an instance of a class that implements the javax.servlet.http.
HttpServletResponse interface. It represents the response to be made to the client and makes
the following methods available:

public void addCookie(Cookie cookie)

addCookie() adds the specified cookie to the response. It can be called multiple times to
set more than one cookie.
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public void addDateHeader(String name, long date)

addDateHeader() adds a response header containing the specified header name and the
number of milliseconds since midnight January 1, 1970, GMT. This method can be used to
assign multiple values to a given header name.

public void addHeader(String name, String value)

addHeader() adds a response header with the specified name and value. This method can
be used to assign multiple values to a given header name.

public void addIntHeader(String name, int value)

addIntHeader() adds a response header with the specified name and int value. This
method can be used to assign multiple values to a given header name.

public boolean containsHeader(String name) 

containsHeader() returns true if the response header includes the specified header name.
This method can be used before calling one of the set() methods to determine whether the
header value has already been set.

public String encodeRedirectURL(String url)

encodeRedirectURL() encodes the specified URL with session tracking data or returns it
unchanged if encoding isn’t required. This method is used to process a URL before sending it
to the sendRedirect()method.

public String encodeURL(String url)

encodeURL() encodes the specified URL by including the session ID or returns it
unchanged if encoding isn’t needed. All URLs generated by a servlet should be processed
through this method to ensure compatibility with browsers that don’t support cookies.

public void flushBuffer() throws java.io.IOException

flushBuffer() causes any content stored in the buffer to be written to the client. Calling
this method will also commit the response, meaning that the status code and headers will be
written.

public int getBufferSize()

getBufferSize() returns the buffer size used for the response or 0 if no buffering is used.

public String getCharacterEncoding()

getCharacterEncoding() returns a String object containing the character encoding used
in the body of the response. The default is "ISO-8859-1", which corresponds to Latin-1. 

public String getContentType()

getContentType() returns the content type used for the MIME body sent in this response.

APPENDIX B ■ JSP IMPLICIT  OBJECTS660

513-0 appb.qxd  11/17/05  4:14 PM  Page 660



public java.util.Locale getLocale()

getLocale() returns the locale that has been assigned to the response. By default, this will
be the default locale for the server.

public ServletOutputStream getOutputStream() throws java.io.IOException

getOutputStream() returns a ServletOutputStream object that can be used to write the
response as binary data.

public java.io.PrintWriter getWriter() throws java.io.IOException

getWriter() returns a PrintWriter object that can be used to write the response as char-
acter data.

public boolean isCommitted()

isCommitted() returns true if the response has been committed, meaning that the status
code and headers have been written. 

public void reset()

reset() clears the status code and headers and any data that exists in the buffer. If the
response has already been committed, calling this method will cause an exception to be
thrown.

public void resetBuffer()

resetBuffer() clears the content of the response buffer without clearing the headers or
status code. It will throw an IllegalStateException if the response has been committed. 

public void sendError(int sc, String msg) throws java.io.IOException
public void sendError(int sc) throws java.io.IOException

sendError() sends an error response back to the client machine using the specified error
status code. A descriptive message can also be provided. This method must be called before
the response is committed (in other words, before the status code and headers have been
written).

public void sendRedirect(String location) throws java.io.IOException

sendRedirect() redirects the client machine to the URL specified by the location parame-
ter. This method must be called before the response is committed (in other words, before
sending it to the client).

public void setBufferSize(int size)

setBufferSize() requests a buffer size to be used for the response. The actual buffer size
will be at least this large.

public void setCharacterEncoding(String charset)

Sets the character encoding (MIME charset) of the response being sent to the client, for
example, to UTF-8.
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public void setContentLength(int len)

setContentLength() sets the length of the response body.

public void setContentType(String type)

setContentType() sets the content type of the response sent to the server. The String
argument specifies a MIME type and may also include the type of character encoding, for
example, "text/plain; charset=ISO-8859-1".

public void setDateHeader(String name, long date)

setDateHeader() sets the time value of a response header for the specified header name.
The time is the number of milliseconds since midnight January 1, 1970, GMT. If the time
value for the specified header has been previously set, the value passed to this method will
override it.

public void setHeader(String name, String value)

setHeader() sets a response header with the specified name and value. If the value for the
specified header has been previously set, the value passed to this method will override it.

public void setIntHeader(String name, int value)

setIntHeader() sets a response header with the specified name and int value. If the int
value for the specified header has been previously set, the value passed to this method will
override it. 

public void setLocale(java.util.Locale loc)

setLocale() specifies the locale that will be used for the response.

public void setStatus(int sc)

setStatus() sets the status code and should be one of SC_ACCEPTED, SC_OK, SC_CONTINUE,
SC_PARTIAL_CONTENT, SC_CREATED, SC_SWITCHING_PROTOCOLS, or SC_NO_CONTENT.

public static final int SC_CONTINUE
public static final int SC_SWITCHING_PROTOCOLS
public static final int SC_OK
public static final int SC_CREATED
public static final int SC_FOUND
public static final int SC_ACCEPTED
public static final int SC_NON_AUTHORITATIVE_INFORMATION
public static final int SC_NO_CONTENT
public static final int SC_RESET_CONTENT
public static final int SC_PARTIAL_CONTENT
public static final int SC_MULTIPLE_CHOICES
public static final int SC_MOVED_PERMANENTLY
public static final int SC_MOVED_TEMPORARILY
public static final int SC_SEE_OTHER
public static final int SC_NOT_MODIFIED
public static final int SC_USE_PROXY
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public static final int SC_TEMPORARY_REDIRECT
public static final int SC_BAD_REQUEST
public static final int SC_UNAUTHORIZED
public static final int SC_PAYMENT_REQUIRED
public static final int SC_FORBIDDEN
public static final int SC_NOT_FOUND
public static final int SC_METHOD_NOT_ALLOWED
public static final int SC_NOT_ACCEPTABLE
public static final int SC_PROXY_AUTHENTICATION_REQUIRED
public static final int SC_REQUEST_TIMEOUT
public static final int SC_CONFLICT
public static final int SC_GONE
public static final int SC_LENGTH_REQUIRED
public static final int SC_PRECONDITION_FAILED
public static final int SC_REQUEST_ENTITY_TOO_LARGE
public static final int SC_REQUEST_URI_TOO_LONG
public static final int SC_UNSUPPORTED_MEDIA_TYPE
public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE
public static final int SC_EXPECTATION_FAILED
public static final int SC_INTERNAL_SERVER_ERROR
public static final int SC_NOT_IMPLEMENTED
public static final int SC_BAD_GATEWAY
public static final int SC_SERVICE_UNAVAILABLE
public static final int SC_GATEWAY_TIMEOUT
public static final int SC_HTTP_VERSION_NOT_SUPPORTED

These constants represent the status codes defined in the HTTP specification. (Go to
http://www.w3.org/TR/html401/ for more information.)

public String encodeUrl(String url)
public String encodeRedirectUrl(String url)
public void setStatus(int sc, String sm)

These methods are deprecated and should not be used in new code—they exist for
compatibility with existing code. 

The out Object
The out object is an instance of the javax.servlet.jsp.JspWriter class. It’s used to create the
content returned to the client and has the following useful methods available:

public abstract void clear() throws java.io.IOException

clear() clears the contents of the buffer; it throws an exception if some data has already
been written to the output stream.

public abstract void clearBuffer() throws java.io.IOException

clearBuffer() clears the contents of the buffer, but doesn’t throw an exception if some
data has already been written to the output stream.
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public abstract void close() throws java.io.IOException

close() flushes and then closes the output stream.

public abstract void flush() throws java.io.IOException

flush() flushes the output buffer and sends any bytes contained in the buffer to their
intended destination. flush() will flush all the buffers in a chain of Writers and
OutputStreams.

public int getBufferSize()

getBufferSize() returns the size in bytes of the output buffer. 

public abstract int getRemaining()

getRemaining() returns the number of bytes still contained in the buffer. It will return 0 if
output is unbuffered.

public boolean isAutoFlush()

isAutoFlush() returns true if the buffer flushes automatically when an overflow condition
occurs.

public abstract void newLine() throws java.io.IOException

newLine() writes a newline character to the output stream.

public abstract void print(boolean b) throws java.io.IOException
public abstract void print(char c) throws java.io.IOException
public abstract void print(int i) throws java.io.IOException
public abstract void print(long l) throws java.io.IOException
public abstract void print(float f) throws java.io.IOException
public abstract void print(double d) throws java.io.IOException
public abstract void print(char[] s) throws java.io.IOException
public abstract void print(String s) throws java.io.IOException
public abstract void print(Object obj) throws java.io.IOException

The print() method prints the specified primitive data type, the specified Object, or the
specified String to the client.

try {
boolean b = false;
out.print(b);
JspWriter out = pageContext.getOut();
out.print(b);

} catch(IOException ioe) {
// Catch error.

}

The output of the preceding code is as follows:

false
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public abstract void println() throws java.io.IOException
public abstract void println(boolean x) throws java.io.IOException
public abstract void println(char x) throws java.io.IOException
public abstract void println(int x) throws java.io.IOException
public abstract void println(long x) throws java.io.IOException
public abstract void println(float x) throws java.io.IOException
public abstract void println(double x) throws java.io.IOException
public abstract void println(char[] x) throws java.io.IOException
public abstract void println(String x) throws java.io.IOException
public abstract void println(Object x) throws java.io.IOException

println() prints the specified primitive data type, the Object, or the String to the client,
followed by a newline character at the end. The no-argument version simply writes a newline
character. For example:

try {
JspWriter out = pageContext.getOut();
out.println("<html><title>Page Title</title></html>");

} catch(IOException ioe) {
// Catch error.

}

public void write(char[] cbuf)
public abstract void write(char[] cbuf, int off, int len)
public void write(int c)
public void write(String str)
public void write(String str, int off, int len)

The write() method writes the given data to the client. 

The session Object
The session object is an instance of a class that implements the javax.servlet.http.
HttpSession interface. It can be used to store session state for a user and makes the following
methods available:

public Object getAttribute(String name)

getAttribute() returns the Object bound to the specified name in this session or null if it
doesn’t exist.

public java.util.Enumeration getAttributeNames()

getAttributeNames() returns an Enumeration of String objects containing the names of all
the objects bound to this session. 

public long getCreationTime()

getCreationTime() returns the time when the session was created in milliseconds since
midnight Jan 1, 1970 GMT.
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public String getId()

getId() returns a String object containing a unique identifier for this session.

public long getLastAccessedTime()

getLastAccessedTime() returns the last time a client request associated with the session
was sent. The return value is the number of milliseconds since midnight Jan 1, 1970, GMT. 

public int getMaxInactiveInterval()

getMaxInactiveInterval() returns the number of seconds the server will wait between
client requests before the session is invalidated. A negative return value indicates the session
will never time out.

public ServletContext getServletContext()

getServletContext() returns the ServletContext to which this session belongs.

public void invalidate()

invalidate() invalidates the session and unbinds any objects bound to it.

public boolean isNew()

isNew() returns true if the server has created a session that hasn’t yet been accessed by 
a client.

public void removeAttribute(String name)

removeAttribute() removes the Object bound to the specified name from this session.

public void setAttribute(String name, Object value)

setAttribute() binds an Object to the specified attribute name in this session. If the attri-
bute name already exists, the Object passed to this method will replace the previous Object.

public void setMaxInactiveInterval(int interval)

setMaxInactiveInterval() specifies the number of seconds the server will wait between
client requests before the session is invalidated. If a negative value is passed to this method,
the session will never time out.

public HttpSessionContext getSessionContext()
public Object getValue(String name)
public String[] getValueNames()
public void putValue(String name, Object value)
public void removeValue(String name)

These methods are deprecated and should not be used in new code—they exist for
compatibility with existing code. 
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The application Object
The application object is an instance of a class that implements the javax.servlet.
ServletContext interface and allows the page to obtain and set information about the web
application in which it is running. It makes available the following methods:

public Object getAttribute(String name)

getAttribute() returns the value of the specified attribute name. The return value is an
Object or subclass if the attribute is available to the invoking ServletContext object or null if
the attribute isn’t available.

public java.util.Enumeration getAttributeNames()

getAttributeNames() returns an Enumeration containing the attribute names available to
the invoking ServletContext object.

public ServletContext getContext(String uripath)

getContext() returns the ServletContext object for the resource at the specified path on
the server. The path argument is an absolute URL beginning with “/”.

public String getInitParameter(String name)

getInitParameter() returns a String object containing the value of the specified initial-
ization parameter or null if the parameter doesn’t exist.

public java.util.Enumeration getInitParameterNames()

getInitParameterNames() returns an Enumeration containing the initialization parameter
names associated with the invoking ServletContext object.

public int getMajorVersion()

getMajorVersion() returns the major version of the Java Servlet API that the server sup-
ports. For servers supporting version 2.5 of the Servlet specification, this method will return 2.

public String getMimeType(String file)

getMimeType() returns the MIME type of the specified file or null if the MIME type cannot
be ascertained. Typical return values will be "text/plain", "text/html", or "image/jpg".

public int getMinorVersion()

getMinorVersion() returns the minor version of the Java Servlet API that the server sup-
ports. For servers supporting version 2.5 of the Servlet specification, this method will return 5.

public RequestDispatcher getNamedDispatcher(String name)

getNamedDispatcher() returns a RequestDispatcher object that will be wrapped around
the named servlet.
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public String getRealPath(String path)

getRealPath() returns a String object containing the real path, in a form appropriate to
the platform on which the servlet is running, corresponding to the given virtual path. An
example of a virtual path might be "/blah.html".

public RequestDispatcher getRequestDispatcher(String path)

getRequestDispatcher() returns a RequestDispatcher object that acts as a wrapper
around the resource located at the specified path. The path must begin with “/” and is inter-
preted relative to the current context root.

public java.net.URL getResource(String path)
throws java.net.MalformedURLException

getResource() returns a URL object that is mapped to the specified path or null if there is
no resource mapped to the path. The path must begin with “/” and is interpreted relative to
the current context root. 

public java.io.InputStream getResourceAsStream(String path)

getResourceAsStream() returns the resource at the specified path as an InputStream
object.

public java.util.Set getResourcePaths()

getResourcePaths() returns all the paths to resources held in the web application as
Strings beginning with a “/”.

public String getServerInfo()

getServerInfo() returns a String object containing information on the server on which
the servlet is running. At a minimum, the String will contain the servlet container name and
version number.

<% out.print(application.getServerInfo()); %>

The output is as follows:

Apache Tomcat/5.5.9

public String getServletContextName()

getServletContextName() returns the name of the web application, as specified in the
<display-name> element in web.xml.

public void log(String msg)
public void log(String message, Throwable throwable)

log() is used to write a message to the servlet engine’s log file. The second version writes
both an explanatory message and a stack trace for the specified Throwable exception to the
log file.
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public void removeAttribute(String name)

removeAttribute() makes the specified attribute unavailable to the invoking ServletContext
object. Subsequent calls to the getAttribute() method for this attribute will return null. 

public void setAttribute(String name, Object object)

setAttribute() binds a value to a specified attribute name.

public Servlet getServlet(String name) throws ServletException
public java.util.Enumeration getServlets()
public java.util.Enumeration getServletNames()
public void log(Exception exception, String msg)

These methods are deprecated and should not be used in new code—they exist for com-
patibility with existing code. 

The exception Object
The exception object is an instance of the java.lang.Throwable class. It’s available in error
pages only and represents the exception that occurred that caused control to pass to the error
page. Its most useful methods are as follows:

public String getLocalizedMessage()

getLocalizedMessage() returns a localized description of this Throwable object. In many
cases, this will return the same result as getMessage().

public String getMessage()

getMessage() returns the error message string of this Throwable object.

public void printStackTrace()
public void printStackTrace(PrintStream ps)
public void printStackTrace(PrintWriter pw)

printStackTrace() prints information about this Throwable object, along with a listing of
the method calls that led to the error condition arising. The output can be directed to the stan-
dard error stream or to a specified PrintStream or PrintWriter object.

public String toString()

toString() returns a short description of this Throwable object. If an error message was
supplied when the object was created, the result is the Throwable class’s name, followed by a
colon and a space, followed by that message. For example:

<%
try {
throw new Exception("Here's my Exception");

} catch(Exception e) {
out.print(e.toString());

}
%>
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The output is as follows: 

java.lang.Exception: Here's my Exception

The config Object
The config object is an instance of the javax.servlet.ServletConfig interface. It’s used to
make initialization parameters available and has the following methods: 

public String getInitParameter(String name)

getInitParameter() returns the value of the specified initialization parameter or null if
the parameter doesn’t exist.

public java.util.Enumeration getInitParameterNames()

getInitParameterNames() returns an Enumeration of String objects containing the names
of all of the servlet’s initialization parameters.

public ServletContext getServletContext()

getServletContext() returns the ServletContext object associated with the invoking
servlet. A ServletContext object contains information about the environment in which the
servlet is running.

public String getServletName()

getServletName() returns the name of the servlet. If the servlet is unnamed, the method
will return the servlet’s class name.

The page Object
The page object is of type java.lang.Object and is a reference to the servlet object that
implements this JSP page. JSP page authors don’t often use this object, because it’s very expen-
sive memory-wise.

The pageContext Object
The pageContext object is an instance of the javax.servlet.jsp.PageContext class and is used
by the container-generated servlet code for your JSP page to access the various scopes avail-
able within the JSP page. JSP page authors don’t often use this object, because it was intended
to be generated by the container; it’s important when writing tag libraries.
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Symbols
[] (bracket) operator, Expression Language,

113

■A
absolute URIs, 32–33
Accept header, HTTP, 60
Accept-Encoding header, HTTP, 60
access control, 470
accessibility standards, 595
Action class, 574
action elements, 34

custom actions, 42
JSTL action elements, 42–43
standard actions, 35–41

Action interface
command and controller strategy, 542
web-store application, 80

action listeners, 244–246
action-mappings element, Struts

configuration file, 585, 622
ActionForms, 573–574

development, 590–603
DynaActionForms, 590–591, 602–603
form validation, 592–603
indexed properties, 591–592

ActionForward class, 614
actions, 574

See also standard actions
addCookie method, 659
addDateHeader method, 62, 660
addHeader method, 62, 660
addIntHeader method, 62, 660
ADF (Application Development Framework),

183
AdHocAuthenticate filter, 456–460
ADO (ActiveX Data Objects), 370
AggregationAction class 392
AggregatorDAO interface, 379–381, 386–387,

389
AggregatorImpl class 380, 389
align attribute, JSP plugin tags, 643
Ant (Apache), 571, 582–585

example application, 584–585
tasks, 583–584

AOP (aspect-oriented programming), 550
Apache Jakarta Tomcat, 2
Apache JMeter. See JMeter tool

Apache Struts project. See Struts
AppFuse build tool, 582
application architecture, 8
application design. See design
Application Development Framework (ADF),

183
application implicit object, 24, 667–669
application scope, 12, 204, 516
application servers

connection pooling, 531
flow of client requests, 400
scalability and, 523

apply request values phase, JSF life cycle, 186
architectural layering, 558–559
architectures, 8

data access, 373–380
design patterns and, 545
Model 1, 9–10, 537–538
Model-View-Controller (Model 2), 10–12,

46, 142, 185, 460–462, 538–540, 554
one-layer, 374–375
Struts, 573–576
three-layer, 377–380
two-layer, 375–377
web-application, 536–539

archive attribute, JSP plugin tags, 643
arithmetic operations, 103–107
array property type, JavaBeans, 206–207
Aspect Oriented Programming (AOP), 550
attribute directives, 261, 637–638
attribute elements, TLD file tag descriptions,

281
attribute tags, JSP, 262–263, 277, 338, 643
attribute-oriented programming, 585
attributes, 255

automatic conversion methods, 276
<c:forEach> tag, 152–153
<c:forTokens> tag, 153
classic tags, 297–305
customizing templates using, 258–260
custom tags, 262–264
customizing simple tags with, 274–282
dynamic attributes, 264, 305–311
functions in, 131–132
identifying, 299
JspFragment attributes, 277
object attributes, 277
optional attributes, 264, 281
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request-time expressions, 264, 281–282,
303

required attributes, 264, 281
setter methods, 274–275, 280, 284, 301,

308
specifying, as nested tags, 263–264
specifying, within tags, 263
static attributes, 264
tag file, 261
TLD file definitions, 281
types, 276–277

AuditFilter class (example), 407, 426–428
auth-method element, 472
authentication, 11, 470

alternatives to, 509–512
basic authentication, 475
client authentication, 475–476
container-managed, 470–475
defined, 469
digest authentication, 475–476
filters, 505–507
form-based authentication, 475–480
login on error pages, 500–501
options, 475–488
password encryption, 507–510
process, 456–457
realms, 474, 480–488
Remember Me features, 510–512
roles, 474
Secure Sockets Layer, 488, 490, 492
Security Filter project, 509
SSL extension for Struts, 501–505, 510
tips and tricks, 499–505, 507–509
Tomcat, 471
using, 471–512
welcome files, 499–500

authentication filters, 456–460
authorization, 512–513

defined, 469
Java Authentication and Authorization

Service, 492–499
authorization filters, 446–450

installing and configuring, 449–450
response generation, 446–448
thread-safety considerations, 448–449

autoFlush attribute, page directives, 27
automated testing, 551–560

■B
backing beans, 235
backward compatibility, 328
Barracuda project, 183
basic authentication, 475
bean tags, Struts, 575
beans. See JavaBeans; managed beans
bespoke frameworks, 548
best practices, 7–8

custom tags, 355–357
maintainability, 8
readability, 8
reusability, 7–8

black box testing, 551
body content, 254, 331

evaluating, 282–286, 313–314, 317
filtering, 320–324
reusing, 256–258
separating from presentation, 283–286
setting, 268, 319
simple tags, 272
tag-dependent, 324

body tags, 262–263, 317–324, 643
filtering content, 320–324
life cycle, 317–319
body-content element, TLD file tag

descriptions, 272
BodyTag interface, 317
BodyTagSupport class, 319–320, 341
Boolean literals, 97
box tags, JSP, 262
bracket notation, 205
browsers, support for older, 613
buffer attribute, page directives, 26
bugs. See debugging, error pages
built-in actions, Struts, 603–607
Business Delegate pattern, 506
business tiers, 375, 378–380, 389–391

■C
CA (certificate authority), 490
caches, 516–520 
Cactus testing tool (Jakarta), 553, 555, 571,

622
Calendar class, 149
CalendarBean class, 18
CartAction class, web-store application,

84–87
Castor O/R persistence framework, 369, 396
<c:catch> action, 147–148
<c:choose> action, 150–151
certificate authority (CA), 490
certificates, security, 489
certification path, 490
<c:forEach> action, 151–153, 169
<c:forTokens> action, 153–155
chain expressions, 205
chain of filters, 436
chained exceptions, 627–629
chaining, filter, 414–419, 424–426, 430
CheckOutAction class, web-store

application, 87–88
<c:if> action, 148–149
<c:import> action, 156, 173
cipher_suite request attribute, 647
class attribute, 259, 640

■INDEX672

513-0 index.qxd  11/18/05  2:25 PM  Page 672



ClassCastExceptions, 563
classes. See specific classes
classic tags, 251, 289

attributes, 297–305
body tags, 317–324
dynamic, 305–311
example, 295–297
executing functionality, 292–294
filtering content, 320–324
iteration tags, 311–317
life cycle, 290–294, 317–319
nesting, 292
overview, 289–291
releasing state, 294
vs. simple tags, 255–256, 290–291
tag handler classes, 290–291, 300–305
Tag interface, 291
TLD file descriptions, 296–297, 302–303

clear method, out implicit object, 663
clearBuffer method, out implicit object, 663
client authentication, 475–476
client-side validation, 595
close method, out implicit object, 664
CocoBase O/R persistence framework, 369
codas, 547
code

maintainability of, 8
minimizing execution of, 516
readability of, 8
reusability of, 7–8

Collection interface, 301
command and controller strategy, 541–544
Command design pattern, 541
comments

HTML, 19, 634
Java, 634

comparison operators, EL, 107–110
compatibility testing, 559–560
components, third-party, 568–569
Composite View framework, Tiles, 607–618
concatenation, strings, 525
conditional tags, JSTL, 148–151

XML flow control actions, 174–178
conditional validation, 602
confidentiality, 470
config implicit object, 24, 670

getInitParameter method, 670
getInitParameterNames method, 670
getServletContext method, 670
getServletName method, 670

configurable exceptions, 629–631
configuration files, generating with XDoclet,

585–588
configuration settings, 472
ConfirmAction class, web-store application,

88
Connection header, HTTP, 60

connection pooling, database, 520–521, 523,
531

connections 
exhausted connections, 562
JDBC, 364–368

container-managed authentication, 470–471,
474–475, 492, 505

alternatives to, 509–512
containers, 4–5
containsHeader method, response implicit

object, 660
content. See body content
Content-Length header, HTTP, 60, 63
Content-Type header, HTTP, 63
contentType attribute, page directives, 27,

636
context, web application, 15
context elements, configuring DBCP, 521
context-param elements, web.xml file, 72
context-relative paths, 634
context_path request attribute, includes, 648
Controller interface, Struts, 616
controller servlets, 10–11, 79–81, 89
controllers, MVC, 538
converters

custom, 232–236
standard, 231–232

Cookie class, 330
Cookie header, HTTP, 61
cookie implicit object, EL, 122
cookie tag handlers

building, 329–330
describing, 330–332
Remember Me features, 510–512
using, 332

cooperating tags, 336–344
information sharing, 336–337
tag handler classes, 337–344

core actions
JSF, 189
XML Processing tag library, JSTL, 172–174

Core tag library, JSTL, 142
conditional tags, 148–151
functional areas, 144
looping and iteration tags, 151–155
scoped variable manipulation, 144–148
URL-related actions, 156–157
using, 143–149, 151–157

<c:otherwise> action, 150–151
<c:out> action, 144
<c:param> action, 157
<c:redirect> action, 157
<c:remove> action, 146–147
<c:set> action, 145–146
CSV (Comma Separated Value) files, 154
<c:url> action, 156–157
currency formatting, 167
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custom action elements, 1, 42
custom converters, 232–236
custom response wrapping, 437–445
custom tags, 1

advantages of, 252
as alternative to scriptlets, 135
attributes, 255, 262–264
customizing with, 274–282
best practices, 355–357
body content, evaluating, 282–286
common usage patterns and granularity,

355–356
cooperating tags, 336–344
differences between simple and, 255–256
displaying thumbnail images, 277–282
drawbacks, 135
exception handling, 348–351
vs. expression-language functions,

133–134
functions in, 131–132
importing and using, 253–254
information sharing, 336–337
vs. JavaBeans, 255
JSF, 188–189
maintainability of, 253
naming, 356–357
need for, 252–253
nested tags, 267
view helpers, 545
readability of, 253
reusability of, 252
scripting variables, 327–336
simple tags, 265, 267–2674
tag handler classes, 337–344
TagUnit testing tool, 555–556
terminology and concepts, 253–255
TLD file descriptions, 272, 280–281,

285–286, 308, 315–316, 321–322
using Expression Language within, 98
validators, 237–239

customizable templates, 260–263
<c:when> action, 150–151

■D
DAO (Data Access Object) pattern, 378
DAOException class, 381
data

conversion, with JSF, 229–236
custom converters, 232–236
standard converters, 231–232

data access
AggregatorDAO, 386–389
architectures, 373–380
available technologies, 359–372
business layer interface, 389–391
Castor, 396
choosing between, 360

compared, 372
creating database tables, 385
DAO (Data Access Object) pattern, 378
EJB entity beans, 371–372
example, 380–396
Java Data Objects, 370
JDBC, 363–365, 368
with JSF, 228–229
JSP tags for SQL, 360–363
implementing object model, 381, 383
options, 359
O/R persistence frameworks, 368–369,

383–385
package organization, 380–381
page-centric architectures, 537
SQL tag library, JSTL, 142, 168
Web user interface, 391, 393–396

Data Access Object pattern, 378
data integrity, 470
data privacy, 470
data tiers, 378, 381
data transformation, using filters, 400
data validation, 236–240
database connection pooling, 516, 520–523

application, 531
Jakarta Commons, 521–523

database connections, 364–368
exhaustion of, 562
preferred data access technologies, 359
relational, 359
security databases, 483
tables, 385–386

DataSource class, java.sql package, 168, 521
DataSource interface, JDBC, 365–366, 368
date and time information, formatting

actions, 164–166
Date class, java.util package, 164–166
Date header, HTTP, 60
DateTime tags (example), 295–297
Dbunit tool, 624
debugging, 562–566
declarations, 19–20, 29, 638–639
declarative security, 469
declarative validation, Struts ActionForms,

600
declare element, TLD file variable

definitions, 331
default values, EL, 98
DeferredSyntaxAllowedAsLiteral attribute,

page directives, 28, 636
definitions 

Tiles, 614
filter, 404–406
servlet, 70–71
Struts, 608–611

denial of service (DoS) attacks, 470
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deployment, 12–17
servlets, 57–58
WAR files, 91–93
web applications, 58–59, 68–78, 88–93

deployment descriptors, 14, 68, 70
See also web.xml file
creating, 436
description tag, 70
display-name tag, 70
error pages, 73–75
HTTP servlets, 66
JSP configuration elements, 76–78
servlet context initialization parameters,

72–73
servlet definitions, 70–71
servlet mappings, 71–72
servlet tag, 70–71
web-store application, 88–90

deployment, tag libraries, 273–274, 351–355
for development, 351–352
JAR files, 352
for reuse, 352–355

description elements, web.xml file, 70
design

architectural layering, 558–559
extensibility, 536
general guidelines, 566–569
general principles, 516
maintainability, 536
pipeline model of, 460–462
for scalability, 523–524
for testing, 558–559
web applications, 516, 536, 539–540,

547–551
design patterns, 539–540

Command, 541
Filter pattern, 546
front controller pattern, 540, 542–544
including standard headers and footers,

547
integration into Struts, 574
J2EE patterns, 540–546
macro patterns, 545
Service to Worker pattern, 545
templating, 547–548
View Components, 544
View Helper pattern, 544–545

destroy method
filter interface, 404–407
servlets, 55–56, 59

destruction, JSP pages, 6
developers, 356
development techniques and tools, 582

ActionForms development, 590–603
Ant, 582–585
built-in Struts actions, 603–607
IDEs, 618–619

StrutsGen tool, 589
Tiles framework, 607–618
XDoclet, 585–588

digest authentication, 475–476
directives, 635–638

attribute, 261, 638
include, 28–31, 636
page, 25, 28, 635–636
tag, 637–638
taglib, 31–34, 636
variable, 638

directories
disallowing access, 561
expanded directory format, 12
exploded directory format, 14
structure, 91

Directory List tag, 283–286
DispatchAction class, Struts, 604, 606
dispatcher elements, filter mappings, 411–14,

460, 462–467
display tag library, Struts, 576
display-name elements, web.xml file, 70
doAfterBody method, iteration tag handler

classes, 311–315
body tags, 319

doBody tags, JSP, 261, 644
doCatch method, TryCatchFinally interface,

349
Document Type Definition (DTD) TLDs, 271
doEndTag method, 292–296, 301–302, 321,

341
body tags, 319
iteration tags, 313

doFilter method 
Filter interface, 404, 406, 422
FilterChain interface, 414–416

doFinally method, 349–351
doGet method, 59
doHead method, 59
doInitBody method, 319
doOptions method, 60
. (dot) operator, 113
doPost method, 60
doPut method, 60
doStartTag method, 292–295, 301, 308

body tags, 318
iteration tags, 312, 315

doTag method, 268–269, 275, 280, 284, 341
doTrace method, 60
Dreamweaver, 304
DriverManager class, JDBC, 364–365
duplication, 430
duration, page caching, 518
DynaActionForms, 590–591, 602–603
dynamic attributes, 264, 305–311
dynamic content, 17
dynamic navigation, 218–227
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dynamic web content, 1
dynamic-attributes elements, TLD file tag

descriptions, 308
DynamicAttributes interface, 305–306

■E
Easy Struts project, 619
Eclipse Profiler, 563
EJB (Entity JavaBeans) entity beans, 371–372.

See also JavaBeans
EL. See Expression Language
EL tags, Struts, 575
el-ignored element, web.xml file, 76
element tags, 645
e-mail, filtering, 555
empty body content, 254
empty operators, Expression Language, 113
encodeRedirectURL method

HttpServletResponse interface, 65
response implicit object, 660

encodeURL method
HttpServletResponse interface, 156
response implicit object, 660

encryption
See also authentication; security
password, 507–509
SSL, 488

engine. See JSP engine
error filters, 414
error handling, <c:catch>action, 147
error pages, 73–75, 626

See also exceptions
attributes, 649–650
form-based authentication, 500–501

error reporting, 567
error-code elements, web.xml file, 75
error-page elements, 74, 90
errorPage attribute, page directives, 27, 635
errors tags, Struts HTML library, 630
event handlers

action listeners, 244–245
calling multiple listeners, 245–246
JSF, 240–246
value change listeners, 240–244

eventHandler tag, 341
Exception class, 627
exception implicit object, 25, 669–670

getLocalizedMessage method, 669
getMessage method, 669
printStackTrace method, 669
toString method, 669

exception request attribute, error pages, 650
exception-type elements, web.xml file, 74,

626
exceptions

chained, 627–629
ClassCastExceptions, 563

declaring, 629–631
error reporting and, 567
handling, 348–351, 626–631
in Struts applications, 626–631

exception_type request attribute, error
pages, 649

execution phase, 6
expanded directory format, 12
exploded directory format, 14
Expression Language (EL), 1, 21–23, 95–96

arithmetic operations, 103–107
comparison operators, 107–110
vs. custom tags, 133–134
default values, 98
disabling, 102–103
. (dot) operator, 113
empty operator, 113
evaluation, 76
functions, 125–134
implicit objects, 122–124
information sharing and, 337
JavaBeans and, 113–122
literals, 97
logical operators, 111–112
named variables, 114
nested, 132–133
reserved words, 100–101
similarities between JavaScript and, 95
syntax, 96–97, 193
templates, 98–100, 548
using, 98–100
view component and, 544
within custom tags, 98

Expression Language-based tag libraries,
142–143

expressions, 21–22, 639
request-time, 261, 264, 281–282, 303

extends attribute, page directives, 26
Extensible Markup Language. See XML
extensibility

design and, 536
Model 2 architecture, 12

ExternalContext object, 228–229
Extreme Programming (XP), 551

■F
faces-config.xml, 195–196
FacesContext object, 228–229
fallback tag, JSP, 643
file attribute, include directives, 29
filter application patterns, 434
filter chains, 436
filter definitions, 404–407, 422
filter design pattern, 546
filter elements

filter definitions, 407
page caching, 520
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Filter interface, 404, 422
filter mapping, 404
filter tags, 320–324
filter-class elements, filter definitions, 407
filter-mapping elements, 417, 520
filter-name elements, filter definitions, 407
FilterChain interface, 414–415
FilterConfig interface, 406–407, 420–421
filtering e-mail addresses, 555
filters

for adapting legacy resources, 451–452,
455–456

alternative technologies, 428
AuditFilter class (example), 426–428
authentication, 456–460
authorization, 446–450
best practices for, 428–430
chaining, 414–419, 424–426, 430
coding, 421–422
common applications, 400
configuration and deployment, 404,

422–423
declaring, 422–423
development environment setup, 434–436
development of, 420–428
dispatcher element, 413–414
downstream (inbound) trips, 436
error, 414
Filter interface, 404, 422
FilterConfig interface, 406–407
form-based authentication, 505–507
initial parameters for, 419–420
inserting into request flow, 409–414
instances, 419–420
life cycle, 405–406, 420
mapping, 404, 407–413, 430
overview, 400–403
problem domain introduction, 433–434
request dispatcher and, 409
in request-processing pipeline, 401, 403,

460–467
state information and, 429
techniques for, 434
terminology, 436
testing, 423–424
thread safety, 429
upstream (outbound) trips, 436
uses for, 399, 403
visual auditing, 437–446

finalization phase, 6–7
findAncestorWithClass method, 342
FindProd JSP page (example), 427–428, 435,

463
floating point literals, 97
flow control actions, 174
flush attribute, include action elements, 35,

641

flush method, 64, 664
flushBuffer method, 64, 660
<fmt:bundle> action, 159–160
<fmt:formatDate> action, 164–166
<fmt:formatNumber> action, 167
<fmt:message> action, 160–162
<fmt:parseDate> action, 164–166
<fmt:parseNumber> action, 167
<fmt:setBundle> action, 159–160
<fmt:setLocale> action, 158–159
<fmt:setTimeZone> action, 164
<fmt:timeZone< action, 164
<fmt:timeZone> action, 164
<fmt:parseDate> action, 166
footers. See headers and footers
forEach tags, JSTL, 267, 313, 363
form tags, Struts HTML library, 598
form validation, 592–603
form-based authentication, 475–480

filters, 505–507
login on error pages, 500–501
password encryption, 507–509
servlets, 501–504
SSL, 501–505
tag libraries, 504
tips and tricks, 499–509
welcome files, 499–500

formatting tags
Internationalization and Formatting tag

library, JSTL, 157–167
formatting actions, 163–167

forms, HTML, 298–305
HttpUnit testing tool and, 557
Struts framework and, 548

forward action elements, 41, 641
FORWARD-only filtering, 466–467
forward-related attributes, 648–649
ForwardAction class, Struts, 603–604
forwards, Tiles framework, 614–615
frameworks

See also specific frameworks
bespoke, 548
for building web applications, 548–551
Jakarta Struts, 548–549
Spring, 549–550
Velocity, 550–551
WebWork, 550

front controller design pattern, 540, 542–544
FrontController servlet, web-store

application, 79–81
function-signature elements, TLD files, 126
functions

vs. custom tags, 133–134
Expression Language, 125–134
examples, 126–130
nested, 132–133
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■G
GenericServlet class, 54, 56
get method, JavaBeans, 200
getAsString tags, Struts tiles library, 611
getAttribute method 

application implicit object, 667
request implicit object, 654
ServletContext interface, 421
session implicit object, 665

getAttributeNames method
application implicit object, 667
request implicit object, 654
ServletContext interface, 421
session implicit object, 665

getAuthType method, request implicit object,
654

getBufferSize method
out implicit object, 664
response implicit object, 660

getCause method, Exception class, 627
getCharacterEncoding method

request implicit object, 654
response implicit object, 660

getContentLength method, request implicit
object, 654

getContentType method
request implicit object, 654
response implicit object, 660

getContext method, application implicit
object, 667

getContextPath method
HttpServletRequest interface, 62
request implicit object, 612, 654

getCookies method, request implicit object,
654

getCreationTime method, session implicit
object, 665

getDateHeader method
HttpServletRequest interface, 61
request implicit object, 655

getFilterName method, FilterConfig
interface, 406

getHeader method
HttpServletRequest interface, 61
request implicit object, 655

getHeaderNames method
HttpServletRequest interface, 61
request implicit object, 655

getHeaders method
HttpServletRequest interface, 61
request implicit object, 655

getId method, session implicit object, 666
getInitParameter method

application implicit object, 667
config implicit object, 670
FilterConfig interface, 406, 420
ServletConfig interface, 71, 72

getInitParameterNames method
application implicit object, 667
config implicit object, 670
FilterConfig interface, 406
ServletContext interface, 72

getInputStream method, request implicit
object, 655

getIntHeader method
HttpServletRequest interface, 61
request implicit object, 655

getLastAccessedTime method, session
implicit object, 666

getLocalAddr method, request implicit
object, 655

getLocale method
request implicit object, 656
response implicit object, 661

getLocalizedMessage method, exception
implicit object, 669

getLocalName method, request implicit
object, 656

getLocalPort method, request implicit object,
656

getMajorVersion method, application
implicit object, 667

getMaxInactiveInterval method, session
implicit object, 666

getMessage method, exception implicit
object, 669

getMethod method
HttpServletRequest interface, 61
request implicit object, 656

getMimeType method, application implicit
object, 667

getMinorVersion method, application
implicit object, 667

getNamedDispatcher method, application
implicit object, 667

getOut method, 269
getOutputStream method, response implicit

object, 661
getParameter method

request implicit object, 656
ServletRequest interface, 53

getParameterMap method
request implicit object, 656
ServletRequest interface, 53

getParameterNames method
request implicit object, 656
ServletRequest interface, 53

getParameterValues method
request implicit object, 656
ServletRequest interface, 53

getParent method, 342
getPathInfo method

HttpServletRequest interface, 62
request implicit object, 656
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getPathTranslated method, request implicit
object, 657

getPreviousOut method, classic tag handler
class, 321

getProperty action elements, 39, 641
name attribute, 39
property attribute, 39

getProtocol method, request implicit object,
657

getQueryString method
HttpServletRequest interface, 61
request implicit object, 657

getReader method, request implicit object,
657

getRealPath method
application implicit object, 668
request implicit object, 659
ServletContext interface, 659

getRemaining method, out implicit object,
664

getRemoteAddr method, request implicit
object, 657

getRemoteHost method, request implicit
object, 657

getRemotePort method, request implicit
object, 657

getRemoteUser method
HttpServletRequest interface, 509
request implicit object, 657

getRequestDispatcher method
application implicit object, 668
request implicit object, 657

getRequestedSessionId method, request
implicit object, 657

getRequestURI method
HttpServletRequest interface, 62
request implicit object, 657, 658

getResource method, application implicit
object, 668

getResourceAsStream method, application
implicit object, 668

getResourcePaths method, application
implicit object, 668

getScheme method, request implicit object,
658

getServerInfo method, application implicit
object, 668

getServerName method, request implicit
object, 658

getServerPort method, request implicit
object, 658

getServletContext method
config implicit object, 670
gFilterConfig interface, 406, 421
session implicit object, 666
application implicit object, 668

getServletName method, config implicit
object, 670

getServletPath method
HttpServletRequest interface, 62
request implicit object, 658

getSession method, request implicit object,
658

getUserPrincipal method, request implicit
object, 658

getVariableInfo method, 334
getWriter method, response implicit object,

661

■H
HashMap, 340
header implicit object, Expression Language,

122
headers and footers

preludes and codas and, 547
statically including, 547
web-store application, 83, 90

headers, HTTP, 60–62
headerValues implicit object, Expression

Language, 123
height attribute, JSP plugin tags, 643
HibeAggregatorDAO class, 381
Hibernate persistence framework, 369,

383–385, 590
connection pooling, 520, 531

Host header, HTTP, 61
hspace attribute, JSP plugin tags, 643
HTML comments, 19, 634
HTML custom actions, JSF, 188–189
HTML forms, 193

building, 301–305
building lists, 298–299

HTML tags, Struts, 575
HTTP 

headers, 60–62
status codes, 75

HTTP requests, redirect mechanism, 64–65
HTTP servlets, 59–67

example, 65–67
path information, 61–62
responses and requests, 60–65

HttpServlet class
doGet method, 59
doHead method, 59
doOptions method, 60
doPost method, 60
doPut method, 60
doTrace method, 60

HttpServletRequest class, 61, 509, 654
getContextPath method, 62
getDateHeader method, 61
getHeader method, 61
getHeaderNames method, 61
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getHeaders method, 61
getIntHeader method, 61
getMethod method, 61
getPathInfo method, 62
getQueryString method, 61
getRemoteUser method, 509
getRequestURI method, 62
getRequestURL method, 62
getServletPath method, 62
web-store application, 86

HttpServletRequestWrapper class, 453
HttpServletResponse class, 62–65, 659

addDateHeader method, 62
addHeader method, 62
addIntHeader method, 62
encodeRedirectURL method, 65
encodeURL method, 156
sendRedirect method, 64
setContentLength method, 63
setContentType method, 63
setDateHeader method, 63
setHeader method, 63
setIntHeader method, 63
setLocale method, 63

HttpSession interface, 480, 665
HttpUnit testing tool, 557, 623

■I
I10n, 567
I18n, 157, 567
IBM white pages, 524
IDEs, Struts development, 618–619
iepluginurl attribute, JSP plugin tags, 642
implementation classes, 3–5, 29

jspDestroy method, 6
jspInit method, 6
jspService method, 6, 21
jspService method, 6
threading models, 5

implicit objects, 23, 653–670
application object, 24, 667–669
config object, 24, 670
exception object, 25, 669–670
Expression Language, 122–124
out object, 23, 663–665
page object, 24, 670
pageContext object, 24, 670
request object, 23, 654–659
response object, 23, 659–663
session object, 24, 665–666
syntax, 647

import attribute, page directives, 26
importAttribute tags, Struts Tiles library, 609
in-series resource processors, 430
include action elements, 35, 641

flush attribute, 35
page attribute, 35

include-coda element, web.xml file, 78, 83,
90, 547

include directives, 28–31, 636
INCLUDE-only filtering, 465–466
include-prelude element, web.xml file, 78, 83,

90, 547
IncludeAction class, Struts, 604
included resources, filtering, 410, 412
inclusion-related attributes, 648–649
indexed properties

Struts, 591–592
validation, 601–603

infinite loops, 563
info attribute, page directives, 27
init method, 6

filter interface, 404, 406
FrontController servlet, 81
servlets, 55–56, 58

init-param elements
filter definitions, 407, 419
servlet declarations, 71

initialization parameters, servlets, 71–73
initialization phase, 5–6
initParam implicit object, Expression

Language, 123
insert tags, Struts Tiles library, 609
installation, JSTL, 136–141
instances, filters, 419–420
integer literals, 97
interceptors, 428
Internal Server Error, 626
internationalization, 246, 249, 567

Tiles templating framework, 611
Internationalization and Formatting tag

library, JSTL, 142, 157–167
formatting actions, 163–167
messaging actions, 159–162
setting the locale, 158–159

Internet Engineering Task Force (IETF), 488
invalidate method, session implicit object,

666
invoke application phase, JSF life cycle, 186
invoke method, 285, 311
invoke tag, JSP, 644
isAutoFlush method, out implicit object, 664
isCommitted method, response implicit

object, 661
isELEnabled attribute, page directives, 636
isELIgnored attribute, page directives, 28, 102
isErrorPage attribute, page directives, 27, 635
isNew method, session implicit object, 666
isRequestedSessionIdFromCookie method,

request implicit object, 658
isRequestedSessionIdFromURL method,

request implicit object, 658–659
isRequestedSessionIdValid method, request

implicit object, 658
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isSecure method, request implicit object, 658
isThreadSafe attribute, page directives, 5–6,

27
isUserInRole method, request implicit object,

659
iterate tags, 332–335, 591, 601
iteration tags, 311–317

life cycle, 311, 313
looping and iteration tags, JSTL, 151–155
tag handler classes, 313–317
<x:forEach> action, 176–178

IterationTag interface, 311–313
Iterator interface, 315

■J
J2EE patterns, combining as frameworks, 548
J2SE 1.4, logging facilities, 566
JAASRealm, Tomcat, 488
Jakarta Commons Database Connection Pool

(JCDCP), 521–523, 568
Jakarta Commons Logging (JCL), 566
Jakarta OJB O/R persistence framework, 369
Jakarta Struts. See Struts
Jakarta Taglibs, 136
Jameleon testing tool (Sourceforge), 557
JAR (Java Archive) files, 33–34, 352
Java Authentication and Authorization

Service (JAAS), 492–99
Java comments, 634
Java Data Objects (JDOs), 370
Java EE 5 

integration into Struts, 574
patterns, 540–546
presentation tier components, 9

Java Servlet Specification, 5
Java Servlets. See servlets
Java Standard Tag Library. See JSTL
java.servlet package, 59
java.sql.DriveManager, 364–365
java.util.logging package, 566
JavaBeans

configuring, 200–204
vs. custom tags, 255
defined, 200
Expression Language and, 113–122
getProperty action elements, 641
managed beans, 200–204, 207, 210–217
method-binding expressions, 207
nested properties, 117–122
page-centric architectures and, 537
properties, 114
setProperty action elements, 39–40, 337,

640–641
useBean action elements, 36–40, 337,

639–640
value-binding expressions, 205–207

JavaScript
accessibility standards, 595
client-side validation using, 593, 595, 598
similarities between Expression Language

and, 95
JavaServer Faces (JSF), 1, 22, 183

accessing context data, 228–229
adding page navigation, 220–227
core custom actions, 189
data conversion, 229–236
data validation, 236–240
deployment, 196–197
design pattern, 185
directing traffic, 195–196
event handlers, 240–246
goals, 183
HTML custom actions, 188–189
installation, 187–188
JavaBean implementation, 190, 192
life cycle, 199–200
message bundles, 246–249
page navigation, 217–227
request-processing life cycle, 185–187
running the application, 197–199
sample application, 189, 207–217
supportive nature of, 184
user interface development, 184
using managed beans, 200–204, 207,

210–217
using, with JSP pages, 188–200
using, with other Java EE technologies,

184–185
view components implementation,

192–195
JavaServer Pages (JSP), 1–2, 17

best practices, 7–8
body content, 254
comments, 634
configuration elements, 76–78
directives, 635–636
implicit objects, 647, 653–670
predefined attributes, 647–651
scripting elements, 638–639
specifications, 633
standard actions, 639–646
syntax reference, 633
tag files, 637–638
tag libraries, 646
URL specifications, 634

JavaServer Pages (JSP) tags for SQL, 360,
362–363

JavaServer Pages Standard Tag Library. See
JSTL

javax.servlet package, 45–46
classes, 54, 58
interfaces, 49–53

javax.servlet.http package, 59–60
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javax.servlet.Servlet interface, 54
javax.sql.DataSource, 365–366, 368
JCL (Jakarta Commons Logging), 566
JCP (Java Community Process), 168
JDBC (Java Database Connectivity), 363–368

connections, 364–368
drivers, connection pooling, 531
O/R framework advantages over, 368

JDBCRealm, Tomcat, 481–485
JMeter tool (Apache), 525–529, 533
JNDI (Java Naming and Directory Interface),

531
JNDIRealm, Tomcat, 485–488
JProbe tool (Quest Software), 562–563
jreversion attribute, JSP plugin tags, 642
JSF. See Java Server Faces
JSP. See JavaServer Pages
JSP applications

general design principles, 516
performance measurement, 525–529
testing, 529–533

JSP containers, 4–5
JSP engine, 4–5
JSP error page attribute, 650
JSP files, included

reusing content with, 256–257
templating with, 259

JSP implementation servlets. See
implementation servlets

JSP life cycle, 4–7
execution phase, 6
finalization phase, 6–7
initialization phase, 5–6
translation phase, 5

JSP pages
maintainability, 46
removing Java code from, 193
reusability, 46
translation to servlets, 47, 49
using JSF with, 188–200
using method-binding expressions in, 207
using value-binding expressions in,

205–207
jsp-api.jar file, 270
jsp-config element, web.xml file, 76
JspContext class, 267, 280, 292
jspDestroy method, implementation servlets,

6
jspException request attribute, error pages,

650
<jsp:forward> action, 41
JspFragment class, 277, 284–285
<jsp:getProperty> action, 39
<jsp:include> tag, 35–36, 260
jspInit method, implementation servlets, 6
<jsp:param> tag, 36
jsp-property-group element, web.xml file, 76

jspService method, 21
<jsp:setProperty> tag, 39
JspTagException class, 296
jsp-version element, TLD files, 271
JspWriter class, 663
JSTL (Java Standard Tag Library), 21, 32, 135,

142
actions, 42–43
Core tag library, 143–157
Expression Language-based tag libraries,

142–143
functional areas, 141
installation, 136–141
Internationalization and Formatting tag

library, 142, 157–167
JSP tags, 360–363
looping and iteration tags, 155
Request-time Expression-based tag

libraries, 143
specification, 135–136
SQL tag library, 142, 168–170
twin tag libraries, 142–143
URL-related actions, 157
XML Processing tag library, 142, 171–182

JsUnit tool, 571, 624
JUnit tool, 552–553, 622
JUnitDoclet tool, 623
JUnitEE testing tool, 553
JWSDP (Java Web Services Development

Pack), 136

■K–L
key_size request attribute, 647

l10n. See localization
language attribute, page directives, 21, 26
LDAP Data Interchange Format (LDIF), 486
legacy resource filters, 451–452, 455–456
LegacyAdapterFilter class, 454–456
LegacyAdapterRequestWrapper class,

452–454
life cycles

attributes, 274–275
body tags, 317–319
classic tags, 290–294
filter, 405–406, 420
iteration tags, 311–313
JSF, 199–200
JSP pages, 4
methods, 54–55
request-processing, 185–187
servlets, 54–55
simple tags, 266–268

List property types, JavaBeans, 206–207
literals, Expression Language, 97
load balancing, 524
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Locale class, java.util package, 158
locale setting, Internationalization and

Formatting tag library, JSTL, 158–159
localhost, 489
localization, 567
localizationContext variable, 160
location elements, web.xml file, 74
log method

application implicit object, 668
GenericServlet class, 56
ServletContext interface, 421–422, 564

Log4J system (Jakarta), 565
logging, 564–566
logic, models for, 9
logic tags, Struts, 575
logical operators, Expression Language,

111–112
login

on error pages, 500–501
schemas, 492
Secure Sockets Layer, 501–505
Struts framework, 549

login-config element, web.xml file, 472
LoginAction class, 392
lollipop notation, 46
LookupDispatchAction class, Struts, 606–607
looping and iteration tags, JSTL, 151–155
Lucene search engine (Jakarta), 568

■M
MainAction class, web-store application,

82–84
maintainability, 8, 95

custom tags, 253
design and, 536
design patterns and, 540
Model 2 architecture, 11
Model I architecture, 10
one-tier architectures, 374
page-centric architectures, 538
problems, with scriptlets, 135

managed beans
configuring, 200–204
getting and setting properties, 205–206
identifying, 201
initializing properties, 202, 204
method-binding expressions, 207
scopes of, 204
using, in JSF, 200–204, 207, 210–217
value-binding expressions, 205–207

managed-bean element, 201
managed-property element, 202, 204
Map property type, JavaBeans, 206–207
mapping

filter, 404, 407–413, 430
configuring, 422–423
through filter chains, 417–419

McClanahan, Craig, 573
memory problems, 562
MemoryRealm, Tomcat, 480–481
Mercury LoadRunner, 529
merge directories, XDoclet, 581, 586
merge points, 586
message bundles, 246–249
message request attribute, error pages, 649
message tags, 598, 609, 621
message-resources elements, 621
MessageDigest class, 507
messaging actions, JSTL, 159–162
META-INF/tags directory, 352–354
method-binding expressions, 207
methods, 19, 29
Middlegen code generator, 588
Model 1 architecture, 9–10, 537–538

maintainability, 10
reusability, 10
security problems, 10

Model 2 architecture. See Model-View-
Controller (MVC) architecture

Model-View-Controller (MVC) architecture,
10–12, 46, 142, 185, 460–462, 538–540

filters and, 430
extensibility, 12
front controller design pattern, 540
maintainability, 11
security, 11–12

models, 9
models, MVC, 539
modules, Struts, 619–622
multipage validation, 601
multithreaded model, 5
MVC. See Model-View-Controller (MVC)

architecture

■N
name attribute, 36

getProperty action elements, 39
JSP plugin tags, 643
setProperty action elements, 39

name-from-attribute element, TLD file
variable definitions, 331

name-given element, TLD file variable
definitions, 331

named variables, Expression Language, 114
namespace, 253
naming, custom tags, 356–357
nested functions

Expression Language, 132–133
JavaBeans, 117–122

nested tags, 267
specifying attributes as, 263–264
Struts, 575

new technologies, adopting, 567
newLine method, out implicit object, 664
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no-argument constructors, 200
none scope, 204
nspluginurl attribute, JSP plugin tags, 642
nulls, 97
number formatting, 167

■O
O/R (object-relational) persistence

frameworks, 368–369, 383–385
object attributes, 277
objects

See also implicit objects
minimizing creation of, 516

one-layer architectures, 374–375
OpenLDAP, 485
Optimizeit tool (Borland), 562–563
optional attributes, 264, 281
OSCache library (OpenSymphony), 517–520

JSP tags, 518–519
RSS Newsreader example, 531–533
servlet filter class, 519–520

OSCache tags, 533
out implicit object, 663–665

clear method, 663
clearBuffer method, 663
close method, 664
flush method, 664
getBufferSize method, 664
getRemaining method, 664
isAutoFlush method, 664
newLine method, 664
print method, 664
println method, 524, 665

out object, 23
out tags, JSTL, 363
OutOfMemoryExceptions, 562
output tag, JSP, 645–646

■P
page attribute

include action elements, 35, 641
JSP forward tags, 642

page caching, 516–520
duration, 517
OSCache, 517–520
RSS Newsreader (example), 531, 533
usefulness of, 517

page directives, 25–28, 635–637
autoFlush attribute, 27
buffer attribute, 26
contentType attribute, 27, 636
DeferredSyntaxAllowedAsLiteral attribute,

28, 636
errorPage attribute, 27, 635
extends attribute, 26
import attribute, 26
info attribute, 27

isELEnabled attribute, 636
isELIgnored attribute, 28, 102
isErrorPage attribute, 27, 635
isThreadSafe attribute, 5–6, 27
language attribute, 21, 26
pageEncoding attribute, 27, 636
session attribute, 26
trimDirectiveWhitespaces attribute, 28,

636
page implementation servlets. See

implementation servlets
page implicit object, 670
page-level variables, 20
page navigation, 217–227

dynamic navigation, 218–227
rules, 218–220
static navigation, 218

page object, 24
page-centric (Model 1) architecture, 537–538
page-encoding element, web.xml file, 77
page-relative paths, 634
PageContext class, 267, 328, 670

removeAttribute method, 145, 147
pageContext implicit object, 24, 123–124,

129, 280, 670
PageContext instances, 292
pageEncoding attribute, page directives, 27,

636
pageScope implicit object, Expression

Language, 123
param action elements, 41, 169, 181–182
param attribute, JavaBeans setProperty tags,

640
param implicit object, Expression Language,

123
param tags, JSP, 641–643
param-name elements

filter definitions, 407
web.xml file, 71

param-value elements
filter definitions, 407
web.xml file, 71

parameters, initial, for filters, 419–420
paramValues implicit object, Expression

Language, 123
passwords

encryption, 507–509
remembering, 510

path_info request attribute, includes, 648
patterns, URL, 408–409
performance

database connection pooling, 520–523
defined, 515
general principles, 516
measurement, 525–529
page caching, 516–520
resources on testing, 529
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SSL (Secure Sockets Layer), 491
testing, 529–533
tips and resources, 524–525

persistence frameworks
connection pooling, 520
Struts framework, 589–590

pipeline model. See request-processing
pipeline

plug-ins, 512
Pluggable Authentication Modules (PAM),

492
plugin tags, JSP, 642
precedence, Expression Language operators,

113
predefined attributes

forward–related attributes, 648–649
inclusion–related attributes, 648–649
JSP error page attribute, 650
servlet error page attributes, 649–650
SSL protocol attributes, 647–648
syntax, 647–651
temporary file directory attribute, 651

prefix, 253
prefix attribute, taglib directives, 32, 273
prefixes, tag libraries, 646
preludes and codas, 547
presentation tiers, 283–284, 286, 375, 381, 391
print method, out implicit object, 524,

664–665
printStackTrace method, exception implicit

object, 669
PrintWriter class, java.io class, 63, 661
process validations phase, JSF life cycle, 186
processing pipeline. See request-processing

pipeline
profilers, 563
properties, JavaBean components, 114
property attribute

getProperty action elements, 39
setProperty action elements, 39, 640

PropertyDescriptor class, JavaBeans, 302
protected resources, filters for, 505–507
Public Key Certificates (PKCs), 476
pull model, 460
push model. See request-processing pipeline 

■Q–R
query tags, SQL JSTL, 362–363
query_string request attribute, includes, 649

RAD prototyping, 168
readability, 8, 253
realm-name element, web.xml file, 474
realms, 471, 474

JAASRealm, 488
JDBCRealm, 481–485
JNDIRealm, 485–488

MemoryRealm, 480–481
Tomcat, 480–488

redirect mechanism, HTTP requests, 64–65
Referrer header, HTTP, 61
regular expressions, 600
relational databases, 359
relative URIs, 33
release method, 294
Remember Me features, 510–512
removeAttribute method

application implicit object, 669
PageContext class, 145, 147
request implicit object, 659
ServletContext interface, 421
session implicit object, 666

render response phase, JSF life cycle, 187
renderers, 460
ReplaceContentOutputStream class, 440,

443–445
request dispatchers, 409, 436, 462–465
request headers, intercepting with filters,

400
request implicit object, 23, 654–659

getAttribute method, 654
getAttributeNames method, 654
getAuthType method, 654
getCharacterEncoding method, 654
getContentLength method, 654
getContextPath method, 612, 654
getContentType method, 654
getCookies method, 654
getDateHeader method, 655
getHeader method, 655
getHeaderNames method, 655
getHeaders method, 655
getInputStream method, 655
getIntHeader method, 655
getLocalAddr method, 655
getLocale method, 656
getLocales method, 656
getLocalName method, 656
getLocalPort method, 656
getMethod method, 656
getParameter method, 656
getParameterMap method, 656
getParameterNames method, 656
getParameterValues method, 656
getPathInfo method, 656
getPathTranslated method, 657
getProtocol method, 657
getQueryString method, 657
getReader method, 657
getRealPath method, 659
getRemoteAddr method, 657
getRemoteHost method, 657
getRemotePort method, 657
getRemoteUser method, 657
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getRequestDispatcher method, 657
getRequestedSessionId method, 657
getRequestURI method, 657
getRequestURL method, 658
getScheme method, 658
getServerName method, 658
getServerPort method, 658
getServletPath method, 658
getSession method, 658
getUserPrincipal method, 658
isRequestedSessionIdFromCookie

method, 658
isRequestedSessionIdFromURL method,

658–659
isRequestedSessionIdValid method, 658
isSecure method, 658
isUserInRole method, 659
removeAttribute method, 659
setAttribute method, 659
setCharacterEncoding method, 659
wrapping, 452–454

request scope, 204, 516
REQUEST-only filtering, 464–465
request-processing pipeline 185–187

filter position in, 401–403
inserting filters into flow of, 409–414
filters in, 402–403, 460–467

Request-time Expression-based tag libraries,
143

request-time expressions, 261, 264, 281–282,
303

RequestDispatcher interface, javax.servlet
package, 52, 667

requests, mapping through filter chain, 417,
419

requestScope implicit object, Expression
Language, 123

request_uri request attribute
error pages, 650
includes, 648

required attributes, 264, 281
reserved words, Expression Language,

100–101
reset method, response implicit object, 594,

661
resetBuffer method, response implicit object,

661
resilience, 378

one tier architectures, 374
three tier architectures, 378

resource bundles, 159–160
resource processors, 436
ResourceBundle class, java.util package, 159
response customization, using filters, 400
response implicit object, 23, 659–663

addCookie method, 659
addDateHeader method, 660

addHeader method, 660
addIntHeader method, 660
containsHeader method, 660
custom wrapping, 437–445
encodeRedirectURL method, 660
encodeURL method, 660
flushBuffer method, 660
getBufferSize method, 660
getCharacterEncoding method, 660
getContentType method, 660
getLocale method, 661
getOutputStream method, 661
getWriter method, 661
isCommitted method, 661
reset method, 661
resetBuffer method, 661
sendError method, 661
sendRedirect method, 661
setBufferSize method, 661
setContentLength method, 662
setContentType method, 662
setDateHeader method, 662
setHeader method, 662
setIntHeader method, 662
setLocale method, 662
setStatus method, 662

response times, 515
restore view phase, JSF life cycle, 186
ResumeAction class, Struts, 614
reusability, 7–8, 378

custom tags, 252, 286
Model I architecture, 10
one tier architectures, 374
tag libraries, 274
three tier architectures, 378

rewrite tags, Struts HTML library, 599
Rich Site Summary, 373
role-name element, 472
roles, 474
RSS Newsreader (example), 373–375, 380–396

AggregationAction class, 392
Aggregator class, 376, 380–381, 389
AggregatorDAO class, 379–381, 386–387,

389
AggregatorImpl class, 380, 389
business tier, 380, 389–391
DAOException class, 381
database tables, 385–386
HibeAggregatorDAO class, 381, 386
LoginAction class, 392
object model, 381, 383
page caching, 531, 533
presentation tier, 381, 391
subs (Manage Subscriptions) JSP page,

392
code, 394–396
SubscriptionAction class, 392
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testing performance, 529, 531, 533
user interface, 391, 393–396

rtexprvalue attribute, 261, 303

■S
scalability, 515

database connection pooling, 520–523
defined, 515
designing for, 523–524
page caching, 516–520
session scopes, 516
tips and resources, 524–525

SchemaExport tool, 385
scope element, TLD file variable definitions,

332
scoped variable manipulation, JSTL, 144–148
scopes

object creation and performance, 516
page caching, 518
XML Processing tag library use, 172

scriplets, 639
scripting elements, 638–639

comments, 19
declarations, 19–20, 638–639
enabling, 77
Expression Language expressions, 22–23
expressions, 21–22, 639
scriptlets, 20–21, 639

scripting variables, 327–336
defining, in TagExtraInfo class, 332–336
defining, in the TLD file, 328–332
VariableInfo class, 334

scripting-invalid element, web.xml file, 77
scriptless body content, 254
scriptless pages, 22
scriptlets, 20–21, 95

disabling, 101
limitations of, 135
problems with, 95

search engines, 568
Section 508 Initiative, 595
Secure Sockets Layer (SSL), 488–492

form-based authentication, 501–505
performance, 491
servlets, 501–504
Struts extension, 510
tag libraries, 504

security, 469, 560–561
See also authentication
application tiers, 470
authorization, 469, 512–513
certificates, 489
container-managed security, 471, 492, 505
declarative security, 469
Model 2 architecture, 10–12
Model 1 architecture, 9
overview, 469, 471

realms, 474, 480–488
roles, 474
Secure Sockets Layer, 488–492
Servlet 2.4 Specification, 509
servlet containers, 470

security databases, 483
Security Filter project, 509
security-constraint element, 472–474
security-role elements, web.xml file, 474
security-role-ref elements, web.xml file, 509
select tags, 300–305

dynamic attributes, 306, 308
selectWithDynamicAttributes tag, 306–311
sendError method, response implicit object,

661
sendRedirect method

HttpServletResponse interface, 64
response implicit object, 661

server recycling, 562
ServerResponse interface, flushBuffer

method, 64
servers

compatibility testing, 559–560
JUnitEE testing tool, 553

service method, servlets, 52, 55–56
Service to Worker design pattern, 545
servicing, JSP pages, 6
Servlet 2.3–compliant container filtering,

409–410
Servlet 2.5 Specification

compliant container filtering, 411, 413
security, 509

Servlet API classes, 58
servlet containers, 2, 4–5, 470
servlet definitions, deployment descriptors,

70–71
servlet elements, web.xml file, 70, 89
Servlet Engine (Servlet Controller)

memory problems, 562
stopping responding, 563

servlet error page attributes, 649–650
Servlet interface, 45–46, 49, 54
servlet mappings, 71–72
Servlet specification, security requirements,

469
servlet-class elements, web.xml file, 71
servlet-mapping elements, web.xml file, 71,

90
servlet-name elements, web.xml file, 71
ServletConfig class, 50, 71, 670
ServletContext interface, 50–51, 421–422,

564, 667
getInitParameter method, 72
getInitParameterNames method, 72
getRealPath method, 659
javax.servlet package, 667, 669–670
log methods, 422, 564
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ServletContextAttributeEvent class, 54
ServletContextAttributeListener class, 52
ServletContextEvent class, 54
ServletContextListener class, 51
ServletFilter class, page caching, 517
ServletInputStream class, 54
ServletOutputStream class, 54, 64, 444
ServletRequest class, 46, 52–53

getParameter method, 53
getParameterMap method, 53
getParameterNames method, 53
getParameterValues method, 53

ServletRequestAttributeEvent class, 54
ServletRequestEvent class, 54
ServletRequestWrapper class, 54
ServletResponse class, 46, 63–64
ServletResponseWrapper class, 54, 64
servlets, 1–3, 10

advantages of, 2
classes, 46
context initialization parameters, 72–73
controller, 10–11
defined, 45
deployment, 57
destroy method, 55–56, 59
directory structure, 57
form-based authentication, 501–504
generic, 56–59
HTTP, 59–67
implementation, 5–6, 21, 29
init method, 55–56, 58
initialization parameters, 71
JSP pages translated to, 47, 49
life cycle, 54–55
OSCache servlet filter class, 519–520
service method, 52, 55–56
standard security model, 560–561
threading models, 5
uses, 46

servlet_name request attribute, error pages,
650

servlet_path request attribute, includes, 648
session attribute, page directives, 26
session creation, avoiding, 524
session implicit object, 665–666

getAttribute method, 665
getAttributeNames method, 665
getCreationTime method, 665
getId method, 666
getLastAccessedTime method, 666
getMaxInactiveInterval method, 666
getServletContext method, 666
invalidate method, 666
isNew method, 666
removeAttribute method, 666
setAttribute method, 666
setMaxInactiveInterval method, 666

session management, scalability and, 523
session migration, 524
session object, 24
session scope, 213, 204, 516
session tracking, 156
sessions, memory use and, 562
sessionScope implicit object, Expression

Language, 123
set method, JavaBeans, 200
setAttribute method

application implicit object, 669
request implicit object, 659
ServletContext interface, 421
session implicit object, 666

setBodyContent method, body tag handler
classes, 319

setBufferSize method, response implicit
object, 661

setCharacterEncoding method, request
implicit object, 659

setContentLength method
HttpServletResponse interface, 63
response implicit object, 662

setContentType method
HttpServletResponse interface, 63
response implicit object, 662
ServletResponse interface, 64

setDateHeader method
HttpServletResponse interface, 63
response implicit object, 662

setDynamicAttribute method, 305, 308
setHeader method

HttpServletResponse interface, 63
response implicit object, 662

setIntHeader method
HttpServletResponse interface, 63
response implicit object, 662

setJspBody method, simple tag handler
classes, 268, 285

setJspContext method, simple tag handler
classes, 267

setLocale method
HttpServletResponse interface, 63
response implicit object, 662

setMaxInactiveInterval method, session
implicit object, 666

setPageContext method, classic tag handler
classes, 292

setParent method
classic tag handler classes, 292
simple tag handler classes, 268
tag handler class, 337

setProperty action elements, 39–40, 337,
640–641

name attribute, 39
property attribute, 39
value attribute, 39
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setStatus method, response implicit object,
662

setter methods, tag handler classes
classic tags, 301, 308
object attributes, 277
simple tags, 274–275, 280, 284

setters, 587
simple tags, 256, 289

attributes vs. classic tags, 255–256,
290–291

customizing with, 274–282
definition, 251
Directory List tag, 283–286
dynamic attributes, 306
example, 268–274
life cycle, 266–268
optional attributes, 281
required attributes, 281
reusability, 286
SimpleTag class, 265
SimpleTagSupport class, 268
tag handler classes, 265, 267, 269–272
thumbnails, 278–282
types, 276–277
using, 265–274

SimpleFilter class (example), 421–422,
462–463

SimpleTag class, 265, 329, 342
TagUnit testing tool and, 555–556

SimpleTagSupport class, 268, 278, 283
single-threading, 5, 524, 528
single-tier architectures. See one-layer

architectures, 
SingleThreadModel interface, 524
SiteMesh framework (OpenSymphony), 499,

607
slow running problems, 563
specification

JSP, 633
URL, 634

Spring framework, 549–550
SQL

JSP tags, 360–363
JSTL tags, 142, 168–170
query strings, 363

<sql:dateParam> action, 169
<sql:param> action, 169
<sql:query> action, 168, 170
<sql:setDataSource> action, 168
<sql:transaction> action, 169–170
<sql:update> action, 169–170
SSL. See Secure Sockets Layer
SSL handshake, 488
SSL protocol attributes, 647–648
standard action elements, 35–41

<jsp:forward> action, 41
<jsp:getProperty> action, 39

<jsp:include> action, 35–36
<jsp:setProperty> action, 39–40
<jsp:useBean> action, 36–38

standard actions, 639–646
attribute, 643
body, 643
doBody, 644
element, 645
fallback, 643
forward, 641
getProperty, 641
include, 641
invoke, 644
output, 645–646
param, 642–643
plugin, 642
setProperty, 640–641
text, 645
useBean, 639–640

standard converters, 231–232
standard security model, 560–561
standard validators, 236–237
standards, adopting, 567
state information, filters and, 429
static attributes, 264
static navigation, 218
status codes, HTTP, 75
status_code request attribute, error pages,

649
strategy, command and controller, 541–544
string attributes, automatic conversion

methods, 276
string concatenation, 525
strings, 97
StringTokenizer class, java.util package 153,

155
Struts, 183, 548–549, 571

ActionForms development, 590–603
advantages of using, 571
Ant, 582–585
architecture, 573–576
bean tags, 575
built-in actions, 603–607
configuration file, 574, 584–588, 608, 614,

622
Controller interface, 616
definitions, 608–611
development techniques and tools, 582
directory structure, 580–582
DispatchAction, 604, 606
DynaActionForms, 590–591
EL tags, 575
exception handling, 626–631
form validation, 592–603
ForwardAction, 603–604
handling persistence, 589–590
homepage, 574
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HTML tags, 575
IDEs, 618–619
IncludeAction, 604
indexed properties, 591–592
logic tags, 575
LookupDispatchAction, 606–607
modules, 619–622
nested tags, 575
overview, 572–573, 577, 580–582
sample pages, 577, 580
SSL extension, 510
StrutsGen tool, 589
SwitchAction, 604
tag libraries, 575–576
testing, 599–600, 622–626
third-party tools to enhance, 572
Tiles controllers, 616–618
Tiles framework, 575, 607–618
user guide, 574
XDoclet, 585–588

Struts Builder, 572
Struts Console, 619
Struts Menu, 576, 614
struts-plugins.xml file, Struts, 593, 608
struts-resume example application

directory structure, 580–582
overview, 577, 580–582
sample pages, 577, 580
using Ant, 584–585

struts-template tag library, 607
StrutsGen tool, 589
StrutsTestCase for JUnit, 571, 623
stylesheets

CSS, switching, 612
XSLT, 179

subs.jsp page, 394–396
SubscriptionAction class, 392–394
Sun Java System Application Framework, 183
SwitchAction class, Struts, 604
synchronization, thread, 524
syntax reference, 633

comments, 634
directives, 635–636
implicit objects, 647
predefined attributes, 647–651
scripting elements, 638–639
standard actions, 639–646
tag files, 637–638
tag libraries, 646
URL specifications, 634

■T
tables, databases, 385–386
tag dependent body content, 341
tag descriptions, 272
tag directives, 637

tag elements, TLD files, 272, 281
tag extensions, 251, 257

See also custom tags
tag files, 34, 256

advantages, 265
attributes, 263–264
defining content in, 257
definition, 251
directives, 637–638
reusing content, 256–258
templating with, 260–263
using, 256–265

tag handlers, 255, 265, 289–290
building, 338–342
classic tags, 291, 295–305
compiling, 270
cookies, 329–332
cooperating tags, 337–344
creating, 267, 291
describing, 342–343
Directory List tag, 283–284, 286
doAfterBody method, 311–315, 319
doEndTag method, 292–296, 301–302, 313,

319, 321, 341
doInitBody method, 319
doStartTag method, 292–295, 301, 308,

312, 315, 318
doTag method, 268–269, 275, 280, 284
getPreviousOut method, 321
iteration tags, 313–317
lifecycle, 555–556
release method, 294
select tag, 300, 302–303, 305
selectWithDynamicAttributes tag, 306–311
setBodyContent method, 319
setDynamicAttribute method, 305, 308
setJspBody method, 268, 285
setJspContext method, 267
setPageContext method, 292
setParent method, 268, 292, 337
setParent method, 292
setter methods, 274–275, 280, 284, 301, 308
thumbnails, 278–282
unpackaged, 272
using, 344
writing, 269–270

Tag interface, 291, 329
tag libraries (taglib), 7–8, 31–34, 253

best practices, 357
custom, 32, 42
deployment, 273–274, 351–355
for development, 351–352
form-based authentication, 504
importing and using, 253–254
JSTL, 32, 135
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prefixes, 646
reusability, 274, 352–355
Struts, 575–576
syntax, 646
writing, 270–273

tag library descriptor files. See TLD files
tag validation, 344–348

with TagExtraInfo class, 345–348
with TagLibraryValidation class, 344–345

tag-dependent body content, 254, 324
tag-file elements, TLD files, 355
tagdir attribute, taglib directives, 32, 258
TagExtraInfo (TEI) class, 345–348

building, 345–346
using the tags, 347–348

TagExtraInfo class, 332, 334–336, 347
taglib directives, 31–32, 193, 257, 262, 273,

351, 354, 636, 646
prefix attribute, 32, 273
tagdir attribute, 32, 258
uri attribute, 32, 34, 273, 351

<taglib> element, 33
<taglib-uri> element, 33
TagLibraryValidator (TLV) class, 344–345
tags

See also classic tags; custom tags; simple
tags

attributes, 255
body, 317–320
body content, 254
cooperating tags, 336–338, 340–342, 344
filter, 320–324
formatting, 157–167
importing and using, 253–254
OSCache, 518–519

TagSupport class, 295, 300, 306, 313, 329–330
TagUnit testing tool, 555–556
Tapestry project, 183
team development environments, using

modules in, 619–622
TEI class. See TagExtraInfo class, 
tempdir context attribute, 651
templates, 3, 18, 547–548

customizing, using attributes, 258–263
defining, 259
Expression Language within, 98, 100
included JSP files and, 259
with tag files, 260–263
using, 260
VTL (Velocity Templating Language), 551

temporary file directory attribute, 651
testing

acceptance testing, 556–558
compatibility testing, 559–560
design applications for testing, 558–559
filters, 423–424

functional testing, 556–558
performance, 529–533
strategy for, 559
Struts applications, 622–626
unit testing, 551–556
web application, 551–560

text tags
JSP, 645
Struts HTML library, 589

third-party components, 568–569, 572
thread deadlocks, 563
thread safety and performance, 524

authorization filters, 448–449
filter thread safety, 429

three-layer architecture, 377–380
example, 380–396

Throwable class, 669
Throwable exceptions, <c:catch> action and,

147–148
thumbnail images, displaying with tags, 277,

279–282
tiers, architectures

business tiers, 375, 378, 380, 389–391
data tiers, 378, 381
presentation tiers, 375, 381, 391

Tiles controllers, 616–618
Tiles framework, 499, 571, 607–618

definitions, 614
example application, 608–614
forwards, 614–615

tiles tags, Struts, 575
tiles-config.xml file, Struts, 610, 615
TilesRequestProcessor, 614
time zone setting, 164–165
TLD (tag library descriptor) files, 32–33

attribute definitions, 281
defining variables in, 328, 330–332
function-signature elements, 126
jsp-version element, 271
location, 138–139
referencing Struts tag libraries, 576
scripting variable definitions, 331
tag descriptions, 272, 280–281, 285–286,

296–297, 302–303, 308, 315–316,
321–322

tag libraries, 143
tag-file elements, 355
tlib-version element, 271
uri element, 272
writing, 270–273

tlib-version element, TLD files, 271
TLS. See Transport Security Layer
TLV class. See TagLibraryValidator (TLV) class
Tomcat, 13, 421

application deployment, 92–93
authentication, 471
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installation, 13
interceptors, 428
realms, 480–488
servlet calling procedure change, 560
servlet deployment, 58
SSL on, 489–492
startup, 15–16

tomcat-users.xml file, 473
TopLink O/R persistence framework, 369
toString method, exception implicit object,

669
transaction isolation levels, 170
transactions, <sql:transaction> action and,

170
transformation actions, 179
translation phase, 5, 18
Transport Layer Security (TLS), 488
transport-guarantee elements, web.xml file,

505
trimDirectiveWhitespaces attribute, page

directives, 28, 636
troubleshooting, 561–563

ClassCastExceptions, 563
exhausted connections, 562
memory problems, 562
servlet engine, 563
slow running problems, 563

TryCatchFinally interface, 349, 351
doCatch method, 349
doFinally method, 349, 351

two-layer architecture, 375–377
type attribute

JavaBeans useBean tags, 640
JSP plugin tags, 642
useBean tags, 640

■U
UAT (User Acceptance Testing), 556
UML (Unified Modeling Language), 46, 373,

376
unit testing, 551–556
update model values phase, JSF life cycle, 186
uri attribute, taglib directives, 32, 34, 273, 351
uri element, TLD files, 272
URIs

absolute, 32–33
relative, 33

URL patterns, 408–409
URL specifications, 634
url-pattern element, 72, 101, 472
URL-related actions, JSTL, 156–157
URL-rewriting, 156
useBean action elements, 36–40, 337,

639–640
User Acceptance Testing (UAT), 556
User Interface in XML (UIX), 183

user interfaces
custom, 258
implementation example, 391, 393–396
JSF and, 184

User-Agent header, HTTP, 61
Using the getServletContext method,

FilterConfig interface, 421

■V
validate method, 594
validation

data, 236–240
on indexed tags, 603

validation, form, 592–603
conditional validation, 602
declarative validation, 600
indexed properties, 601
multipage validation, 601
testing, 599–600

validation.xml, 596–599
Validator, Struts, 571, 592

advanced features, 601–602
indexed tags, 603
testing the validation, 599–600
using, 592–595
using with DynaActionForms, 602–603
validation.xml, 596–599

validators
custom, 237–239
standard, 236–237

value attribute, 36
JSP plugin tags, 643
setProperty action elements, 39, 640

value change listeners, 240–246
value-binding expressions, 247

using, in JSP pages, 205–207
valves, 428
variable-class element, TLD file variable

definitions, 331
variable directives, 637–638
variable elements, TLD file tag descriptions,

331–332
VariableInfo class, 334
variables, 19, 29

named, 114
page level, 20
scoped variable manipulation, JSTL,

144–148
scripting, 327–336
defining, in TLD file, 328–332

Velocity framework (Jakarta), 550–551, 575
view components, 460

design patterns, 544
securing, 561

View Helper pattern, 544–545
ViewCustomerAction class, 542, 554
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views, MVC, 539
VisAuditFilter class, 442–443
VisAuditOutStream class, 440–441
VisAuditResponseWrapper class, 441–442
visual auditing filters, 437, 439–446

configuring and testing, 445–446
custom response wrapping, 437, 439–445
ReplaceContentOutputStream class,

443–445
VisAuditFilter class, 442–443
VisAuditOutStream class, 440–441
VisAuditResponseWrapper class, 441–442

vspace attribute, JSP plugin tags, 643
VTL (Velocity Templating Language), 551

■W
WAR (Web Archive) files, 12, 91–93
Web Accessibility Initiative (WAI), 595
web applications

compatibility testing, 559–560
context, 15
debugging, 564–566
deployment, 58–59, 68–78, 91–93
design patterns, 539–540
design, principles, 516, 535–536
designing for testing, 558–559
example, 78–93
extensibility, 536
frameworks for building, 548–551
functional/acceptance testing, 556–558
general guidelines, 566–569
internationalizing, 246–247
maintainability, 536
page caching, 516–520
performance, 515
scalability of, 515, 523–524
security, 560–561
session scopes, 516
strategy for, 559
templates, 547–548
testing, 551–560
troubleshooting, 561–563
unit testing, 551–556

web-application architectures, 536, 538–539
web-application components, Java EE

patterns and, 540–54546
web-application structure, exploded

directory format, 14
Web ARchive file (WAR), 12, 91–93
Web browsers, support of older, 613
web designers, 356
web frameworks. See Struts
Web Performance Inc., 529
WEB-INF directory, 57, 67, 91, 351, 512
web-resource-collection element, 472

web.xml (deployment descriptor) file, 57,
67–68, 88–91, 101, 472

context-param elements, 72
description elements, 70
display-name elements, 70
error-page elements, 74, 90
filter definitions, 407
filter mappings, 407–409
login-config element, 76, 472
security-constraint elements, 472
security-role elements, 474
servlet declarations, 70
servlet-mapping elements, 71
welcome-file-list element, 499
WebTest tool, 624
WebUnit tool (Sourceforge), 557
WebWork framework (OpenSymphony),

550
welcome files, 499–500
welcome-file-list element, web.xml file, 499
white box testing, 551–556
width attribute, JSP plugin tags, 643
World Wide Web Consortium (W3C), 595

■X
X509Certificate request attribute, 648
Xalan libraries, 171
<x:choose> action, 175–176
XDoclet, 571

forwards, 615
generating configuration files with, 585–588
generating validation.xml, 596–599
merge directories, 581

<x:forEach> action, 176–178
<x:if> action, 174–175
xhtml tags, Struts HTML library, 576
XML, 575
XML Processing Library, JSTL, 142, 171–182

example illustrating, 177
functional areas, 171
XML core actions, 172–174
XML flow control actions, 174–178
XML transformation actions, 179–182

XMLSpy tool, 619
<x:otherwise> action, 175–176
<x:out> action, 173–174
XP (Extreme Programming), 551
<x:param> action, 181–182
<x:parse> action, 172
XPath expressions, XML Processing tag

library use, 171–172, 174, 177
<x:set> action, 173–174
XSLT transformations, 179
<x:transform> action, 179–181
<x:when> action, 175–176
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JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.
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Go to the Apress Forums site at http://forums.apress.com/.
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